

Probing baryogenesis using neutron-antineutron oscillations

Kåre Fridell

Technische Universität München kare.fridell@tum.de

Collaboration with

- J. Harz
- C. Hati

Based on arXiv:2105.06487

PPC2021

XIV International Conference on Interconnections between Particle Physics and Cosmology

May 17 – 21, 2021

Baryon asymmetry

Baryogenesis is an attempt to answer the question of why matter exists in the Universe

 $\eta_B^{\rm obs} = (6.20 \pm 0.015) \times 10^{-10}$

Planck collaboration (2018)

- Baryon number (B) violation
- C and CP violation
- Out-of-equilibrium dynamics

In the Standard Model (SM): \checkmark Sphalerons \checkmark CKM matrix \checkmark Electroweak transition $\uparrow \eta_B \approx 10^{-19} \text{ X}$

 $\eta_B \equiv \frac{n_B}{n_{\gamma}}$

Out-of-equilibrium dynamics and C and CP violation: Can be connected to B violation in a given model

Need Beyond SM (BSM) physics to explain the baryon asymmetry How can baryogenesis be probed experimentally?

Search for **B** violation

Probing baryogenesis using neutron-antineutron oscillation

Effective field theory (EFT)

Neutron-antineutron oscillations can be realized by dimension 9 operators

Early Universe reaction rate is obtained from the operator and quark number density.

A differential equation for the baryon asymmetry is then obtained:

Deppisch et al (2018)

$$\Gamma_W = \frac{f(n_d, n_u)}{n_{\gamma}} \frac{T^{14}}{\Lambda^{10}} \qquad \Longrightarrow \qquad zH \frac{d \eta_{\Delta B}}{d z} = -\Gamma_W \eta_{\Delta B}$$

RHS contains only a term with a minus sign: the effect is a washout of the baryon asymmetry

Baryogenesis: effective washout

Washout: B violating process that reduces or removes B asymmetry

A baryon asymmetry can be created at a high scale but later washed out

Can be estimated by comparing width to Hubble rate $\Gamma_W \sim H$

Kåre Fridell

Simplified model

Motivation: This EFT formalism does not account for CP violation or a hierarchy of scales

 $\mathcal{L} \supset f^{dd} X_{dd} d_R d_R + f^{ud} X_{ud} u_R d_R + \lambda v' X_{dd} X_{ud} X_{ud} + \text{h.c.}$

FieldSpin $SU(3)_C$ $SU(2)_L$ $U(1)_Y$ B X_{dd} 0 $(6,\overline{3})$ 1 $+\frac{2}{3}$ $-\frac{2}{3}$ X_{ud} 0 $(6,\overline{3})$ 1 $-\frac{1}{3}$ $-\frac{2}{3}$

Very common in GUTs, e.g. $SO(10), E_6$ Babu et al (2012), Aulakh et al (2005), London et al (1986) +

Baryogenesis

$$\frac{d\eta_{\Delta B}}{dT} = \boldsymbol{\epsilon} \times \boldsymbol{D}(\eta_{X_{dd}} - \eta_{X_{dd}}^{\mathrm{eq}}) - \eta_{\Delta B} W$$

 $m_{X_{dd}} > 2m_{X_{ud}}$

Kåre Fridell

Probing baryogenesis using neutron-antineutron oscillation

Dinucleon decay, meson oscillations

Dinucleon decay:

- Large uncertainties in nuclear matrix elements
- Fewer loops than neutron-antineutron oscillations for 3rd gen
- Generally low constraints

Meson oscillations:

- Tree- or loop-level oscillations depending on the diquark
- Kaon oscillations the most sensitive
- Generally low constraints (compared to neutron-antineutron oscillations)

LHC

KF, Harz, Hati (2021)

Low-scale baryogenesis

Agrees with the EFT, the washout is big even with an additional CP-violation source. A small mass hierarchy leads to baryogenesis being out of reach for experiments.

Kåre Fridell

Probing baryogenesis using neutron-antineutron oscillation

PPC2021

High-scale baryogenesis

EFT breaks down due to mass hierarchy. Regions of parameter space that can be probed by both LHC and neutron-antineutron oscillations result in successful baryogenesis.

Kåre Fridell

Conclusion

- Neutron-antineutron oscillation experiments will probe B-violation by two units to an unprecedented sensitivity in the near future
- A potential neutron-antineutron oscillation discovery could have far reaching implications for the baryogenesis mechanism
- To study the overlap of neutron-antineutron oscillation and baryogenesis it is useful to go beyond the EFT to a simplified model

Thanks for listening