Gravity Gradient Noise from Asteroids

14th International Conference on Interconnections between Particle Physics and Cosmology

University of Oklahoma

Remote presentation

May 19, 2021

Michael A. Fedderke

mfedderke@jhu.edu

Based on 2011.13833 (accepted by PRD) with P.W. Graham and S. Rajendran

... and some other ongoing work

GW Detection Landscape

Local-TM—based GW Detection 101

- Measure light travel time (= proper distance) between test masses (TM)
- Emitter (A) sends pulse at $t_A = t_0$; receiver (B) gets pulse at $t_B = t_0 + \Delta t$:

$$\Delta t = L_0 \left(1 - \frac{h_0}{2} \cos[\omega_{\rm GW} t_0] \right) + \mathcal{O}(h_0^2)$$
$$[\omega_{\rm GW} L_0 \ll 1]$$

• Effective baseline-projected Newtonian acceleration a_I :

$$a \sim \frac{1}{2} h_0 \omega_{\rm GW}^2 L_0 \cos[\omega_{\rm GW} t_0]$$

Sensitivity and Dominant Noise

- noise, GGN on the ground).
- In-band environmental / acceleration noise in space?
- range.

Local TM detection in the ~10 nHz to ~10 μ Hz range MUST be space-based (seismic

Observation: orbital motion of bodies in the Inner Solar System have frequencies in this

Question: Does the gravitational coupling of the orbital motion of Inner Solar System bodies cause in-band noise for space-based TM when attempting GW detection?

Sources of in-band GGN?

- The Sun, Planets (and Pluto), Moons
 - Relatively few
 - Masses (or $G_N M$) and locations known
 - Not noise (model out)
- The Inner Solar System asteroids
 - $\mathcal{O}(10^6)$ objects
 - Generally, masses poorly / indirectly determined
 - Locations are known to some extent
 - NOT reasonable to assume that one can successfully model these out
 - Asteroid gravity gradient noise (GGN)!

Simulation

- Use NASA JPL Small-Body Database
- 10-year mission simulation
- Detectors on circular orbit @ 1AU; asteroids on elliptical orbits (not N-body)
- TM accelerations from asteroids \longrightarrow "noise" power spectrum (details) \longrightarrow strain sensitivity.

- Problematic for ANY local-TM-based GW detector with Inner Solar System baselines, up to frequencies ~ (few) $\times 10^{-7}$ Hz
- Removing ~50 heavy distant objects does not change this conclusion
- At higher frequency, noise drops off. But only $\sim 1/6$ of objects in database used in simulation: missing diameters for smaller, closer passing objects...

High frequency tail

- Approximate estimate of noise in high frequency tail.
- Shape here not computed fully: used a point-estimate at $\sim \mu Hz$.
- Use impact craters on Moon to estimate flux. [LISA Pre-Phase A Report (1999); Shoemaker (1983)]
- Undercounting by 3-10; rescale simulation upward.

- Qualitative conclusions unchanged.
- Actual noise near μ Hz not very well known; above that, looks OK.
- Below that, seems very hard to make progress in Inner Solar System.

The path forward?

- Go to the Outer Solar System?
 - Technically challenging?

- Baselines that extend outside the Inner Solar System:
 - PTAs but these lose sensitivity in this band
 - Precision astrometry: Gaia, Nancy Roman, and possibly other precision techniques [work in progress]
- Above μ Hz, can **USE** asteroids as test masses [work in progress with P.W. Graham, S. Rajendran]

See recent talk by P.W. Graham at KITP Workshop on Novel Experiments for Fundamental Physics

Michael A. Fedderke (JHU)

Conclusions

- Asteroid GGN \Rightarrow low-frequency GW detection $|f \lesssim (\text{few}) \times 10^{-7} \text{ Hz}|$ requires baselines that are not fully contained in the Inner Solar System.
- Simulations robust at these frequencies: large, distant objects dominate.
- Above $f \gtrsim \mu Hz$, asteroid GGN negligible.
- Situation around $f \sim \mu Hz$ not fully clear. Possible catalog/simulation incompleteness for smaller, close-passing asteroids; estimate uncertain by factor of 3-10.
- Above $f \gtrsim \mu \text{Hz}$, asteroids themselves could function as test masses for GW detection.