

Probing Dark Matter and Dark Energy with strong gravitational lensing

Dark Matter and Structure Formation

Planck Collaboration 2019 adopted by E. Nadler A. Drlica-Wagner

Dark Matter and Structure Formation

Microphysical dark matter properties affect structure formation on small scales

Probing Dark Matter

Probing Dark Matter

What if structure is completely dark?

CDM predicts completely dark halos!

Strong gravitational lensing

Strong gravitational lensing

Y. Hezaveh

Dark Matter and Structure Formation

- Dark matter as a collision-less cold fluid is extremely successful in describing cosmological observations
- The sub-galactic scales offer a laboratory for micro-physical properties of dark matter
- Below the galaxy-formation limit, only gravitational probes are sensitive to dark matter physics, in particular strong gravitational lensing

Flux-ratios are sensitive to completely dark structure

Mao & Schneider 1998, Dalal & Kochanek 2002, Moustakas & Metcalf 2003, Nierenberg+2014, 2017 Hsueh+2016, 2017, 2019, Gilman, **SB**+2018, 2019a,b,c

End-to-end inference of dark matter microphysics

Flux ratio statistics

Forward modeling and simulation based inferences with Approximate Bayesian Computing

thermal relic mass > 5.2 keV from a sample of 8 quasar lenses, > 2 keV from1 lensing arc

SB+2015, **SB+**2017a, b, Gilman, **SB+**2019, 2020a, b

Gravitational imaging

Combining visible and invisible universe a self-consistent combined small-scale probe analysis

Combining visible and invisible universe self-consistent combined small-scale probe analysis

- Recent analyses of the Lyman-α forest, strong gravitational lenses, and Milky Way satellites achieve similar dark matter sensitivity
- Each individual measurement probes a **distinct aspect** of dark matter clustering
- Joint analyses of small-scale probes are key to break degeneracies and robustly detect non-CDM physics

thermal relic mass > 9.7 keV at 95% confidence

Nadler, SB, Gilman et al. arXiv:2101.07810

Measuring the Hubble constant with time-delay cosmography

absolute scale

time delay

path difference

lensing potential

 $t(\theta, \beta) = \frac{(1+z_{\rm d})}{c} \frac{D_{\rm d}D_{\rm s}}{D_{\rm ds}} \left[\frac{(\theta-\beta)^2}{2} - \psi(\theta) \right]$

Measuring time delays with long-term monitoring

TDCOSMO project

(H0LiCOW+STRIDES+SHARP+COSMOGRAIL)

- Detailed analysis of several time-delay lenses (Suyu+2017)
 - long term monitoring from COSMOGRAIL (Courbin+2011) for accurate time delays
 - high-resolution HST imaging for detailed lens modeling
 - wide-field imaging/spectroscopy to characterize mass along LOS
- Goal is to constrain H₀ to ~few % precision
- Seven lenses have been analyzed (Suyu+2010, 2013; Wong+2017, Birrer+2019, Rusu+2019, Chen+2019, Shajib+2019), more coming

H0 - present

SB et al. 2020 TDCOSMO IV

H0 - near future - road to 1%

SN 'Refsdal'

7% Hn estimat

Kally et al (2015), Science 347(6226):1123=1126

(approved JWST program)

SB & Treu 2021 TDCOSMO V

Kelly et al. 2015, Kelly (incl SB) et al. in prep

Lensed supernovae

iPTF16geu

idena: 356/63251:291–295

Summary

Gravitational lensing is...

probes small (dark) matter structure

- competitive with other cosmological probes
- advancing with increased sample size and improved observational capabilities!

