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Thermal DM Candidates

• Unitarity bound on thermal relics mass: m 6 O(100) TeV.

• Here we consider an SU(3) sector with a single heavy quark
flavor and with conserved baryon number.

• Such a sector has a first order phase transition.

• These models have been studied in the literature before. But
the phase transition effect was (for the most part) overlooked.

• We look more closely at the phase transition epoch.
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Phase Transition - Before Percolation
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Temperature Evolution

• When we reach T = Λ, the free energy of the confined and
the deconfined phase become equal.

• The universe slightly supercools; the confined phase becomes
energetically favored; bubbles of the confined phase start
nucleating.

• The latent heat is large enough that it can heat up the
vicinity of the bubble back to T = Λ.
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Phase Transition - After Percolation

• Once O(1) fraction of the universe converts to the confined
phase, the percolation happens.

• After the percolation the table is turned. Now we have
isolated pockets of the deconfined phase in a sea of the
confined phase.

• The pockets contract and eventually they disappear.
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What happens to the quarks during all of this?

• They are heavy enough that before the phase transition they
decouple.

• By the time we reach T = Λ, their separation is a few orders
of magnitude larger than 1/Λ.

• Lattice studies show that they dont feel each others presence;
each quark thinks it’s alone in a deconfined universe.

• Upon running into a confined phase bubble, an isolated source
of color feels an infinitely large potential barrier.

• Thus, the quark will always be push backed into the
deconfined phase. They can not enter the confined phase
bubbles.
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DM Squeezeout

• Quarks either form color-neutral bound states or annihilate.

• Important to calculate the survival rate S ≡ Nsurvived
q

N initial
q

.
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Evolution of the Relics in a Pocket

• We solve a set of Boltzmann equations for the trapped relics
in the contracting pockets.
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• The solution allows us to calculate the survival factor.
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Available Parameter Space
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• Purple region characterizes the uncertainty in our results.

• All in all, O (PeV) . mDM . O (100PeV).
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Summary

• A confining dark sectors;
heavy quarks; conserved
baryon number.

• A second stage of
annihilation thanks to
the phase transition: DM
Squeezeout

• O (1) . mDM
PeV . O (100).

• THANK YOU!
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Back up

• Thermodynamical Parameters

• More on v ∼ ε

• More on R0, R1 and their derivation

• More on the Bubble Dynamics

• Lattice Results on Quark Potential

• String Breaking

• Accidental Pocket Asymmetry

• Full Boltzmann Equations

• Discussing the Results

• Cross Sections

• Analytic Approximation

• Phenomenology
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Thermodynamics of Bubbles

fdeconf = fconf

f = −p, ρ = Ts − p

∆ρ = Tc∆s ≡ l , l = 1.413T 4
c , σ = .02T 3

c

∆f = l
(Tc − T )

Tc

Total free energy of bubbles at critical radius:

Fc =
16π

3

(
σ

T 3
c

)3( l

T 4
c

)−2 T 3
c

(Tc − T )2

Γ = AT 4
c e
− κT2

c
(Tc−T )2

κ =
16π

3

(
σ

T 3
c

)3( l

T 4
c

)−2

∼ 7× 10−5
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vw

Assuming the wall is at T = Tc , the cooling rate will be

Ṫcool ∼ −K∇2T ∼ −Λ2Tc − T

Tc
∼ −Λ2ε

Ṫheat ∼
1

C
× dE

dt

(
dρ

dT

)3

× lΛvw Λ2vw

Ṫheat ∼ −Ṫcool =⇒ vw ∼ ε
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Ri

When two bubbles merge, they keep their volume fixed but turn
into a another spherical bubble. The associated energy difference
is:

∆E ∼ 4πR2(2− 2
2
3 )σ = 4πR2(2− 2

2
3 )× .02T 3

c

F ∼ ∆E/R ∼ Ma ∼ MR/t2
coalesce, M ∼

8π

3
R3T 4

c

tperc ∼ 10−3H−1 ∼ 10−3Mpl

Λ2

tcoalesce ∼ tperc =⇒ RiΛ ∼ 10−8/3

(
Mpl

Λ

)2/3
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More on Bubble Dynamics

x(t) =

∫ t

tc

dt ′Γ(t ′)
4π

3
R3(t, t ′)(1− x(t ′))

Ṫ = −HT + 10−2 Tc ẋ
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Quark Potentials at High T
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Quarks and Confinement - String Breaking

• How can quark go inside the confined phase bubble? (1)
running into other sources of color; (2) string breaking.

The Confined Phase The Deonfined Phase

vw

vw

qvq
=⇒

The Confined Phase The Deonfined Phase

vw

vw

=⇒

The Confined Phase The Deonfined Phase

vw

vw

q vq

(τstring)−1 ∼ mq

4π3
e−m

2
q/Λ2

• tPT ∼ 10−2/H for the transition to complete. tPT � τstring
for masses we will consider.

• Thus, quarks are trapped inside contracting pockets and are
brought back into interaction. 16 / 9



Pockets Accidental Asymmetry

• The wall runs into either particles or anti-particles randomly.

• The net baryon number in each pocket is a Gaussian random
variable with zero mean.

• If the total number of particles (quarks + anti-quarks) is

N initial
q , the asymmetry is roughly

√
N initial
q .

• This accidental asymmetry puts a lower bound on the survival
rate:

S > ηrms ≡
1√

N initial
q

• N initial
q can be calculated using the pockets initial radius after

the percolation and the quarks’ number density from before
confinement.
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Boltzmann Equations Governing the Compression

• The pocket walls only constrain colored relics and modify the
their Liouville operators.

• We can list all 2↔ 2 collision terms using the conservation of
baryon numbers in the interactions.

State Dark Quark Number Color Rep.

Gluons 0 8

Quark 1 3

Diquark 2 3̄

Baryon 3 1

L[i ] = −
∑

a+b=c+d

s ia,b,c,d〈σv〉ab→cd

(
nanb − ncnd

neqa neqb
neqc neqd

)
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Boltzmann Equations

L[i ] = −vw
V

N ′i , i = 1, 2,

L[3] = −vw
V

(
N ′3 −

3

R

vq + vw
vw

N3

)
,
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Relevant Quantities

• Relevant quantities from the phase transition : pocket wall
and quark velocities, pocket radius, initial particle density in
the pocket.

vw ∼ ε, vq ∼
√

Λ

mq
, R1 Λ ∼ 10−8/3

(
Mpl

Λ

)2/3

• Other relevant quantities : cross sections, binding energies.

• These are calculated earlier in the literature. They are
calculated accurately enough.

• We can now write down and solve the Boltzmann equations
for trapped quarks.

Ssymm. =
3
∫
dNesc

3

N initial
q

=
9

N1(Ri )

∫
dR

vq + vw
vwR

N3(R)

20 / 9



Relevant Quantities

• Relevant quantities from the phase transition : pocket wall
and quark velocities, pocket radius, initial particle density in
the pocket.

vw ∼ ε, vq ∼
√

Λ

mq
, R1 Λ ∼ 10−8/3

(
Mpl

Λ

)2/3

• Other relevant quantities : cross sections, binding energies.

• These are calculated earlier in the literature. They are
calculated accurately enough.

• We can now write down and solve the Boltzmann equations
for trapped quarks.

Ssymm. =
3
∫
dNesc

3

N initial
q

=
9

N1(Ri )

∫
dR

vq + vw
vwR

N3(R)

20 / 9



Relevant Quantities

• Relevant quantities from the phase transition : pocket wall
and quark velocities, pocket radius, initial particle density in
the pocket.

vw ∼ ε, vq ∼
√

Λ

mq
, R1 Λ ∼ 10−8/3

(
Mpl

Λ

)2/3

• Other relevant quantities : cross sections, binding energies.

• These are calculated earlier in the literature. They are
calculated accurately enough.

• We can now write down and solve the Boltzmann equations
for trapped quarks.

Ssymm. =
3
∫
dNesc

3

N initial
q

=
9

N1(Ri )

∫
dR

vq + vw
vwR

N3(R)

20 / 9



Relevant Quantities

• Relevant quantities from the phase transition : pocket wall
and quark velocities, pocket radius, initial particle density in
the pocket.

vw ∼ ε, vq ∼
√

Λ

mq
, R1 Λ ∼ 10−8/3

(
Mpl

Λ

)2/3

• Other relevant quantities : cross sections, binding energies.

• These are calculated earlier in the literature. They are
calculated accurately enough.

• We can now write down and solve the Boltzmann equations
for trapped quarks.

Ssymm. =
3
∫
dNesc

3

N initial
q

=
9

N1(Ri )

∫
dR

vq + vw
vwR

N3(R)

20 / 9



The Results
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• We vary R1, vw by an order of magnitude just to parametrize
the uncertainties.

• The available parameter space is very similar to the case with
saturated asymmetry.
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The Results

• Lower velocity, lower survival factor.

• Including the quark pressure means lowering the velocity,
hence lower survival factor.

• The lowest survival factor was given by the asymmetry bound.

• Once quark pressure included, the available parameter space
will be between these two cases.
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Cross Sections
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Cross Sections

〈σann./cap.v〉 = ζ
πα2

m2
q

≡ ζ σ0

〈σRAv〉 =
1

CNα

π

m2
q

=
σ0

CNα3

1+(-1)→0+0

1+1→2+0

2+1→3+0
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���
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�
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Analytic Approximation
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Overview of Phenomenology

• Gravitational waves.

• The glueballs and the mesons can give rise to interesting
signals if long-lived enough.

• The baryons can give rise to interesting direct and indirect
detection signals.

• The de-excitation signal in indirect detection experiments.

• Dark matter trapped in astrophysical objects.

• Further studies are well motivated.
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