Adiabatic contraction of haloes in scalar field dark matter cosmologies

Kevin Pils & Tanja Rindler-Daller May 20th, 2021

Alternatives to Λ CDM - why?

- Small-scale problems
 - cusp-core
 - missing satellites
 - too-big-too-fail

• Null detection of standard CDM candidates (so far)

Scalar field dark matter

Forms a Bose-Einstein condensate

Fuzzy dark matter (FDM)

$$m \sim 10^{-22} \text{ eV}$$

 $\lambda_{\text{dB}} \sim 1 \text{ kpc}$

SFDM with self-interaction

$$\lambda_{\rm dB} \ll R_{\rm TF} \lesssim 1~{\rm kpc}$$

Governed by Gross-Pitaevskii-Poisson equations

$$i\hbar\frac{\partial\psi}{\partial t} = \left(-\frac{\hbar^2}{2m}\,\triangle + m\Phi + g|\psi|^2\right)\psi \qquad \qquad \triangle\Phi = 4\pi G m|\psi|^2$$
 gravitational potential coupling constant
$$g>0 \text{ repulsive}$$

$$g<0 \text{ attractive, no suppression of small-scale structure}$$

Hydrodynamic formulation of SFDM

Euler equation

$$\frac{\partial \mathbf{v}}{\partial t} + (\nabla \mathbf{v}) \, \mathbf{v} = -\nabla Q - \nabla \Phi - \frac{1}{\rho} \nabla P_{\mathrm{si}}$$
 quantum potential self-interaction pressure

Continuity eq.

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \cdot \mathbf{v}) = 0$$

Two limiting cases from before:

Fuzzy dark matter (FDM)

$$P_{\rm si} = 0$$

Thomas-Fermi regime (SFDM-TF)

strong self-interaction

FDM: Haloes & large-scale structure

Mocz et al. 2019; arXiv:1911.05746

SFDM-TF haloes

- Spherical, non-linear collapse reveals core-envelope structure
- Hydrostatic case modelled by

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\psi}{d\xi} + \chi \xi^2 e^{-\psi} \frac{d\psi}{d\xi} \right) = e^{-\psi}$$

with
$$\xi=\frac{r}{r_0},$$
 $\chi=\left(\frac{R_{\rm TF}}{\pi r_0}\right)^2$ characteristic radius of isothermal sphere

Dawoodbhoy, Shapiro & Rindler-Daller, 2021; arXiv:2104.07043

SFDM-TF & small-scale problems

SFDM-TF can solve both problems at once!

SFDM-TF: Adding baryons

- Analyze adiabatic contraction for this model from first principles
 - Thorough analysis of underlying Quantum-Hamilton-Jacobi framework
 - Probe dark matter particle orbits in such haloes
 - Calculate impact of AC with various core radii of $R_{\mathrm{TF}} \sim 0.1-1~\mathrm{kpc}$

Orbits

- From GP equation one can derive a Quantum-Hamilton-Jacobi equation
- Solve this QHJE for action integrals numerically with e.g. Python package gala

$$J_r = \frac{1}{2\pi} \int dr \sqrt{2m(E - \Phi) - g\rho - \frac{L^2}{r^2}}$$

$$J_\theta = \frac{1}{2\pi} \int d\theta \sqrt{L^2 - \frac{L_z^2}{\sin^2 \theta}}$$

$$J_\varphi = \frac{1}{2\pi} \int d\varphi L_z = L_z$$

Adiabatic contraction

$$\underbrace{r_f\left[M_b(r_f) + M_{\mathrm{dm}}(r_f)\right]}_{\text{final}} = \underbrace{r_i M_i(r_i)}_{\text{initial}} = r_i \frac{M_{\mathrm{dm}}(r_f)}{1 - f}_{\text{baryon fraction}}$$

Results

denser core regions due to baryons

Comparison to FDM

Density profiles for $M_{200} = 8.2 \cdot 10^9 \, M_{\odot}, R_{200} = 42 \, \, \mathrm{kpc}$

Conclusion

• Regular orbits possible in SFDM-TF regime

 Our calculation confirms that the central density profiles of SFDM halos steepen in the presence of baryons

 Outlook: Comparison of DM models with baryons & calculation of adiabatic contraction for fuzzy dark matter