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Tunneling

• Quantum tunneling central to
physics
• Higgs meta-stable, turnover at

E ∼ O(1011) GeV
• String theory, exponentially many

meta-stable vacua
• Diodes, nuclear fusion

• In single particle QM tunneling from
exact solution from Schrodinger Eq.

• In QFT, exact solution is difficult ⇒
approximation techniques
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Instanton

• Standard approximation technique:
Coleman Instanton [2]

• Involves classical solution in
Euclidean spacetime (t → iτ)

• Instanton requires an O(4)
symmetry, broken in key regimes
e.g. inflation

• If we can find real time tunneling
method, can examine tunneling in
time-dependent backgrounds!
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Stochastic Method

• Past work by Linde [4] has shown parametric agreement between stochastic
method and instanton

• Recent work by Braden, Johnson, Peiris, Pontzen, and Weinfurtner [1] claims
excellent agreement between stochastic method and instanton
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Stochastic Method

• Consider a potential V (φ) with at least two minima φf , φt .

• Initialize φ = φf + δφ, π = 0 + δφ̇

• Draw δφ and δφ̇ from the free theory:

Ψfree(δφ) ∝ exp

[
− 1

2

∫
dk
2π
ωk |δφk |2

]
(1)

where ω2
k = k2 + V ′′(φf ) = k2 + m2

f

• The 2-point correlation functions for δφk and δφ̇k are:

〈δφ∗kδφk′〉 =
1

2ωk
(2π)δ(k − k ′) 〈δφ̇∗kδφ̇k′〉 =

ωk

2
(2π)δ(k − k ′) (2)

• Use the Wigner distribution as a joint probability distribution to sample δφk
and δφ̇k simultaneously to set initial conditions.

• Place φ in box of size L with periodic boundary conditions
⇒ discrete k-modes kn = 2πn/L with cutoff ncut.
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Stochastic Method

• Initial conditions:

δφ(x) =
1√
L

ncut∑
n=1

e iknxφkn + c .c . ∆φkn =
√
〈|φkn |2〉 = εφ

1√
2ωkn

(3)

δφ̇(x) =
1√
L

ncut∑
n=1

e iknx φ̇kn + c .c . ∆φ̇kn =

√
〈|φ̇kn |2〉 = επ

√
ωkn

2
(4)

where εφ, επ are “fudge factors” to control the amplitude of fluctuations
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Braden Method

• Prepare an ensemble of classical fields {φi} with quantum initial conditions
and evolve under the classical equations of motion:

φ̈i −∇2φi + V ′(φi ) = 0 (5)

• Determine tunneling rate by examining timescale over which classical fields
“tunnel”:
• Let’s define the following volume average for a field φi : ci (t)
• Choose some threshold T , such that a field φi has “tunneled” at time t when

ci (t) > T
• Define the survival rate Fsurvive(t) ≡ No. of fields that have not tunneled at

time t.
• Then using Fsurvive(t) = e−Γt , extract Γ as the tunneling rate.
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Stochastic Method

• We will consider the follow potentials:

• For the periodic potential, ci (t) = 1
L

∫
dx cos(φi (t, x)/φ0)

• For the DW potential, ci (t) = 1
L

∫
dxφi (t, x)/φ0
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Cosine Potential

• The periodic potential has the form:

V (φ) = V0

(
cos

(
φ

φ0

)
+
λ2

2
sin2

(
φ

φ0

))
(6)

• This potential has infinite true and false vacua at φf = 2πmφ0 and
φπ = mπφ0 where m ∈ N. Focus on two vacua φf = 0 and φt = πφ0

• cos(φ/φ0) tracks tunneling: cos(φf /φ0) = −1, cos(φt/φ0) = 1

• φ0 controls potential width, λ controls potential height and mass,
V0 is normalized to V0 = 0.008φ2

0

• Set εφ = επ = ε
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Cosine Potential
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Cosine Potential

• Solid line is Γinst = Γ0

(
SB

2π

)2

e−SB . Without renormalization, use Γ0 = Nm2L

• Dashed line is Γ?e−SB where Γ? = Γstoch(ε = 0.5, φ0 = 1.0)
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Double Well Potential

• Consider now: V (φ) = V0

((
1− φ2

φ2
0

)2

+ λ
(

1− φ
φ0

))
• New tunneling threshold 1

L

∫
dxφ(t, x)/φ0 ≥ V (φHT)
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Double Well Potential
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Renormalization

• The one-loop correction to the mass in 1+1 is:

m2
R = m2

B +
g

8π
log

(
kcut + m2

B

m2
B

)
(7)

where gcos = V0/φ
4
0(1− 4λ2) and gDW = 24V0/φ

4
0

• Requiring |m2
R −m2

B | < |m2
B | gives us an upper bound on kcut. Choosing new

cutoffs, we get:
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Renormalization

Cosine Potential
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Other Physical States

• ∆φk∆φ̇k =
εφεπ

2 . So clearly εφ = επ = ε < 1 violates the uncertainty
principle.

• Can modify fluctuation amplitudes while saturating uncertainty as follows:
εφ = 1/επ = ε
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Particle Escape

• The wavefunction starts in well, then spreads out. This is analogous to a
particle escaping

Escape V

|ψi
2
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Particle Escape

• Track variance in position over time:

〈x2〉Q(t) =

∫ ∞
−∞

dx |ψ(x , t)|2x2 (8)

• Create an ensemble of 104 initial conditions for {xi , pi} from gaussian
distributions with variances:

σ2
x,i =

1

2mω
, σ2

p,i =
mω

2
(9)

• Then evolve each xi classically over time and ensemble average to obtain
〈x2〉S(t)
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Particle Escape

• Choose large box to minimize edge effects: x0 = 2.75/
√
mω , L = 3536/

√
mω
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Conclusions

• The instanton is an imaginary-time approximation of tunneling rates that fails
for certain time-dependent backgrounds

• Recent work introduced a real-time formalism that claimed excellent
agreement to the instanton

• This isn’t quite true, the stochastic method over-predicts tunneling rates
unless fluctuations are artificially suppressed

• Various curing methods were applied, and the stochastic method continued
to show only parametric agreement

• Future work: Develop a prescription for obtaining ideal “fudge factors”
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A “classical” perspective

• The thresholds are chosen as following:

• For the Braden periodic potential:
• Recall the volume average for a field φi : ci (t) = 1

L

∫
dx cos(φi (t, x)/φ0)

• Then, define the ensemble values: c̄T/∆cT ≡ Ensemble average/std. dev. of
{ci (0)}

• Define the threshold TBraden = c̄T + nσ∆cT where 5 ≤ nσ ≤ 25

• For the DW potential: TDW = V (φHT)
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A “classical” perspective

• Let’s define the Weyl transform of some operator Â:

Ã(q±k , π±k) =

∫
dx dy e−iπkx−iπ−ky

〈
qk +

x

2
, q−k +

y

2

∣∣∣∣∣Â
∣∣∣∣∣qk −

x

2
, q−k −

y

2

〉
(10)

• Define the Wigner function W ≡ (2π)−2ρ̃. If W ≥ 0⇒ phase space
distribution

• By correspondence, define corresponding function of Â as:

q̂±k → q±k , π̂±k → π±k ⇒ Â(q̂±k , π̂±k) = AC(q±k , π±k) (11)
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A “classical” perspective

• Define stochastic average of Â as:

〈A〉stoch =

∫
AC(s)W (s)d4s (12)

where s ≡ (q±k , π±k) is a 4-vector in phase space and W (s) is the Wigner
function.

• The Weyl transform has a key property we can use:

〈Â〉 = Tr(ρ̂Â) =
1

(2π)2

∫
Ã(s)ρ̃(s)d4s =

∫
Ã(s)W (s)d4s (13)

• Clearly 〈A〉stoch = 〈Â〉 if AC(s) = Ã(s)
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Single Particle QM

• In QFT, we draw φ from Wigner function as joint distribution, then evolve
classically.

• What if we move to SPQM and draw directly from a Gaussian wavefunction?

• Consider the following wavefunction:

ψ(x) =

(
mω

π

)1/4

exp

[
− 1

2
mω x2

]
(14)

in the following potential:

V (x) =
1

2
mω2x2

1− 1
2

(
x
x0

)2

1 + 1
2

(
x
x0

)4 (15)
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Quantum Escape

• Define the potential:

V (x) =
1

2

x2

1 + x2/λ2
(16)

• Initialize a Gaussian in the well, track its escape and compare to stochastic
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Quantum Escape
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