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Instanton
[ 1o}

Tunneling

H Deepest Valley Intermediate Valley
e Quantum tunnelmg Central to Lowest Energy Intermediate Energy

physics (Stable) (Metastable)
® Higgs meta-stable, turnover at
E ~ O(10™) GeV
® String theory, exponentially many
meta-stable vacua
® Diodes, nuclear fusion

® In single particle QM tunneling from
exact solution from Schrodinger Eq.

. - . . Win al
e |n QFT, exact solution is difficult = ot Seres

approximation techniques Weird, Unimaginable Our Universe
Universe
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Instanton
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Instanton

® Standard approximation technique:
Coleman Instanton [2] Inverted Potential

® |nvolves classical solution in 04

Euclidean spacetime (t — i) o

® |nstanton requires an O(4) e
symmetry, broken in key regimes 00 e
e.g. inflation 02

-Vi¢l

® If we can find real time tunneling
method, can examine tunneling in
time-dependent backgrounds! ¢

-04
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Stochastic Method
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Stochastic Method

® Past work by Linde [4] has shown parametric agreement between stochastic
method and instanton

® Recent work by Braden, Johnson, Peiris, Pontzen, and Weinfurtner [1] claims
excellent agreement between stochastic method and instanton
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Stochastic Method
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Stochastic Method

® Consider a potential V/(¢) with at least two minima ¢r, ¢.
* Initialize ¢ = ¢¢ + 0¢p, T = 0 + ¢
e Draw 8¢ and d¢ from the free theory:

where w? = k* + V" (¢f) = k* + m?

e The 2-point correlation functions for ¢ and d¢y are:
N 1 o w
(i) = 5 -(2maltk = K)  (06kddw) = 5 2ma(k — k') (2)

® Use the Wigner distribution as a joint probability distribution to sample d¢x
and ¢k simultaneously to set initial conditions.

® Place ¢ in box of size L with periodic boundary conditions
= discrete k-modes k, = 27n/L with cutoff ncy.
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Stochastic Method
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Stochastic Method

® |nitial conditions:

Necut 1

So(x) = \% > ek, + e Dy, = /(|
n=1

. 1 Neut ) . ) :
0p(x) = ﬁ Z e/knx¢kn +cc. Ak, =/ (o, |?) = 677\/? (4)
n=1

where €4, €, are “fudge factors” to control the amplitude of fluctuations
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Stochastic Method
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Braden Method

® Prepare an ensemble of classical fields {¢;} with quantum initial conditions
and evolve under the classical equations of motion:

¢i — V20 + V'(¢;) =0 (5)

® Determine tunneling rate by examining timescale over which classical fields
“tunnel”:

® Let's define the following volume average for a field ¢;: ci(t)

® Choose some threshold 7, such that a field ¢; has “tunneled” at time t when
ci(t)>T

® Define the survival rate Fsunive(t) = No. of fields that have not tunneled at
time t.

® Then using Fsunive(t) = e '

t, extract I as the tunneling rate.
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Results
®00000000000

Stochastic Method

® We will consider the follow potentiaIS'

® For the periodic potential, c,(t 1 [ dxcos(oi(t, x)/ o)
® For the DW potential, ¢;(t fdxqﬁ, (t,x)/po
Periodic V
— Double well V
— |quree|2

or

¢

Potential V, Wave function [Wee |2
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Cosine Potential

The periodic potential has the form:

2
V(¢) = V0<co ((Z;) - A—smz (di)) (6)

® This potential has infinite true and false vacua at ¢r = 2rm¢g and
¢ = mmpg where m € N. Focus on two vacua ¢r = 0 and ¢; = w¢yg

cos(¢/¢o) tracks tunneling: cos(¢r/do) = —1, cos(¢:/Pp0) =1
¢o controls potential width, A controls potential height and mass,
V4 is normalized to Vy = 0.008¢S

Setep =€ =€
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Cosine Potential

Po=1.4,A=1.2, €= 0.5, keyt= 137m
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Results
[e]e]e] le]ele]elele]e]e]

Cosine Potential

2
® Solid line is st = I'o(%‘i) e~%8. Without renormalization, use Iy = Nm?L
® Dashed line is M e™8 where * = lgocn(€ = 0.5, g = 1.0)
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Double Well Potential

2\ 2
® Consider now: V(¢) = V0(<1 - %) + /\<1 - g))
0 0
® New tunneling threshold } [ dx¢(t,x)/¢o > V(dnT)

Go=2, A= 1.18, €= 0.375, ko= 49m
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Double Well Potential

2\ 2
® Consider now: V(¢) = VO((l - %) + /\<1 - g))
0 0
® New tunneling threshold } [ dx¢(t,x)/¢o > V(dnT)
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Renormalization

® The one-loop correction to the mass in 1+1 is:

2 >, & keut + M
m m5+8ﬁog< = @
where geos = Vo /da(1 — 4X?) and gpw = 24V /b

® Requiring |m% — m3| < |m%| gives us an upper bound on kc,:. Choosing new
cutoffs, we get:
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Renormalization

Results
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Cosine Potential
A=12, ke =2.7m

Double Well Potential

A=1.18, Koy =42m
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Other Physical States

* ApkAdi = 4. So clearly €5 = €, = € < 1 violates the uncertainty

2
principle.
® Can modify fluctuation amplitudes while saturating uncertainty as follows:
€p=1/e; =€
A=14, key=2.9m
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Particle Escape

® The wavefunction starts in well, then spreads out. This is analogous to a
particle escaping

X0=2.75/\Nmw
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Particle Escape

® Track variance in position over time:

() = [ aelux ©)

—0o0
® Create an ensemble of 10* initial conditions for {x;, p;} from gaussian
distributions with variances:

o _ 1, mw (9)

Tl = o O 2

® Then evolve each x; classically over time and ensemble average to obtain

(x?)s(t)
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Particle Escape

® Choose large box to minimize edge effects: xo = 2.75/y/mw , L = 3536/y/mw

Xo = 2.75/\| mw Xo =2.75/\| mw
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Conclusions

® The instanton is an imaginary-time approximation of tunneling rates that fails
for certain time-dependent backgrounds

® Recent work introduced a real-time formalism that claimed excellent
agreement to the instanton

® This isn't quite true, the stochastic method over-predicts tunneling rates
unless fluctuations are artificially suppressed

® Various curing methods were applied, and the stochastic method continued
to show only parametric agreement

® Future work: Develop a prescription for obtaining ideal “fudge factors”
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Stochastic Method
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A “classical” perspective

® The thresholds are chosen as following:
® For the Braden periodic potential:

® Recall the volume average for a field ¢;: ci(t) = 1 [ dx cos(¢i(t, x)/ o)
® Then, define the ensemble values: &r/Acr = Ensemble average/std. dev. of

{ci(0)}

® Define the threshold 7graden = €1 + neAct where 5 < n, < 25
® For the DW potential: Tpw = V(dnT)
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Stochastic Method
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A “classical” perspective

® |et's define the Weyl transform of some operator A:

A(qek, k) = /dX dy eiﬂkXiwky<Qk + g, -k + % Algi — g, -k — )2/>
(10)
® Define the Wigner function W = (2r)~2p. If W > 0 = phase space
distribution
® By correspondence, define corresponding function of A as:
Gk = ik » Fak = Tk = A(Guk, Fak) = Ac(quk, mak)  (11)
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Stochastic Method
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A

“classical” perspective

* Define stochastic average of A as:
(A)stoch = /AC(S) W(S)d4s (12)

where s = (qik, T1k) is a 4-vector in phase space and W(s) is the Wigner
function.

® The Weyl transform has a key property we can use:

(A) = Tr(pA) = ﬁ / A(s)i(s)d*s — / As)W(s)d's  (13)

* Clearly (A)stoch = (A) if Ac(s) = A(s)
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Stochastic Success?
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Single Particle QM

® In QFT, we draw ¢ from Wigner function as joint distribution, then evolve
classically.

® What if we move to SPQM and draw directly from a Gaussian wavefunction?

® Consider the following wavefunction:

(14)
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Stochastic Success?
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Quantum Escape

® Define the potential:
1 x2
Vix) = z———
) =315

® |nitialize a Gaussian in the well, track its escape and compare to stochastic

(16)
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Stochastic Success?
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Quantum Escape
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