Status of Neutrino Experiments

Kate Scholberg, Duke University PPC 2021 May 17, 2021

Experimental Directions in Neutrino Physics

Three-flavor paradigm: filling in the remaining pieces

Hunting down **anomalies**

Searching for **BSM** physics

Understanding astrophysics and cosmology

I will focus mostly here, with some (over)emphasis on long-baseline oscillations....

Many, many interesting things I will *not* cover: astrophysical neutrinos, cosmological neutrinos, cross sections, CEvNS, non-standard neutrino interactions and other BSM physics, geoneutrinos, practical applications...

The three flavor paradigm

what's known, what's left to measure?

Neutrino Oscillations

"Solar" sector
 "Atmospheric" sector
 The twist in the middle
 Remaining unknowns in
 the 3-flavor picture:
 MO and CP δ

Absolute Mass

Status and prospects

Majorana vs Dirac? Overview of NLDBD

The mass pattern

The mass scale

The mass nature

The three flavor paradigm

what's known, what's left to measure?

Neutrino Oscillations

Latest 3-flavor results Remaining unknowns in the 3-flavor picture: **MO and CP** δ

The mass pattern

Absolute Mass Status and prospects

Majorana vs Dirac? Overview of NLDBD The mass scale

The mass nature

Oscillation probabilities in a 3-flavor context

For appropriate L/E (and U_{ij}), oscillations "decouple", and probability can be described by the 2-flavor expression

$$P(\nu_f \to \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

We now have clean flavor-transition signals in two 2-flavor sectors

We now have clean flavor-transition signals in two 2-flavor sectors

We now have clean flavor-transition signals in two 2-flavor sectors

K2K, MINOS(+), **T2K, NOvA**

CHOOZ, Double Chooz, Daya Bay, RENO

Oscillation fit information is now extracted with **joint fits to multiple oscillation channels**, neutrinos and antineutrinos, all data

The three-flavor picture fits the data well

Global three-flavor fits to all data

$$\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$$
 for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.

Esteban et al., arXiv:2007.14792, 10.1007/JHEP09(2020)178

What do we *not* know about the three-flavor paradigm?

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.1)$		=
with SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	_
	$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	
	$ heta_{12}/^\circ$	$33.44\substack{+0.77 \\ -0.74}$	$31.27 \rightarrow 35.86$	$33.45\substack{+0.78 \\ -0.75}$	$31.27 \rightarrow 35.87$	Is θ ₂₃ non-negligibly greater or smaller than 45 deg?
	$\sin^2 heta_{23}$	$0.573\substack{+0.016\\-0.020}$	0.415 ightarrow 0.616	$0.575\substack{+0.016\\-0.019}$	0.419 ightarrow 0.617	
	$ heta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3\substack{+0.9 \\ -1.1}$	$40.3 \rightarrow 51.8$	
	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$	
	$ heta_{13}/^\circ$	$8.57\substack{+0.12 \\ -0.12}$	$8.20 \rightarrow 8.93$	$8.60\substack{+0.12 \\ -0.12}$	$8.24 \rightarrow 8.96$	
	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	120 ightarrow 369	282^{+26}_{-30}	$193 \rightarrow 352$	poor knowledge
	Δm_{21}^2	$7.42^{+0.21}_{-0.20}$	6.82 ightarrow 8.04	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	10^{-5} eV^2	-0.20		-0.20		sign of ∆m ² unknown
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498\substack{+0.028\\-0.028}$	$-2.581 \rightarrow -2.414$	
	$\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.				for IO.	of masses)

Next on the list to go after experimentally: mass ordering (sign of Δm_{32}^2)

[Note: "mass hierarchy" is now uncool to say, as masses may be quasi-degenerate]

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

There are many ways to determine the mass ordering

They are all challenging...

Four of the possible ways to get MO

Long-baseline beams

Hyper-K, LBNF/DUNE

Reactors

JUNO

Atmospheric neutrinos

Super-K, Hyper-K, IceCube, KM3Net, DUNE, INO

Supernovae

Many existing & future detectors

Long-baseline beams

Other methods are very promising, but the long-baseline method is the only one that's *guaranteed* with sufficient exposure at long baseline (...but it's tangled with CP violation) Long-baseline approach for going after MO and CP Measure transition probabilities for $u_{\mu} \rightarrow \nu_{e} \quad \text{and} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \\$ through matter

$$\begin{split} P_{\nu_e\nu_\mu(\bar{\nu}_e\bar{\nu}_\mu)} &= s_{23}^2 \sin^2 2\theta_{13} \, \left(\frac{\Delta_{13}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right) \\ &+ c_{23}^2 \sin^2 2\theta_{12} \, \left(\frac{\Delta_{12}}{A}\right)^2 \, \sin^2 \left(\frac{AL}{2}\right) \\ &+ \tilde{J} \, \frac{\Delta_{12}}{A} \, \frac{\Delta_{13}}{\tilde{B}_{\mp}} \, \sin \left(\frac{AL}{2}\right) \, \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \, \cos \left(\pm \delta - \frac{\Delta_{13}L}{2}\right) \end{split}$$
A. Cervera et al., Nucl. Phys. B 579 (2000)

$$\begin{split} \tilde{J} &\equiv c_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \\ \theta_{13}, \Delta_{12}L, \Delta_{12}/\Delta_{13} \text{ are small} \\ \end{split} \qquad \Delta_{ij} &\equiv \frac{\Delta m_{ij}}{2E_{\nu}}, \ \tilde{B}_{\mp} \equiv |A \mp \Delta_{13}|, \ A = \sqrt{2}G_F N_e \\ \end{bmatrix} \end{split}$$

for neutrinos and antineutrinos, depending on:

- CP δ

- matter density (Earth has electrons, not positrons)

Where we are now with long-baseline experiments

T2K appearance and disappearance samples

Joint fit to all T2K data

T2K Run 1-10 Preliminary

- 35% of CP δ values excluded at 3 σ marginalized across mass orderings
- CP-conserving values (0, π) excluded at 90% but not quite at 2 σ
- Weak preference for normal ordering

P. Dunne, Nu2020

"Bi-event rate plot":

compare electron neutrinos and antineutrino counts to visualize parameter sensitivity (& degeneracies)

"Bi-event rate plot":

compare electron neutrinos and antineutrino counts to visualize parameter sensitivity (& degeneracies)

"Bi-event rate plot":

compare electron neutrinos and antineutrino counts to visualize parameter sensitivity (& degeneracies)

Neutrino mode 1Re candidates V_e

"Bi-event rate" plot for T2K Run 1-10 electron-like SK samples

NOvA appearance and disappearance

M. Strait, Neutel 2021

NOvA Parameter Fit Results

M. Strait, Neutel 2021

T2K vs NOvA results

A. Himmel, Nu2020

Future Prospects for T2K and NOvA

- Approved 7.8e21 POT by 2021
- Beam upgrade to >1 MW in 2022
- T2K-II: 20e21 POT by ~2026

- For favorable parameters, NOvA will reach 3σ MO sensitivity by 2020
- 3σ for 30-50% of CP δ range by 2024

Joint T2K-NOvA analysis in the works

and Super-K now running as **SK-Gd** with Gd doping for n capture

And the future...

Deep Underground Neutrino Experiment/ Long Baseline Neutrino Facility

- new 1.2 MW beam (upgradable to 2.4 MW), Fermilab to SD
- 1300 km baseline
- 40-kton fiducial liquid argon TPC far detector
- Also proton decay, supernova, atmospheric neutrinos...

The DUNE far detector: 70,000 tons of liquid argon

Hyper-Kamiokande

- 260k (188k) ton mass
- Beam from J-PARC 295 km away, upgrade to 1.3 MW
- Construction has started; expect data in 2027
- Many non-accelerator physics topics

MO & CPV Sensitivity of DUNE and Hyper-K MH Sensitivity

CP Violation Sensitivity

DUNE will nail down MO very fast thanks to long baseline; also good CP δ sensitivity

Improved $CP \delta$ sensitivity with atmospheric neutrinos as well

14

F. Di Lodovico, NeuTel 2021

Long-baseline beam experiments

MC

MINOS (+)

FNAL to Soudan

734 km, 400+ kW

CNGS

Past

Japan

KEK to Kamioka

250 km, 5 kW

K2K

Marana Marana Marana Marana Marana Marana

NOvA FNAL to Ash River 810 km, 400-700 kW

T2K (II) J-PARC to Kamioka 295 km, 380-750 kW **→**>1 MW

Future

LBNF/DUNE FNAL to Homestake 1300 km, 1.2 MW (→2.4 MW)

Hyper-K J-PARC to Kamioka 295 km, 750 kW (→1.3 MW)

And beyond... ESSnuB, neutrino factories...

CERN to LNGS

730 km, 400 kW

All of this discussion is in the context of the standard 3-flavor picture and testing that paradigm....

There are already some slightly uncomfortable data that **don't fit that paradigm**...

Open a parenthesis:

Outstanding 'anomalies'

LSND @ LANL (~30 MeV, 30 m)

Excess of \overline{v}_{e} interpreted as $\ \overline{
u}_{\mu}
ightarrow \overline{
u}_{e}$

$\rightarrow \Delta m^2 \sim 1 \text{ eV}^2$: inconsistent with 3 v masses

MiniBooNE @ FNAL (v, ⊽~1 GeV, 0.5 km)

- unexplained >3 σ excess for E < 475 MeV in neutrinos (inconsistent w/ LSND oscillation)
- no excess for E > 475 MeV in neutrinos (inconsistent w/ LSND oscillation)
- small excess for E < 475 MeV in antineutrinos (~consistent with neutrinos)
- small excess for E > 475 MeV in antineutrinos (consistent w/ LSND)
- for E>200 MeV, both nu and nubar consistent with LSND
- new 2018 analysis w/ x2 v data has higher-significance excess

Also: possible deficits of reactor $\overline{\nu_e}$ ('reactor anomaly') and source ν_e ('gallium anomaly')

Sterile neutrinos? (i.e. no normal weak interactions) Some theoretical motivations for this, both from particle & astrophysics [cosmology w/Planck now consistent w/3 flavors... but allows 4...] Or some other new physics??

Many experiments going after steriles...

and many more... no clear picture yet...

Fits to "all" the data are uncomfortable...

Short-baseline program at FNAL

 \rightarrow valuable program of LArTPC development, neutrino cross sections Expect low-energy excess results soon...

Neutrino Oscillations Latest 3-flavor results Remaining unknowns in the 3-flavor picture: MH and CP δ Beyond 3-flavor?

The mass pattern

Absolute Mass Status and prospects

Majorana vs Dirac? Overview of NLDBD

The mass scale

The mass nature

Kinematic experiments for absolute neutrino mass

Kinematic neutrino mass approaches

KATRIN results

Magnus Schlösser – MORIOND2021

Neutrino Oscillations Latest 3-flavor results Remaining unknowns in the 3-flavor picture: MH and CP δ Beyond 3-flavor?

Absolute Mass Status and prospects

Majorana vs Dirac? Overview of NLDBD

The mass pattern

The mass scale

The mass nature

Are neutrinos Majorana or Dirac?

Observable:

Best (only) experimental strategy: look for neutrinoless double beta decay

The NLDBD T-Shirt Plot

If neutrinos are Majorana^{*}, experimental results must fall in the shaded regions Extent of the regions determined by uncertainties on Majorana phases and mixing matrix elements

and standard 3-flavor picture

The NLDBD T-Shirt Plot

If neutrinos are Majorana, experimental results must fall in the shaded regions Extent of the regions determined by uncertainties on Majorana phases and mixing matrix elements

General NLDBD experiment strategies

Overall Long-Term Prospects for NLDBD

In the long term will need more than one isotope... theory needed too!

Overall Long-Term Prospects for NLDBD

In the long term will need more than one isotope... theory needed too!

Huge progress in understanding of neutrinos over the last 20 years, **but still many outstanding questions**

My IPhone from 10 years ago!

Huge progress in understanding of neutrinos over the last 20 years, **but still many outstanding questions**

What's the reason for the pattern of masses and mixings? How might sterile neutrinos or other exotic new physics fit in? How did the matter-antimatter asymmetry come to be?

Still exciting years ahead!

Extras/Backups

- → expect increased sensitivity in δ_{CP} , mass ordering, θ_{23} octant beyond stats increase from resolved degeneracies and syst constraints
- important to understand potentially non-trivial syst. correlations between experiments Agreements are signed between experiments and joint work ongoing. Stay tuned!

From L. Berns, Moriond 2021 Beam line upgrade

T2K-II Target POT (Protons-On-Target) ₹ 1400 [10²¹POT] Integrated Delivered Protons [10²¹POT] L 1400 L 1200 L 1200 L 1200 MB Begg H 1000 W MR RF upgrade **Delivered Protons / Period** 3.0 MR Power Supply upgrade 2.5 800 2.0×10²²POT -2.0 3σ CPV for $\sin^2\theta_{aa}=0.5.\delta$ 600 1.5 1.0 400 200 0.5 2016 2018 2020 2022 2024 2026 2028 2030 Jan. Jan. Jan. Jan. Jan. Jan. Jan. Jan.

- Increase beam power from ~500 kW to 1.3 MW via upgrades to main ring power supply and RF (mostly increased rep rate)
- Many upgrades to neutrino beamline (target, beam monitors, ...) to accept 1.3 MW beam
- Increase horn current 250 kA → 320 kA for ~10% more neutrinos/beam-power and reduced wrong-sign background

ND280 upgrade

→ lower (proton) mom. threshold

Reduce xsec systematics via better understanding of nuclear effects.

DUNE: Near Detector (ND)

• DUNE ND complex

Multiple complementary systems:

- ND-LAr: modular, pixelated LArTPC Primary target, similar to FD
- TMS → ND-GAr: measures muons not captured by LArTPC → high-pressure GArTPC, surrounded by ECAL and magnet

Muon spectrometer; nuclear interaction model constraints

• **SAND**: tracker surrounded by ECAL and magnet

On-axis beam spectrum/time-stability monitor

ND-LAr/TMS are movable on/off-axis (PRISM)

Probes different neutrino energies

G. Karagiorgi, Neutel 2021