

Inflation Ends, What's Next?

Mustafa A. Amin (**SRICE** University)

after inflation: a GAP in our cosmic history

*image is my modification of the one produced by the PDG, 2014

*image is my modification of the one produced by the PDG, 2014

after inflation: GAP — connects physics of inflation to the Standard Model

*image is my modification of the one produced by the PDG, 2014

14 billion years

after inflation: GAP — consequences ?

Observationally challenging because: early times and small length scales (no inflationary "amplifier"), thermalization etc. But there is hope !

14 billion years

what we "know" about inflation (simplest case - scalar field driven inflation) — flattened potentials

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]$$

for example: Starobinsky(1979/80), Nanopolous et. al (1983), Silverstein & Westhpal (2008), Kallosh & Linde (2013), McAllister et. al (2014) ... also see C.Vafa's talk.

end of inflation ?

- shape of the potential (self couplings)
- couplings to other fields

$$\chi \;,\psi \: A_{\mu}$$

end of inflation (simplest)

• shape of the potential (self couplings)

*there will still be gravitational particle production of other fields, see for example Kolb & Long (2021) and earlier papers

*similar to a matter dominated universe, also see Adrienne Erikcek's talk *also see N. Musoke's talk

oscillating scalar field: self-interaction driven fast instability & "oscillon" formation

*without oscillons, but relevant for instabilities, see related (much) earlier work: Khlopov, Malomed & Zeldovich (1985)

1		1	
100	200 $x [m^{-1}]$	300	400
	$x [m^{-1}]$		
		Ν	1A (2010) 1006.3075

oscillating scalar field: self-interaction driven fast instability & "oscillon" formation

*without oscillons, but relevant for instabilities, see related (much) earlier work: Khlopov, Malomed & Zeldovich (1985)

*without oscillons, but relevant for instabilities, see related (much) earlier work: Khlopov, Malomed & Zeldovich (1985)

insensitivity to initial conditions

oscillating scalar field: self-interaction driven fast instability & "oscillon" formation

MA, Easther, Finkel, Flauger & Hertzberg (2011) 1106.3335

self-interaction driven fast instability & "oscillon" formation + gravitational clustering

MA, Easther, Finkel, Flauger & Hertzberg (2011) 1106.3335

expansion

self-interactions \checkmark

gravitational int. 🗸

MA & Mocz (2019) 1902.07261 * non-relativistic, Schrodinger-Poisson

relativistic to non-relativistic effective theory

Klein-Gordon-Einstein

integrate out 'fast' modes

Salehian, Zhang, MA, Kaiser, Namjoo, (2021)

2104.10128

solitons : oscillons

spatially localized
coherently oscillating
exceptionally long-lived

For example:

Bogolubsky & Makhankov (1976) Gleiser (1994) Copeland et al. (1995) MA & Shirokoff (2010) Hertzberg (2011) MA (2013) Mukaida et. al (2016) Zhang, MA, et. al (2020)

*see talk by David Cyncynates on lifetimes in the parallel session also

solitons : oscillons, scalar-stars ...

spatially localized, coherently oscillating, long-lived

	6					
	194		1			
			4	· . ,		1
	1.1		1		12	÷
	194.9		÷	1.1		÷
		· 42	1			1
	See.		Ť	104	÷.,	1
	1	· · · ·	ų.			3
	and the second second		÷		· · .	÷.
		-	d.			-
					-	ê
	1000	-	÷			-
			÷			1
	Sec. 3.		1	144		÷
		· · · ·	1			1
	See. 1		1	194	· · .	÷
and the second	i		÷ł.			-
The second states			j.		٠.,	÷.
ين الما ^{ر ومن} قصة المعادي الم	eger and		•••		_	2
1	منتشد	~	-	-	1	12
100	00	10	00			
00	00					

spatially localized, coherently oscillating, long-lived

*lifetimes can be much, much larger than the Hubble time scale at the end of inflation *for regime with strong field gravity regime, see also Muia et. al & Nazari et. al (2019,20)

	6					
	194		1			
			4	· . ,		1
	1.1		1		12	÷
	194.9		÷	1.1		÷
		· 42	1			1
	See.		Ť	1	÷.,	1
	1	· · · ·	ų.			3
	The second second		÷		· · .	÷.
		-	d.			-
					-	ê
	1000	-	÷			-
			÷			1
	Sec. 3.		1	144		÷
		· · · ·	1			1
	See. 1		1	194	· · .	÷
and the second	i		÷ł.			-
The second states			j.		٠.,	÷.
ين الما ^{ر ومن} قصة المعادي الم	eger and		•••		_	2
1	منتشد	~	-	-	1	12
100	00	10	00			
00	00					

solitons : oscillons, scalar/boson stars, Q-balls spatially localized, coherently oscillating, long-lived

- see entire parallel session "BSM with Compact Objects"

	a					
	194		1			
			4	· . ,		1
	1.1		1		12	÷
	194.9		÷	1.1		÷
		· 42	1			1
	See.		Ť	1	÷.,	1
	1	· · · ·	ų.			3
	and the second second		÷		· · .	÷.
		-	d.			-
					-	ê
	1000	-	÷			-
			÷			1
	Sec. 3.		1	144	÷.,	÷
		· · · ·	1			1
	See. 1		1	194	· · .	÷
and the second	i		÷ł.			-
The second states			j.		٠.,	÷.
ين ارد ^{و من من} قط من المراجع الم	eger and		•••		_	2
1	منتشد	~	-	-	1	12
100	00	10	00			
00	00					

 $t = 1m^{-1}$

dynamics in quadratic power law minima + wings

inflaton potential

Homogeneous oscillations

$$w = \frac{n}{n}$$

Turner (1983)

eq. of state

$$w \to 0$$

matter domination

dynamics in different power law minima + wings

Lozanov & MA (2016/17) 1608.01213, 1710.06851

Homogeneous oscillations

equation of state from oscillating fields

the spatially averaged equation-of-state of fields

- (n = 1) quadratic minima w = 0

power law at the minimum

eq. of state & CMB observables

also see: Kamionkowski & Munoz (2014), Cook et. al (2015) and others

* non-quadratic minimum $n \neq 1$ * no oscillons here

upper bound on duration to radiation domination

* addition of other light fields, see Antusch, Figueroa, Marschall, Torrenti (2020)

couplings to other fields

* lots of fun to be had with perturbative and non-perturbative dynamics

coupling to "photons"

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] d\phi + V(\phi)^2 + V$$

 $(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{\phi\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$ $-\frac{1}{2}(\partial\chi)^2 - m_{\chi}^2\chi^2 + g_{\phi\chi}\phi\chi^2 + \dots$ $-\bar{\psi}(i\gamma\cdot\partial-m)\psi-g_{\phi\psi}\phi\bar{\psi}\psi+\ldots$

an application: "photons" from oscillons

*this scenario be modified because the coupling to photons is very strong Adshead et. al (2016) and later papers.

MA & Mocz (2019)

photons from oscillons

- no emission before merger
- explosive after merger
- a threshold & resonant effect

*might not be easy to achieve because the amplitude is highest at the end of inflation, so most photons produced then before (if) soliton formation. Also, likely not enough for reheating * but other mechanisms to produce the solitons might work, also applications in the late universe

MA & Mou (2020) 2009.11337

photons from oscillons

- no emission before merger
- explosive after merger
- a threshold & resonant effect

*might not be easy to achieve because the amplitude is highest at the end of inflation, so most photons produced then before (if) soliton formation. Also, likely not enough for reheating * but other mechanisms to produce the solitons might work, also applications in the late universe

MA & Mou (2020) 2009.11337

explosive, self-regulating photon production from mergers

*after backreaction shuts of resonance, the luminosity falls to small values — at late times the apparent moderate value it due to a periodic box

explosive photon production from soliton mergers

~30% of total energy goes into axion waves

~20% of remaining goes into EM radiation

* for an exploration of gravitational wave production from mergers, see Helfer, Garcia et. al (2018)

"photons" from oscillons: in external fields

MA, Long, Mou & Saffin (2021) 2103.12082

explosive vs. steady radiation

scalar stars/oscillons/solitons can radiate energy in electromagnetic fields radiated power depends on axion-photon coupling and characteristics of soliton configuration

MA, Long, Mou & Saffin (2021)

coupling to massive "photons"

$$S = \int d^{4}x \sqrt{-g} \left[\frac{m_{\rm pl}^{2}}{2} R - \frac{1}{2} (\partial \phi)^{2} - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{\phi\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} m_{\gamma}^{2} A^{2} + V_{\rm nl}(A^{2}) \right]$$
$$-\frac{1}{2} (\partial \chi)^{2} + m_{\chi}^{2} \chi^{2} + g_{\phi\chi} \phi \chi^{2} + \dots$$
$$-\bar{\psi} (i\gamma \cdot \partial - m) \psi - g_{\phi\psi} \phi \bar{\psi} \psi + \dots$$

* production could be via "misalignment" of inflaton, for example: Co et. al (2018), Agrawal et. al (2018) in context of dark matter

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] d\phi$$

	÷.,
_	
	•
	•
	•
	٠.

* for dilute ones supported by gravity, see Adshead and Lozanov (2021), for analogs in complex vector fields for the hedgehog case, see Loginov (2015)

 $\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{\phi\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} m_{\gamma}^2 A^2 + V_{\rm nl}(A^2)$

directional oscillon (easier to form)

•										
•	•	•	•	•	·	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•			•	•	•	•		
•	•									
•			•							
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{\phi\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} m_{\gamma}^2 A^2 + V_{\rm nl}(A^2) \right]$$

hedgehog oscillon

* for dilute ones supported by gravity, see Adshead and Lozanov (2021), for analogs in complex vector fields for the hedgehog case, see Loginov (2015)

directional oscillon (easier to form)

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] d\phi$$

	÷.,
_	
	•
	•
	•
	٠.

* for dilute ones supported by gravity, see Adshead and Lozanov (2021), for analogs in complex vector fields for the hedgehog case, see Loginov (2015)

 $\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{\phi\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} m_{\gamma}^2 A^2 + V_{\rm nl}(A^2)$

directional oscillon (easier to form)

•										
•	•	•	•	•	·	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•			•	•	•	•		
•	•									
•			•							
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{\phi\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} m_{\gamma}^2 A^2 + V_{\rm nl}(A^2) \right]$$

hedgehog oscillon

* for dilute ones supported by gravity, see Adshead and Lozanov (2021), for analogs in complex vector fields for the hedgehog case, see Loginov (2015)

directional oscillon (easier to form)

lots more to explore!

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{1}{4} F_{\rm pl} - \frac{1}{4} F_{\rm$$

* Abelian Higgs / GFiRe (Lozanov & MA 2019) 1603.05663, 1911.06827

* thermal vs. non-thermal effects, see for example Garcia & MA 2018 1806.01865

* towards model independent characterization: Wires to Cosmology (MA, Baumann, Carlsten, Garcia, Green, Wen +) 2001.09158, 1512.02637

(also earlier paper on random potentials, for example McAllister et. al 2012, and recent multifield reheating, Martin & Pinol 2021)

 $F_{\mu\nu}F^{\mu\nu} - \frac{g_{\phi\gamma}}{4}\phi F_{\mu\nu}\tilde{F}^{\mu\nu} - \frac{1}{2}m_{\gamma}^2A^2 + V_{\rm nl}(A^2)$

 $(\partial \chi)^2 - m_{\chi}^2 \chi^2 + g_{\phi\chi} \phi \chi^2 + \dots$

 $\bar{\psi}(i\gamma\cdot\partial-m)\psi-g_{\phi\psi}\phi\bar{\psi}\psi+\dots$

* lots more to explore: see talk by Qianshu Lu on "Spillway Preheating" (Fan, Lozanov and Lu 2021 2101.11008)

For a general moduli review, see Kane Watson and Sinha (2015)

after inflation: a GAP in our cosmic history

14 billion years