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after inflation:a GAP in our cosmic history
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after inflation: a huge energy GAP in our cosmic history
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after inflation: GAP — connects physics of inflation to the Standard Model
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after inflation: GAP — consequences !

hot thermal soup CMB
with nuclei
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Observationally challenging because:
early times and small length scales (no inflationary “amplifier”), thermalization etc

|4 billion years

. But there is hope !
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focus on: “soon” after the end of inflation, simple models with “universal” dynamics

4
' MIND THE GA

-
;

hot thermal soup
with nuclei

inflation

S
™\

expansion hist

LI @
WYHO4 IFTONN

ravitational waves DM, PBHs, matter /
grav antimatter, Neff

e o

o L7 TR ot
g T e R ’@”i’% 00,7 - |
L ¥

400,000 years

3
>

|4 billion years

For reviews: see MA et.al (2014), Lozanov (2019), Allahverdi et. al (2020)
2104.10128 1907.04402 2006.16182 [with apologies for works which | will be unable to cite/highlight]



what we “know” about inflation (simplest case - scalar field driven inflation)
— flattened potentials
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for example:

Starobinsky(1979/80), Nanopolous et. al (1983), Silverstein & Westhpal (2008), Kallosh & Linde (2013), McAllister et.al (2014) ... also see C.Vafa’s talk.



end of inflation ?

: 2
flattened potfntlal P” <

* shape of the potential (self couplings)

* couplings to other fields
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end of inflation (simplest)

. flattened potential P <~
. 4
* shape of the potential (self couplings) :
(3]s, :
222 :
/ TN < distance from minimum
Ao~ M | where potential flattens

*there will still be gravitational particle production of other fields, see for example Kolb & Long (2021) and earlier papers



oscillating “free’ scalar field: matter-dominated expansion +“slow” gravitational instability
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oscillating “free’ scalar field: matter-dominated expansion +“slow” gravitational instability

expansion v’
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Musoke, Hotchkiss & Easther (2021)

*similar to a matter dominated universe, also see Adrienne Erikceld’s talk
*also see N. Musoke’s talk



oscillating scalar field: self-interaction driven fast instability & “oscillon” formation
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MA (2010) 1006.3075

*without oscillons, but relevant for instabilities, see related (much) earlier work: Khlopov, Malomed & Zeldovich (1985)
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oscillating scalar field: self-interaction driven fast instability & “oscillon” formation

expansion v
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insensitivity to initial conditions

MA (2010)
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insensitivity to initial conditions

MA (2010)
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expansion

self-interactions \/

gravitational int. X

0.25H 1

end

MA, Easther, Finkel, Flauger & Hertzberg (2011)  1106.3335



expansion v

expansion v : :
self-interactions \/

self-interactions \/ . ,
gravitational int. v

gravitational int. X

0.25H 1

end

MA, Easther, Finkel, Flauger & Hertzberg (2011)  1106.3335
MA & Mocz (2019)  1902.072¢61

* non-relativistic, Schrodinger-Poisson



relativistic to non-relativistic effective theory

. Nonrelativistic EFT for ‘slow’ modes
Klein-Gordon-Einstein integrate out ‘fast’ modes
— Schrodinger-Poisson + corrections

Salehian, Zhang, MA, Kaiser, Namjoo, (2021)
2104.10128


https://arxiv.org/abs/2104.10128

solitons : oscillons

spatially localized
coherently oscillating

exceptionally long-lived

For example:

Bogolubsky & Makhankov (1976)
Gleiser (1994)
Copeland et al. (1995)
MA & Shirokoff (2010)
Hertzberg (201 I)

MA (2013)

Mukaida et.al (2016)
Zhang, MA, et. al (2020)

*see talk by David Cyncynates on lifetimes in the parallel session also



solitons : oscillons, scalar-stars ...

spatially localized, coherently oscillating, long-lived

‘ oscillaton

ogravity

oscillon

‘_,

self-interaction




solitons : oscillons, scalar stars ...

spatially localized, coherently oscillating, long-lived

oscillaton

dilute dense
. po < f,R>m™! wo~ f, R~m™!
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*lifetimes can be much, much larger than the Hubble time scale at the end of inflation
*for regime with strong field gravity regime, see also Muia et. al & Nazari et. al (2019,20)

self-interaction




solitons : oscillons, scalar/boson stars, Q-balls

spatially localized, coherently oscillating, long-lived
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- see entire parallel session* BSM with Compact Objects”



dynamics in quadratic power law minima + wings

Homogeneous oscillations
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dynamics in different power law minima + wings

Homogeneous oscillations

n—1
w =
n+1
Turner (1983)
eq. of state
ressure
w = b : > 1/3
density

radiation

domination

eq. of state

w — 0

matter

domination

Lozanov & MA (2016/17) 1608.01213,1710.0685I



equation of state from oscillating fields

the spatially averaged equation-of-state of fields

- (n = 1) quadratic minima w =0

- (n > 1) non-quadratic minima w — ]_/3 (after sufficient time)

why? g /H oc ¢~

power law at the minimum

Lozanov & MA (2016/17)



eq. of state & CMB observables

012 S power law at the minimum

0.10] | \ ;
| | < . V) qu

008l
0.06
0.04
0.02
0.00

(7)
|
3 |
||

tensor-to-scalar ratio

().951 I 0,96 0.97 o I0_981 - scale fo flattening
primordial tilt (ng)

* non-quadratic minimum

n # 1

* no oscillons here
also see: Kamionkowski & Munoz (2014), Cook et.al (2015) and others



upper bound on duration to radiation domination

power law at the minimum
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* non-quadratic minimum
* addition of other light fields, see Antusch, Figueroa, Marschall, Torrenti (2020)



couplings to other fields
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* lots of fun to be had with perturbative and non-perturbative dynamics



coupling to “photons”
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an application: “photons” from oscillons

w/ gravity

some late-time
strong
Interactions

self-interaction soliton gravitational
instability formation clustering

MA & Mocz (2019)
*this scenario be modified because the coupling to photons is very strong Adshead et. al (2016) and later papers.



photons from oscillons

MA & Mou (2020)
2009.11337

* no emission before merger

* explosive after merger

e a threshold & resonant effect

*might not be easy to achieve because the amplitude is highest at the end of inflation, so most photons produced then before (if) soliton formation.Also, likely not enough for reheating

* but other mechanisms to produce the solitons might work, also applications in the late universe
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photon luminosity

explosive, self-regulating photon production from mergers
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*after backreaction shuts of resonance, the luminosity falls to small values — at late times the apparent moderate value it due to a periodic box
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explosive photon production from soliton mergers
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* for an exploration of gravitational wave production from mergers, see Helfer, Garcia et. al (2018)



“photons” from oscillons: in external fields

+++

MA, Long, Mou & Saffin (2021)
2103.12082


https://arxiv.org/abs/2103.12082

explosive vs. steady radiation

scalar stars/oscillons/solitons can radiate energy in electromagnetic fields  gayQE - B

radiated power depends on axion-photon coupling and characteristics of soliton configuration
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coupling to massive “photons”

m: 1 1 1
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* production could be via “misalignment” of inflaton, for example: Co et. al (2018), Agrawal et.al (2018) in context of dark matter



Vector oscillons

\*

1 L ~ v 1 —
S = / d*x/—g — 5 Fu gj’y OFu F" —-m A 4 V(A7)
hedgehog oscillon {%Ié directional oscillon (easier to form) ¢III¢

Zhang & MA (coming out < month)

* for dilute ones supported by gravity, see Adshead and Lozanov (2021), for analogs in complex vector fields for the hedgehog case, see Loginov (2015)
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lots more to explore!

m? 1 1 muv 1
S= [ d'ov=g | R = 500) = V(9) = {Fu " = S OFuw P Sm? A% + Vi (4%
1

—tp(iy - O — M) — gy P

* Abelian Higgs / GFiRe (Lozanov & MA 2019)
1603.05663, 1911.06827

* thermal vs. non-thermal effects, see for example Garcia & MA 2018
1806.01865

* towards model independent characterization: Wires to Cosmology (MA, Baumann, Carlsten, Garcia, Green,Wen +)
2001.09158, 1512.02637

(also earlier paper on random potentials, for example McAllister et. al 2012, and recent multifield reheating, Martin & Pinol 2021)

* lots more to explore: see talk by Qianshu Lu on “Spillway Preheating” (Fan, Lozanov and Lu 2021 2101.11008)


https://arxiv.org/abs/1512.02637

related phenomenology for moduli, axions, early dark energy etc. and BECs
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MA, Fan, Lozanov, Reece (2018)

For a general moduli review, see Kane Watson and Sinha (2015)
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