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Inflation & Reheating
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I Inflation solves cosmology’s initial conditions problems

I Explains homogeneity and flatness
I Predicts the observed spectrum of perturbations in the CMB

I How does inflation transition into big bang nucleosynthesis?
Reheating
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Reheating

The way reheating happens affects the predictions of an inflationary
model

I Viability

I Amount of inflation

I Coupling to dark matter

Scenarios:
I Self-interactions or couplings to other fields

I Resonance
I Rapid reheating
I Formation of solitons or oscillons

I Weak couplings
I Slow reheating
I Less understood
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Slow Reheating

What happens when couplings are weak?

I The universe can expand for a long time without significant
reheating

I Perturbations in the inflaton field grow gravitationally

δ ≡ ρ

〈ρ〉
∼ a

I Perturbation theory breaks down

δ ∼ 1 when
a

aend
∼ 106

K. Jedamzik, M. Lemoine and J. Martin, arXiv:1002.3039
R. Easther, R. Flauger and J. B. Gilmore, arXiv:1003.3011
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Slow Reheating

Possible consequences

I Nonlinear phenomena in even the simplest models of inflation

I Decay of the inflaton enhanced in overdensities
I Collapse to primordial black holes

I Hawking radiation as reheating mechanism

I Gravitational radiation sourced by overdensities and/or
primordial black holes

I Remnants could be dark matter
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Scenario
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I The inflaton has coherent
oscillations

φ ∼ 1

t
sin(mt)

I The density grows with the
scale factor

δ ∼ a

I These are on different
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NM, S. Hotchkiss and R. Easther, arXiv:1909.11678, Phys. Rev. Lett. 124, no.6, 061301 (2020)
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Klein-Gordon Equations → Schrödinger-Poisson Equations

I The inflaton φ obeys the Klein-Gordon and Einstein equations

I Make a transformation

φ =
1

ma3/2
(
ψe−imt + ψ∗eimt

)
I The Klein-Gordon equations become the Schrödinger-Poisson

equations

i
∂ψ

∂t
= − 1

2ma2
∇2ψ +mψΦ

1

a2
∇2Φ =

4πG

a3
(
ψψ∗ −

〈
|ψ|2

〉)

I The Schrödinger-Poisson equations are already of interest
I Ultralight dark matter
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Results
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Results
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Future

I More detailed simulations
I More realistic initial conditions
I Compare models
I What is the end state of the collapse?

I Further application of techniques from dark matter and
structure formation

I Add couplings to standard model

I Similar use of Schrödinger-Poisson equations to simulate
gravitational interactions of structures formed during preheating
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Summary

I The post-inflation dynamics of the inflaton are described by the
Schrödinger-Poisson equations

I Gravitational collapse in the early universe can be analogous to
structure formation in the late universe

I First simulations of the gravitational growth of perturbations in
the inflaton field during reheating

I Confirmed formation of large overdensities

I More advanced codes will go further and make observational
predictions
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The Schrödinger-Poisson Equations

Constraints

I The largest scales must be sub-horizon

Lbox �
1

H

I The field should have small derivatives

|ψ̈| � m|ψ̇| � m2|ψ|∣∣∣∣ 1

a2
∇2ψ

∣∣∣∣� m|ψ|

I Expansion should not be too fast

H ≡ ȧ

a
� m

Ḣ � mH



Matching Equation

I The reheating temperature is useful for constraining models of
inflation

I The matching equation determines how much inflation is
needed
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I w = equation of state during reheating
I ρreheat = density at end of reheating



Perturbation Theory
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