Graeme Watt (IPPP Durham)
IRIS-HEP Analysis Systems Topical Workshop
NYU Physics Department, Thursday 20th June 2019

https://hepdata.net

Email: info@hepdata.net

Code: https://github.com/HEPData
What is HEPData?

• Unique open-access repository for scattering data from almost 9000 experimental HEP ("hep-ex") papers.

• Publication-related data complementary to event-level data provided through recent CERN Open Data portal.

• Traditional focus on unfolded measurements, but in recent years also include material for recasting LHC searches.

• Based in Institute for Particle Physics Phenomenology (IPPP) at Durham University (UK), going back to 1970s.

• Funded by UK Science & Technology Facilities Council (STFC), with current 3-year PPGP(E) grant until 09/2019. Last application not funded, but stop-gap of 6 months.
• Software completely rewritten (2015-2016) with new hepdata.net site replacing previous hepdata.cedar.ac.uk.

• Started from a fork of Zenodo code. Overlay on Invenio v3.

• hepdata.net hosted on CERN OpenStack infrastructure.

• External data submissions from January 2017 onwards.
HEPData: a repository for high energy physics data

Emmann Maguire1, Lukas Heinrich1 and Graeme Watt2
1 CERN, Geneva, Switzerland
2 Department of Physics, New York University, New York, USA
3 IPPP, Department of Physics, Durham University, Durham, UK
E-mail: info@hepdata.net

Abstract. The Durham High Energy Physics Database (HEPData) has been built up over the past four decades as a unique open-access repository for scattering data from experimental particle physics papers. It comprises data points underlying several thousand publications. Over the last two years, the HEPData software has been completely rewritten using modern computing technologies as an overlay on the Invenio v3 digital library framework. The software is open source with the new site available at https://hepdata.net now replacing the previous site at http://hepdata.cedar.ac.uk. In this write-up, we describe the development of the new site and explain some of the advantages it offers over the previous platform.

1. Introduction

The Durham High Energy Physics Database (HEPData), a unique open-access repository for scattering data from experimental particle physics papers, has a long history dating back to the 1970s. It currently comprises data related to several thousand publications including those from the Large Hadron Collider (LHC). These are generally the numbers corresponding to the data points either plotted or tabulated in the publications, “Level 1” according to the DPHEP [1] classification, and HEPData is therefore complementary to the recent CERN Open Data Portal (http://opendata.cern.ch) which focuses on the release of data from Levels 2 and 3. The traditional focus of HEPData has been on measurements such as production cross sections and so the domain differs from the compilation of properties provided by the Particle Data Group (http://www-pdg.lbl.gov). In recent years HEPData has expanded beyond the traditional (unfolded and background-subtracted) measurements to also include data relevant for “recaising” LHC searches for physics beyond the Standard Model. The scope of HEPData is also being broadened to include data from particle decays and neutrino experiments, and potentially low-energy data relevant for tuning of the Geant4 detector simulation toolkit.

The HEPData project last underwent a major redevelopment around a decade ago [2], as part of the work of the CEDAR collaboration [8], where data was migrated from a legacy hierarchical database to a modern relational database (MySQL) and a web interface built on CGI scripts was replaced by a Java-based web interface. The old HepData site (http://hepdata.cedar.ac.uk) ran on a single machine hosted at the Institute for Particle Physics Phenomenology (IPPP) at Durham University. Over the last two years, a complete rewrite has once again been undertaken to use more modern computing technologies. The new site (https://hepdata.net) is hosted on a number of machines provided by CERN OpenStack and offers several advantages and new features compared to the old site. In this write-up, we describe the development of the new site.

7. Future plans

While HEPData has so far only been used for data associated with experimental particle physics papers, it could easily be used to store numerical values of theoretical predictions and related material from particle physics phenomenology papers, without any necessary changes to the software or submission workflow. There is potential to store low-energy data from nuclear, atomic, and medical physics, relevant for validation of the Geant4 (http://geant4.cern.ch) detector simulation toolkit, but further software development may first be needed to support keywords specific to the low-energy data and to support creation of records where the associated publications do not appear in the Inspire HEP literature database.

In future we plan to support a mixed YAML/ROOT input format where metadata is provided in YAML files (as before), but numerical values are extracted from ROOT objects and converted to the standard YAML format. HistFactory [7] is a framework used in many ATLAS studies for statistical analysis (each as determining exclusion contours). It encodes the full likelihood (including systematic uncertainties) of a measurement using semantic XML and histograms stored in ROOT files. Some preliminary work has been done to extract HEPData tables in the standard YAML format directly from a HistFactory configuration. Furthermore, work has begun on expanding the set of natively supported data types beyond a simple table to allow for richer datasets such as HistFactory configurations or simplified likelihoods [8]. The archival of such likelihood data in a lossless format could then be used by various reinterpretation packages.

Acknowledgments

HEPData is funded by a grant from the UK Science and Technology Facilities Council. The DOI mining originates from the THOR project, funded by the European Commission under the Horizon 2020 programme. We are indebted to Mike Whalley for his dedicated 34 years of service as Database Manager for previous incarnations of the HEPData project, and for his assistance in migrating the data to the new platform. We thank Alicia Boya García, Kyle Cranmer, Sinje Dallmeier-Tiessen, Frank Krauss, Salvatore Mele, Laura Ruetsa, Jan Stypa and Michal Szostak for their various contributions during the redevelopment process.

References

J. Phys.: Conf. Ser. 898 102006
[arXiv:1704.05473]
Coverage from inspirehep.net

- New **INSPIRE beta** in development ([blog](#)) using **Invenio v3**.
- Legacy **INSPIRE** records updated to link to hepdata.net.
- Search **INSPIRE** for HEPData records with “035:hepdata”.
- LHC publications with HEPData ([Jupyter Notebook](#)):

![Graph showing LHC publications with HEprepData records (2019-06-19)]

INSPIRE search query:
- hep-ex or nucl-ex
- Published in a journal
- Not conference paper

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>ALICE</th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of papers</td>
<td>200</td>
<td>500</td>
<td>400</td>
<td>10</td>
</tr>
</tbody>
</table>

Coverage %:
- **ALICE**: 90%
- **ATLAS**: 52%
- **CMS**: 39%
- **LHCb**: 14%
Submission system usage (01/2017-)

- Total of 425 finished submissions, comprising ALICE (78), ATLAS (157), CMS (139), LHCb (17), Non-LHC (34).
- All 7 ATLAS and 9 CMS physics groups submit to HEPData.
Links to analysis code

http://rivet.hepforge.org/analyses.json

• JSON file maps INSPIRE IDs to Rivet analysis names:

```
{"422172": ["SLD_1996_S3398250"],
 ...,"1304688": ["ATLAS_2014_I1304688"]}
```

• Badge appears in search results and link on record:

```Rivet Analysis
Measurement of the $t\bar{t}$ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector
```

• Extendable to other analysis frameworks containing publication-specific code.
Recent Python implementation (pyhf) of HistFactory.

ROOT/XML workspace replaced by plain-text pyhf JSON.

Possible options for HEPData integration of pyhf JSON files:

1. **Host** pyhf JSON externally (cf. Rivet) linked from HEPData.
2. **Attach** pyhf JSON as auxiliary files to HEPData records.
3. **Convert** pyhf JSON file to usual HEPData YAML format.
4. **Native** support of pyhf JSON as alternative data format:
 - Replace usual HEPData YAML data files with pyhf JSON.
 - Validate against JSON schema distributed with pyhf.
 - Develop appropriate visualisation and conversion tools.

See talks by: Lukas Heinrich Giordon Stark