2020

Video Conference

Reheating and Dark Matter Production

Marcos A. G. García **IFT-UAM**

marcosa.garcia@uam.es

present a systematic analysis of dark matter production during post-inflationary reheating, showing that dark matter production is sensitive to the inflaton potential, and depends on the thermalization rate when the potential is not quadratic near the minimum. I also discuss how to exploit dark matter as a probe of the dynamics during reheating, through smoking-gun signals such as monochromatic neutrinos or gamma-ray lines, or through Lyman-lpha data.

Instituto de **Física** Teórica **UAM-CSIC**

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Inflationary reheating was the stage of very rich dynamics...

... do these dynamics leave an imprint on Dark Matter?

Yes!

If the Dark Matter production cross section scales as $\sigma(s) = \frac{s^{n/2}}{\Lambda^{n+2}}$ with n > -1, then it is produced out of equilibrium during reheating. Abundances are sensitive to the inflaton potential and the time-scale of thermalization

Bounds on these models can be obtained from indirect gamma and neutrino detection, and structure formation

$$\mathcal{L}_{3/2} \equiv rac{n_{3/2}^{\rm N}}{n_{3/2}^{\rm T}}$$

n

Г 2 2