

Dark-matter admixed neutron stars

<u>Violetta Sagun</u> University of Coimbra, Portugal

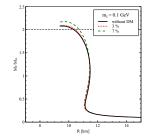
In collaboration with Oleksii Ivanytskyi, Ilídio Lopes

2 NSs with mass above $2M_{\odot}$

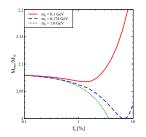
- **PSR J0348-0432**: $M = 2.01^{+0.04}_{-0.04} M_{\odot}$ (Antoniadis et al. '13)
- **PSR J0740+6620**: $M = 2.14^{+0.20}_{-0.18} M_{\odot}$ (Cromartie et al. '19)

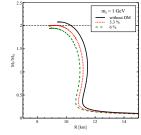
Dark matter EoS

Asymmetric dark matter (relativistic Fermi gas of noninteracting particles, spin ¹/₂)
A. Nelson, S. Reddy, D. Zhou, JCAP, 07, 012 (2019)


Baryon matter EoS

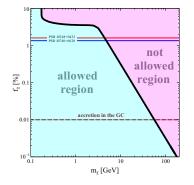
 EoS with induced surface tension (IST EoS) consistent with: nuclear matter ground state properties, proton flow data, heavy-ion collisions data, astrophysical observations, tidal deformability constraint from the NS-NS merger (GW170817)


VS, I. Lopes, A. Ivanytskyi, ApJ, 871, 157 (2019) VS, A. Ivanytskyi, K. Bugaev, et al., NPA, 924, 24 (2014) 1/3



Mass-Radius diagram of the DM admixed NSs

 $M_{max} > 2 M_{\odot}$ for any $f_{\chi} \Rightarrow$ extended halo of DM



for $f_{\chi} = 3.3$ % M_{max} equals to $2M_{\odot}$

- For m_{χ} = 0.174 GeV M_{max} is $2M_{\odot}$
- = DM particles with $m_\chi \le$ 0.174 GeV are consistent with the $2M_\odot$ constraint for any f_χ
- = For heavier DM particles the NS mass can reach $2M_{\odot}$ only if f_{χ} is limited from above
- O. Ivanytskyi, VS, I. Lopes, arXiv:1910.09925 (2019)

Constraint on the mass of DM particles

 $2M_{\odot}$ NS in the GC $\Rightarrow~m_{\chi}<$ 60 GeV

Conclusions:

- Using the observational fact of existence of the two heaviest known NSs (i.e., PSR J0348+0432, PSR J0740+6620) with the masses exceeding the two solar ones, we presented an allowable range of masses and fractions of DM particles.
- Measurements of a 2*M*_☉ NS in the Galactic center will impose an upper constraint on the mass of DM particles of ~ 60 GeV.
- DM lighter than 0.2 GeV can create an extended halo around the NS leading not to decrease but to increase of the NS total (gravitational) mass.