

The 9th International Workshop on Astronomy and Relativistic Astrophysics, 2020

Graviton Mass Bound From Pulsars

We apply Bayesian analysis to binary pulsar timing to put new bounds on the graviton mass in the linearized Fierz-Pauli theory and cubic Galileon theory.

Miao, Shao, Ma, Phys. Rev. D 99 (2019) 123015 [arXiv:1905.12836] Shao, Wex, Zhou, Phys. Rev. D 102 (2020) 024069 [arXiv:2007.04531]

Dr. Lijing Shao (邵立晶) @ Kavli Institute for Astronomy and Astrophysics, Peking University Ishao@pku.edu.cn

Are Gravitons Massless? radiative tests in the strong field with pulsar timing

- In Einstein's General Relativity, gravitons are massless
- Massive graviton theories have profound implications to gravitation and cosmology
- The mass of graviton in general introduces extra gravitational radiation in a binary system
- Binary pulsars are sensitive to the extra gravitational radiation
- We collect a handful binary pulsars in a Bayesian framework to constrain the extra gravitational radiation, thus the mass of graviton

New Graviton Mass Bounds from Pulsars linearized Fierz-Pauli theory & cubic Galileon theory

- We bound the graviton mass to
 - $m_{\varphi} < 5.2 \times 10^{-21} \,\mathrm{eV}/c^2$ in the linearized Fierz-Pauli theory
 - $m_g < 2 \times 10^{-28} \,\mathrm{eV}/c^2$ in the cubic Galileon theory
- Future: FAST, SKA telescopes
 - Pulsar-BH systems
 - highly eccentric orbits

