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Abstract
Static spherically symmetric solutions of the Einstein’s field equa-

tions in isotropic coordinates from Newtonian potential-density pairs
are investigated. The approach is used in the construction of spher-
ical matter distributions made of perfect fluid starting with the seed
potential-density pairs corresponding to a harmonic oscillator (homo-
geneous sphere) and a massive spherical dark matter halo with a log-
arithm potential. Moreover, the geodesic motion of test particles in
stable circular orbits around such structures is studied. The models
considered satisfy all the energy conditions.

Poisson type spacetimes
The line element for a static spherically symmetric spacetime

in isotropic coordinates is given by

ds2 = −eν(r)dt2 + eλ(r)(dr2 + r2dΩ2), (1)

where dΩ2 = dθ2 + sin2 θdϕ2. The Einstein’s field equations
Gab = 8πGTab yield

T tt =
e−2λ

4πG

[
∇2λ +

1

2
∇λ · ∇λ

]
, (2a)

T rr =
e−2λ

8πG

[
(λ′)2 + 2λ′ν′ +

2

r
(λ′ + ν′)

]
, (2b)

T θθ = T
ϕ
ϕ =

e−2λ

8πG

[
λ′′ + ν′′ + (ν′)2 +

1

r
(λ′ + ν′)

]
, (2c)

where primes indicate differentiation with respect to r.
In terms of the orthonormal tetrad (comoving observer) e(a)

b =

{U b, Xb, Y b, Zb}, where

Ua =
1√
−g00

δa0 , Xa =
1
√
g11

δa1 , (3a)

Y a =
1
√
g22

δa2 , Za =
1
√
g33

δa3 . (3b)

the energy density is ρ = −T 0
0 and the principal stresses (pres-

sures or tensions) pi = T ii .

By setting eλ =
(

1− φ(r)
2

)4
, we get for the energy density the

following nonlinear Poisson type equation

∇2φ = 4πGρ

(
1− φ

2

)5

. (4)

For a given physical energy density profile ρ, the metric func-
tion φ can be obtained by resolving this equation. A physically
reasonable way to choose ρ is by requiring that in the Newtonian
limit it reduces to its Newtonian value ρN . A simple particular
form of ρ which satisfies such condition is

ρ =
ρ0(

1− φ
2

)5
. (5)

Replacing this expression in (4) one finds in this case that the
pair (φ, ρ0) is a solution of the Poisson’s equation. Hence
(φ, ρ0) = (Φ, ρN ) for any physical system. Therefore,

ρ =
ρN(

1− Φ
2

)5
. (6)

To obtain the other metric function ν an additional assumption
must be imposed.

Motion of particles
The circular speed (rotation curves) of the particles around the

structures is given by [1]

v2
c =

rν,r
1 + rλ,r

, (7)

and the specific angular momentum is

L2 =
r2e2λv2

c

1− v2
c
. (8)

This quantity can be used to analyze the stability of the parti-
cles against radial perturbations. The condition of stability,

d(L2)

dr
> 0, (9)

is an extension of the Rayleigh criteria of stability of a fluid in
rest in a gravitational field.

Perfect fluid spacetimes
For a perfect fluid source

T ab = (ρ + p)UaU b + pgab, (10)

and the the condition of pressure isotropy can be cast as

LG,xx = 2GL,xx, L ≡ e−λ, G ≡ Leν, x ≡ r2. (11)

In this case the metric function ν is obtained solving this equa-
tion.

Harmonic oscillator type spheres
In Newtonian gravity the gravitational potential of a sphere of

radius a and constant mass density ρN is

Φ =

{
−2πGρN (a2 − 1

3r
2) (r < a),

−4πGρNa
3

3r (r > a).
(12)

For r < a the potential corresponds to a harmonic oscillator
potential which has been used to model extended dark matter
haloes with harmonic core. The circular speed is

vcN =

√
4πGρN

3
r. (13)

Solving the condition of pressure isotropy (11), the interior so-
lution is [2]

eν =

C1

(
r2

a2
− 3(b + 2)

b

)4

+ C2

(
r2

a2
− 3(b + 2)

b

)−3


×

[
1 +

b

2

(
1− 1

3

r2

a2

)]2

, (14a)

eλ =

[
1 +

b

2

(
1− 1

3

r2

a2

)]2

, (14b)

where b = 2πGρNa
2/c2,

C1 = − 9b4

112(b + 3)6
, (15a)

C2 =
432(b− 4)

7b3
. (15b)

Figure 1: Graphs, as functions of r̃ = r/a, of (a) ρ̃ = 2πGa2ρ/c2, (b)
p̃ = (8πG/c4)p, (c) ṽ2c = v2c/c

2, and (d) L̃2 = L2/(c2a2) with b = 0.1 (bottom
curves), 0.2 , 0.4 (top curves).

Logarithmic potential type spheres

Dark matter haloes can be modeled in Newtonian theory with a
logarithmic potential of the form

Φ =
1

2
v2

0 ln(
r2 + a2

b
), (16)

where a and b are constants, and v0 is circular speed at large
radii, also a constant. The mass density distribution is

ρN =
v2

0(r2 + 3a2)

4πG(r2 + a2)2
, (17)

and the circular speed in radius r is

vcN =
v0r√
r2 + a2

. (18)

This potential yields an asymptotically flat rotation curve.
Solving (11), a particular solution is [2]

e
ν
2 = C

(
r2 + a2

)[
1− 1

4

v2
0

c2
ln

(
r2 + a2

b

)]6

, (19a)

e
λ
2 =

[
1− 1

4

v2
0

c2
ln

(
r2 + a2

b

)]4

, (19b)

where C is an integration constant.

Figure 2: (a) ρ̃ = 4πGρ (solid curve), ρ̃N = 4πGρN (dashed curve),
p̃ = 8πGp (dotted curve), (b) vc (solid curve), v2cN (dashed curve) and
L2 × 10−4 (dotted curve), with parameters ṽ20 = 0.458, a = 3.

Conclusions

• Two perfect fluid sources for static spherically symmet-
ric fields in isotropic coordinates based on the Newtonian
potential-density pairs corresponding to a harmonic oscilla-
tor and a massive spherical dark matter halo with a logarithm
potential were constructed.

• In all the cases we found stable circular orbits, but for har-
monic oscillator type fields was observed that the increase in
the gravitational field can make unstable the motion of the
particles.

• For logarithmic potential type spheres we found that relativis-
tic rotation curve is flattened after a certain value of the radial
distance as observational data indicate.

• The models considered satisfy all the energy conditions.
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