Poisson type conformastat spherically symmetric spacetimes

Gonzalo García-Reyes

Departamento de Física
Universidad Tecnológica de Pereira, Colombia

ggarcia@utp.edu.co

Abstract

We construct conformastat spherically symmetric spacetimes from given solutions of Poisson's equation. As a simple application, we present an exact perfect fluid solution starting with the seed potential-density pair corresponding to a massive spherical dark matter halo with a logarithm potential.

Poisson type spacetimes

The metric for a conformastat spherically symmetric spacetime is given by

$$
\begin{equation*}
d s^{2}=-e^{\nu(r)} d t^{2}+e^{\lambda(r)}\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}\right) \tag{1}
\end{equation*}
$$

By setting $e^{\lambda}=\left(1-\frac{\phi(r)}{2}\right)^{4}$, we get for the energy density the following nonlinear Poisson type equation

$$
\begin{equation*}
\nabla^{2} \phi=4 \pi G \rho\left(1-\frac{\phi}{2}\right)^{5} \tag{2}
\end{equation*}
$$

A simple particular form of ρ is

$$
\begin{equation*}
\rho=\frac{\rho_{0}}{\left(1-\frac{\phi}{2}\right)^{5}} \tag{3}
\end{equation*}
$$

Replacing this expression in (2) one finds that the pair $\left(\phi, \rho_{0}\right)$ is a solution of the Poisson's equation. Hence $\left(\phi, \rho_{0}\right)=\left(\Phi, \rho_{N}\right)$ for any physical system. To obtain the other metric function ν an additional assumption must be imposed.
For a perfect fluid source

$$
\begin{equation*}
T^{a b}=(\rho+p) U^{a} U^{b}+p g^{a b}, \tag{4}
\end{equation*}
$$

such assumption is the condition of pressure isotropy which can be cast as

$$
\begin{equation*}
L \mathcal{G}_{, x x}=2 \mathcal{G} L_{, x x}, \quad L \equiv e^{-\lambda}, \quad \mathcal{G} \equiv L e^{\nu}, \quad x \equiv r^{2} \tag{5}
\end{equation*}
$$

Logarithmic potential type perfect fluid spheres

Dark matter haloes can be modeled in Newtonian theory with a logarithmic potential of the form

$$
\begin{equation*}
\Phi=\frac{1}{2} v_{0}^{2} \ln \left(\frac{r^{2}+a^{2}}{b}\right), \tag{6}
\end{equation*}
$$

where a and b are constants, and v_{0} is circular speed at large radii, also a constant. The mass density distribution is

$$
\begin{equation*}
\rho_{N}=\frac{v_{0}^{2}\left(r^{2}+3 a^{2}\right)}{4 \pi G\left(r^{2}+a^{2}\right)^{2}} . \tag{7}
\end{equation*}
$$

Solving (5), a particular solution is

$$
\begin{align*}
e^{\frac{\nu}{2}} & =C\left(r^{2}+a^{2}\right)\left[1-\frac{1}{4} \frac{v_{0}^{2}}{c^{2}} \ln \left(\frac{r^{2}+a^{2}}{b}\right)\right]^{6}(\text { with } C \text { constant }) \tag{8a}\\
e^{\frac{\lambda}{2}} & =\left[1-\frac{1}{4} \frac{v_{0}^{2}}{c^{2}} \ln \left(\frac{r^{2}+a^{2}}{b}\right)\right]^{4} \tag{8b}
\end{align*}
$$

