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Abstract
In this work an interesting approach to estimate the spatial curvature Ωk from data independently of dynamical

models is suggested. It was done through three kinematic parametrizations of the comoving distance (DC(z)) with
second degree polynomial, of the Hubble parameter (H(z)) with a second degree polynomial and of the decelera-
tion parameter (q(z)) with first order polynomial. All these parametrizations are done as function of redshift z. We
used SNe Ia dataset from Pantheon compilation with 1048 distance moduli estimated on the range 0.01 < z < 2.3
with systematic and statistical errors and a compilation of 31 H(z) data estimated from cosmic chronometers. The
spatial curvature found for DC(z) parametrization was Ωk = −0.03+0.24+0.56

−0.30−0.53. The parametrization for deceleration
parameter q(z) resulted in Ωk = −0.08+0.21+0.54

−0.27−0.45. The H(z) parametrization had incompatibilities between H(z)
and SNe Ia data, so these analyses were not combined. Both DC(z) and q(z) parametrizations are compatible with
the spatially flat Universe as predicted by many inflation models and data from CMB. This type of analysis may be
interesting as it avoids any bias because it does not depend on assumptions about the matter content for estimating
Ωk.

Introduction
The evidence that the Universe is accelerating comes from observations of SNe Ia, CMB, BAO and
data from H(z) ([1] and [2]). The acceleration phase of the universe can be theoretically supported
by the constant Λ plus the Cold Dark Matter component. This model has cosmological parameters
that can be constrained by observational data [2].

Parametrizations help to reconstruct the evolution of the Universe without considering dynam-
ics, that is: regardless of dynamics. However, using the FLRW metric, we can report that these
parametrizations (H(z), q(z))) for the spatial curvature and cosmology distances: luminosity distance
(dL) and angular distance dA). All this using distance data from SNe Ia that must restrict the curvature
parameter without assuming any Cosmology dynamics.

In this present work, we study the spatial curvature with third order parametrizations in the comov-
ing distance, second order in H(z) and first order in q(z). We combined the distance-luminosity data
of SNe Ia [3] and measures of H(z) [4], being possible to estimate the values of Ωk.

In order to do that, we have assumed the Cosmological Principle with the FLRW line element and
the basic equations:
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where DC(z) ≡ H0
c dc(z) is dimensionless comoving distance and E(z) ≡ H(z)

H0
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Hubble parameter. Luminosity distance DL relates with transverse comoving distance DM as
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Main Objectives
1. This work uses parametrizations through z on H(z), q(z) and dc.
2. When these parametrizations were made using polynomial approach on z the estimative from Ωk

can be done without considering Cosmology dynamics.

Ωk from line-of-sight comoving distance, DC(z)

In order to put limits on Ωk by considering the line-of-sight comoving distance, we can write DC(z)
as a second degree polynomial such as:

DC = z + d2z
2 + d3z

3, (5)
where d2 and d3 are free parameters, then we can write:

The dimensionless luminosity distance is

DL(z) = (1 + z) sinn (z + d2z
2 + d3z

3,Ωk). (6)

Now, these equations shall be compared with H(z) measurements and luminosity distances from
SNe Ia, respectively, in order to determine d2 and Ωk.

Ωk from H(z)

In order to assess Ωk by means of H(z) we need an expression for H(z). If one wants to avoid dy-
namical assumptions, one must resort to kinematical methods which use an expansion of H(z) over
the redshift.

Let us try a simple H(z) expansion, namely, the quadratic expansion:
H(z)

H0
= E(z) = 1 + h1z + h2z

2. (7)

In order to constrain the model with SNe Ia data, we obtain the luminosity distance from Eqs.(3),
(1) and (7). We have
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which gives three possible solutions, according to the sign of ∆ ≡ h2
1 − 4h2, such as
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from which follows the luminosity distance DL(z) = (1 + z) sinn (DC,Ωk).

Ωk from q(z)

Now we can analyze Ωk by parametrizing q(z). From (2) one may find E(z) as

E(z) = exp
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1 + q(z′)
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]
. (10)

If we assume a linear z dependence in q(z), as

q(z) = q0 + q1z, (11)

which is the simplest q(z) parametrization that allows for an acceleration transition as required by
SNe Ia data, one may find

E(z) = eq1z(1 + z)1+q0−q1, (12)

while the line-of-sight comoving distance DC(z) (1) is given by

DC(z) = eq1q
q0−q1
1 [Γ(q1 − q0, q1)− Γ(q1 − q0, q1(1 + z))] , (13)

where Γ(a, x) is the incomplete gamma function defined as Γ(a, x) ≡
∫∞
x e−tta−1dt, with a > 0,

from which follows the luminosity distance as DL(z) = (1 + z) sinn (DC,Ωk), which can be con-
strained from observational data.

Results
The outcomes from parametrization are shown on
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Figure 1: a) SNe Ia apparent magnitude mB from Pantheon. The error bars shown correspond only to statistical errors,
but we use the full covariance matrix (statistical+systematic errors) in the analysis. b) 51 H(z) data compilation. The
lines represent the best fit from SNe+H(z) data for each model.

The table shows results from parameterization

Treatments Response 1 Response 2

Parameter DC(z) q(z)

H0 69.0± 2.4± 4.9 69.3± 2.4+4.8
−4.7

Ωk −0.03+0.24+0.56
−0.30−0.53 −0.08+0.21+0.54

−0.27−0.45
d2 −0.255± 0.030+0.059

−0.061 –
d3 0.029± 0.011+0.023

−0.022 –
q0 – −0.536± 0.085± 0.17
q1 – 0.73± 0.15± 0.30

Table 2: Constraints from Pantheon+H(z) for DC(z) and q(z) parametrizations. The central values correspond to the
mean and the 1 σ and 2 σ c.l. correspond to the minimal 68.3% and 95.4% confidence intervals.

Conclusions
• This work showed the comoving distance DC , the Hubble parameter H(z) and the deceleration

parameter q(z) as third, second and first degree polynomials on z, respectively, and obtained, for
each case, the Ωk value.
• Supernovae type Ia data and Hubble parameter measurements were combined nice constraints are

found over the spatial curvature, without the need of assuming any particular dynamical model.
Results were showed can be in table above.
• The values obtained for the spatial curvature in each case were Ωk = 0.11+0.21

−0.24, −0.03+0.21
−0.24 and

−0.05+0.21
−0.25 at 1σ c.l., respectively (see table 2), all compatible with a spatially flat Universe, as

predicted by most inflation models and confirmed by CMB data, in the context of ΛCDM model.
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