Study of Mg ion fragmentation crosssections for shielding purposes using GEANT4

Nitika Sangwan and Ashavani Kumar Department of Physics, National Institute of Technology, Kurukshetra-136119 (India)

INTRODUCTION

The partial cross-section computation for Mg ion on C target using Monte Carlo code based Geant4 toolkit is performed.
Two different physics models, the QMD and the INCL++ models are activated.
The simulation results are comparatively analysed with respect to experimental and PHITS code data.

Simulation

- Single block of homogenous slab of C element is used as target material.
- The detector was exposed to the $\mathbf{M g}$ ion beam incident normally to the face of C target.
\square ROOT software is used to handle the data.
- Energy of beam used are 370A MeV and ~470 A MeV.
- Two physics models : the QMD model and the INCL model are activated for comparative study.

Geometry \& Detector Construction
Sketch of the detector configuration used for the exposure to Mg ion beam of energy 370A MeV and $\sim 470 \mathrm{~A} \mathrm{MeV}$ on C element target to study fragmentation crosssection.

Software used

(SEANTA

GEANT4- A SIMULATION TOOLKIT

ROOT- Data Analysis Framework

Results

In comparative study of fragmentation cross-section, Geant4 toolkit generates the cross-section for $\mathbf{M g}$ ion on C target in good agreement to the experimental and PHITS data. The QMD model outcomes the cross-section with odd-even effect as well while the INCL model gave inline agreement result with slight deviation. Both model produce seems to follow the experimental data depending on Z of fragment.

Figure 1.The fragmentation cross-section of Mg ion incident on C target with energy 370 A MeV .

Figure 2. The fragmentation cross-section of Mg ion incident on C target with energy $\sim 470 \mathrm{~A} \mathrm{MeV}$.

Conclusions

- Fragmentation cross-section study of Mg ion on C target using Geant4 software generates good results compared to experimental data and PHITS code data.
- The QMD model shows the odd-even effect.
- Both model shows close agreement for the mid Z fragments (Z=6-9).

References

1. C. Zeitlin, S. B. Guetersloh, L. H. Heilbronn, J. Miller, NIMB (2006).
2. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Nucl. Instrum. Methods Phys. Res (2003).
