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● hls4ml tutorial:
https://indico.cern.ch/event/822126/timetable/#3-hls4ml

● How can we use hls4ml, expand possibilities for usage?

https://indico.cern.ch/event/822126/timetable/#3-hls4ml
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LHC Data Processing

● LHC collisions happen every 25 ns
– 100 Tb/s in total detector data

● Must quickly select which collisions to save → FPGAs for L1
● Can we also use FPGAs at other points in data processing?
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High Level Trigger

● Traditionally fully CPU-
based (thousands of nodes)

● Each node processes data 
independently
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High Level Trigger

● Traditionally fully CPU-
based (thousands of nodes)

● Each node processes data 
independently

● Recent interest in 
accelerators for certain 
large latency tasks
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High Level Trigger

● Traditionally fully CPU-
based (thousands of nodes)

● Each node processes data 
independently

● Recent interest in 
accelerators for certain 
large latency tasks

● Heterogeneous computing 
as a service offers many 
advantages over simpler 
models
– Galapagos ideal for this 

design
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HLT Acceleration

● Track reconstruction, calorimeter energy reconstruction 
are responsible for ~65% of all HLT processing time
– Prime targets for acceleration
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HCAL Energy Reconstruction

● Energy deposited in calorimeters from multiple collisions 
will overlap
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HCAL Energy Reconstruction

● Energy deposited in calorimeters from multiple collisions 
will overlap

● Current algorithms perform a fit of pulse shapes to extract 
energy of in time pulse
– Difficult to parallelize, optimize fit for GPU/FPGA

Previous pulse
     In-time pulse
           Next pulse
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ML HCAL Reconstruction

● Machine learning provides a simple solution
– Train a regression to the energy of the in-time pulse

● 11 Inputs : 8 raw energies (8 TS) + 3 location identifiers, 3 
hidden layers (15, 10, 5 nodes)
– Network is quite small (391 parameters)

● Model: 
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Inference on an FPGA

● Network implemented using                 → 70 ns latency, new 
inference can start every 5 ns
– 16k inferences: 80 us latency

– Resource usage minimal,
network would fit on Virtex 7

● Running on AWS (VU9P):
– Including data transfers between 

FPGA ↔ CPU, total latency for 
16k inferences is ~2 ms

– Major speedup with respect to 
current algorithm

– Requires usage of SDAccel, some limitations

● Running with galapagos would allow customization for 
specific needs, full control of FPGA ↔ CPU
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Galapagos +                  

● Additional files required to run hls4ml with 
galapagos:
– Wrapper to handle streamed inputs in proper format
– Definitions for galapagos
– System configuration
– Build scripts



13

BACKUP
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