
hls4ml Tutorial

Part I. Introduction

Fast Machine Learning Developer Bootcamp - Fermilab - 12 September 2019

hls4ml - Fermilab - 12 September 201912.9.2019

Introduction
• In this session you will get hands on experience with the hls4ml package

• Translate pre-trained models into FPGA code

• Explore the different handles provided by the tool to optimize the inference

- Latency, throughput, resource usage

• Run inference on an FPGA with AWS

• Make our inference more computationally efficient with pruning

• But first…

 2

hls4ml - Fermilab - 12 September 201912.9.2019 3

What are FPGAs?

Field Programmable Gate Arrays are reprogrammable
integrated circuits

Contain many different building blocks (‘resources’) which
are connected together as you desire

Originally popular for prototyping ASICs, but now also for
high performance computing

‘Computing in space as well as time’

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

hls4ml - Fermilab - 12 September 201912.9.2019 4

What are FPGAs?

Field Programmable Gate Arrays are reprogrammable
integrated circuits

Logic cells / Look Up Tables perform arbitrary functions
on small bitwidth inputs (2-6)

These can be used for boolean operations, arithmetic,
memory

Flip-Flops register data in time with the clock pulse

FPGA diagram

Logic cell

Flip-flop

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Look-up
table
(logic) (registers)

hls4ml - Fermilab - 12 September 201912.9.2019 5

What are FPGAs?

Field Programmable Gate Arrays are reprogrammable integrated circuits

DSPs are specialized units for multiplication and arithmetic

Faster and more efficient than using LUTs for these types of operations

And for Neural Nets, DSPs are often the most precious

DSP diagram

hls4ml - Fermilab - 12 September 201912.9.2019 6

What are FPGAs?

Field Programmable Gate Arrays are reprogrammable
integrated circuits

BRAMs are small, fast memories - RAMs, ROMs, FIFOs
(18Kb each in Xilinx)

Again, memories using BRAMs are more efficient than
using LUTs

A big FPGA has nearly 100Mb of BRAM, chained
together as needed

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Also contain embedded components:

Digital Signal Processors (DSPs):
logic units used for multiplications

Random-access memories (RAMs):
embedded memory elements

hls4ml - Fermilab - 12 September 201912.9.2019 7

What are FPGAs?

In addition, there are specialised blocks for I/O, making
FPGAs popular in embedded systems and HEP triggers

High speed transceivers with Tb/s total bandwidth

PCIe, (Multi) Gigabit Ethernet, Infiniband

AND: Support highly parallel algorithm implementations

Low power per Op (relative to CPU/GPU)

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Digital Signal Processors (DSPs):
logic units used for multiplications

Random-access memories (RAMs):
embedded memory elements

Flip-flops (FF) and look up tables
(LUTs) for additions

hls4ml - Fermilab - 12 September 201912.9.2019

Why are FPGAs Fast?
• Fine-grained / resource parallelism

- Use the many resources to work on different
parts of the problem simultaneously

- Allows us to achieve low latency

• Most problems have at least some sequential
aspect, limiting how low latency we can go

- But we can still take advantage of it with…

• Pipeline parallelism

- Use the register pipeline to work on different
data simultaneously

- Allows us to achieve high throughput

 8

Like a production line for data…

hls4ml - Fermilab - 12 September 201912.9.2019 9

How are FPGAs programmed?

Hardware Description Languages

HDLs are programming languages which describe
electronic circuits

High Level Synthesis

Compile from C/C++ to VHDL
Pre-processor directives and constraints used to
optimize the design
Drastic decrease in firmware development
time!

Today we’ll use Xilinx Vivado HLS [*]

[*] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf

hls4ml - Fermilab - 12 September 201912.9.2019

Jargon
• LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine

many to build the algorithm

• FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline
and achieve high throughput

• DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

• BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs
for more than a few elements

• HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

• HDL - Hardware Description Language - low level language for describing circuits

• RTL - Register Transfer Level - the very low level description of the function and
connection of logic gates

• Latency - time between starting processing and receiving the result

- Measured in clock cycles or seconds

 10

hls4ml - Fermilab - 12 September 201912.9.2019 11

Neural network inference

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

Nmultiplications =
NX

n=2

Ln�1 ⇥ Ln

L1
Ln

LN

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

hls4ml - Fermilab - 12 September 201912.9.2019 12

Neural network inference

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

Nmultiplications =
NX

n=2

Ln�1 ⇥ Ln

L1
Ln

LN

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

How many resources?
DSPs, LUTs, FFs?

Does the model fit in the
latency requirements?

hls4ml - Fermilab - 12 September 201912.9.2019 13

high level synthesis for machine learning

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#����-�

$

� ��������� ������
�����������

�� ��	��������

�����
���/���

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://hls-fpga-machine-learning.github.io/hls4ml/

Today you are going to implement a NN on FPGA with this package:

https://arxiv.org/abs/1804.06913

https://hls-fpga-machine-learning.github.io/hls4ml/

hls4ml - Fermilab - 12 September 201912.9.2019 14

Today you will learn how to optimize your project through:

- compression: reduce number of synapses or neurons

- quantization: reduces the precision of the calculations (inputs,
weights, biases)

- parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources

Efficient NN design for FPGAs
FPGAs provide huge flexibility

Performance depends on how well you
take advantage of this

Constraints:
Input bandwidth
FPGA resources
Latency

NN training

FPGa project 

designing

hls4ml - Fermilab - 12 September 201912.9.2019

Today’s hls4ml hands on
• First part:

- take confidence with the package, its functionalities and design synthesis by running with one of
the provided trained NN

- learn how to read out an estimate of FPGA resources and latency for a NN after synthesis

- learn how to optimize the design with quantization and parallelization

• Second part:

- learn how to run the design on Amazon Web Services FPGAs with SDAccel

- timing and resources studies after running on real FPGA

• Third part:

- learn how to do model compression and its effect on the FPGA resources/latency

 15

hls4ml Tutorial

Part I. Introduction - Hands On

Fast Machine Learning Developer Bootcamp - Fermilab - 12 September 2019

hls4ml - Fermilab - 12 September 201912.9.2019

Efficient NN design: quantization
• Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

 17

0101.1011101010

width
fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer>

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

hls4ml - Fermilab - 12 September 201912.9.2019

Efficient NN design: parallelization
• Trade-off between latency and FPGA resource usage determined by the parallelization of

the calculations in each layer

• Configure the “reuse factor” = number of times a multiplier is used to do a computation

 18

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial Less resources/
Less throughput

hls4ml - Fermilab - 12 September 201912.9.2019

Parallelization: DSP usage

 19

Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Fully parallel

Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

…

Longer latency

More resources

hls4ml - Fermilab - 12 September 201912.9.2019

Parallelization: Timing

 20

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –

Fully parallel

Each mult. used 1x

Each mult. used 3x

Each mult. used 6x

…

~ 175 ns

~ 75 ns

…La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Longer latency

More resources

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Figure 6: Illustration of the iterative parameter pruning and retraining with L1 regularization proce-
dure. The distribution of the absolute value of the weights relative to the maximum absolute value
of the weights is shown after each step of the pruning and retraining procedure. In the top left, the
distribution before compression is shown, while in the bottom right, the distribution after compression
is displayed.

Parallelization

The trade-o� between latency and FPGA resource usage is determined by the parallelization of the
inference calculation. In hls4ml this is configured with a multiplier “reuse factor” that sets the number
of times a multiplier is used in the computation of a layer’s neuron values. With a reuse factor of one,
the computation is fully parallel. With a reuse factor of R, 1/R of the computation is done at a time
with a factor of 1/R fewer multipliers.

FPGA multpliers are pipelined; therefore, the latency of one layer computation, Lm, is approxi-
mately

Lm = Lmult + (R � 1) ⇥ I Imult + Lactiv, (2.4)

where Lmult is the latency of the multiplier, I Imult is the initiation interval of the multiplier, and Lactiv
is the latency of the activation function computation. Equation 2.4 is approximate because, in some

– 13 –

Latency of layer m

fpa4hep: real-time deep learning on FPGAs06.02.2019

The config.yml file
• The model to translate

• Some test vectors for
simulation (check precision)

• Output directory / name

• Target FPGA, clock speed

• Model data precision and
parallelisation

• More fine grained data
precision and parallelisation

- Per-layer, or per-layer type

 21

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
#InputData: keras/KERAS_3layer_input_features.dat
#OutputPredictions: keras/KERAS_3layer_predictions.dat
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5

IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
LayerType:
Dense:
ReuseFactor: 2
Strategy: Resource
Compression: True

hls4ml - Fermilab - 12 September 201912.9.2019

Hands On - Setup
• https://github.com/holzman/course_material/blob/fml/part0_setup.md

• Download the ssh key from: https://www.dropbox.com/s/yd5yiov0onva6qt/fastml_rsa?dl=0

• Find your IP from: https://tinyurl.com/hls4ml-demo

• Then in a terminal:

• You are now connected to a VM with the Xilinx Vivado HLS suite installed

 22

chmod 600 fastml_rsa

ssh -i fastml_rsa <your assigned IP>

(password)

 ___ ___ ___ _ ___ _____ __ _ __ __ ___
__	_ \/ __	/_\	\| __\ \ / / /_\	\/	_ _						
_		_/ (_	/ _ \)	_	\ V / / _ \|	\/			
_		_	___/_/ _\	___/	___	_/ /_/ __		_	___		
AMI Version: 1.6.0
Readme: /home/centos/src/README.md
GUI Setup Steps: /home/centos/src/GUI_README.md
GUI Setup script: /home/centos/src/scripts/setup_gui.sh
AMI Release Notes: /home/centos/src/RELEASE_NOTES.md
Xilinx Tools: /opt/Xilinx/
Developer Support: https://github.com/aws/aws-fpga/blob/master/README.md#developer-support
Centos Common code: /srv/git/centos-git-common
[centos@ip-172-31-10-12 ~]$

https://github.com/holzman/course_material/blob/fml/part0_setup.md
https://www.dropbox.com/s/yd5yiov0onva6qt/fastml_rsa?dl=0
https://tinyurl.com/hls4ml-demo

fpa4hep: real-time deep learning on FPGAs06.02.2019

Exercise
• Follow the step-by-step instructions at:

• https://github.com/FPGA4HEP/course_material/blob/fml/part1_hls4ml_intro.md

• For the final part “Change precision of calculations and reuse factor”:

• Everybody pick a Precision and Reuse Factor from the spreadsheet

- Put your name in the column, pick one that isn’t already assigned

• https://docs.google.com/spreadsheets/d/
1xrFf3_-6G10wmYnZ8zuDM3SfCfUMe0_KOB8mW6S-E2E/edit#gid=0

• Put your results in the spreadsheet!

- Plots are generated on the ‘Plots’ sheet

 23

https://github.com/FPGA4HEP/course_material/blob/fml/part1_hls4ml_intro.md
https://docs.google.com/spreadsheets/d/1xrFf3_-6G10wmYnZ8zuDM3SfCfUMe0_KOB8mW6S-E2E/edit#gid=0
https://docs.google.com/spreadsheets/d/1xrFf3_-6G10wmYnZ8zuDM3SfCfUMe0_KOB8mW6S-E2E/edit#gid=0

fpa4hep: real-time deep learning on FPGAs06.02.2019

Other Examples
• The FPGA workflow can take a long time, so here are some results from pre-compiled

models…

 24

fpa4hep: real-time deep learning on FPGAs06.02.2019

Large MLP
• ‘Strategy: Resource’ for larger networks and higher reuse factor

• Uses a slightly different HLS implementation of the dense layer to compile faster and
better for large layers

• We use a different partitioning on the first layer for the best partitioning of arrays

 25

KerasJson: keras/MNIST_model.json
KerasH5: keras/MNIST_model_weights.h5
#InputData: keras/MNIST_model_input_features.dat
#OutputPredictions: keras/MNIST_model_predictions.dat
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5

IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 128

 Strategy: Resource
LayerName:
 dense1:
 ReuseFactor: 112

A model trained on the MNIST digits classification dataset
Architecture: 784 x 128 x 128 x 128 x 10
Model accuracy: ~97%
Can you calculate the number of DSPs it will use?
(Don’t cheat and look ahead)

fpa4hep: real-time deep learning on FPGAs06.02.2019

Large MLP
• It takes a while to synthesise, so here’s one I made earlier…

• The DSPs should be: (784 x 128) / 112 + (2 x 128 x 128 + 128 x 10) / 128 = 1162 🤞

 26

==
== Performance Estimates
==
+ Timing (ns):
 * Summary:
 +--------+-------+----------+------------+
 | Clock | Target| Estimated| Uncertainty|
 +--------+-------+----------+------------+
 |ap_clk | 5.00| 4.375| 0.62|
 +--------+-------+----------+------------+

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+----------+
 | Latency | Interval | Pipeline |
 | min | max | min | max | Type |
 +-----+-----+-----+-----+----------+
 | 518| 522| 128| 128| dataflow |
 +-----+-----+-----+-----+----------+

==
== Utilization Estimates
==
* Summary:
+---------------------+---------+-------+---------+--------+
| Name | BRAM_18K| DSP48E| FF | LUT |
+---------------------+---------+-------+---------+--------+
|DSP | -| -| -| -|
|Expression | -| -| 0| 3144|
|FIFO | 1394| -| 28998| 46116|
|Instance | 568| 1162| 140203| 166361|
|Memory | -| -| -| -|
|Multiplexer | -| -| -| 7002|
|Register | -| -| 778| -|
+---------------------+---------+-------+---------+--------+
|Total | 1962| 1162| 169979| 222623|
+---------------------+---------+-------+---------+--------+
|Available SLR | 2160| 2760| 663360| 331680|
+---------------------+---------+-------+---------+--------+
|Utilization SLR (%) | 90| 42| 25| 67|
+---------------------+---------+-------+---------+--------+
|Available | 4320| 5520| 1326720| 663360|
+---------------------+---------+-------+---------+--------+
|Utilization (%) | 45| 21| 12| 33|
+---------------------+---------+-------+---------+--------+

👍

II determined by the largest reuse factor

fpa4hep: real-time deep learning on FPGAs06.02.2019

Binary & Ternary Neural Networks
• Constrain the weights (and optionally activations) to ±1 (binary) or ±1 & 0 (ternary)

- Can use a few LUTs to perform ‘activation * weight’ products instead of DSPs

• Consider it a form of model compression

• …but typically need to increase model size to retain performance

- So in hls4ml this goes hand in hand with Strategy: Resource

• There are example jet tagging B/TNNs in the hls4ml repo:

- KERAS_3layer_binary_smaller{.json, _weights.h5} - Binary dense layer & our optimized ‘Batch
Normalization + Binary Tanh’ layer (1 bit weights & activations)

- KERAS_3layer_binarydense_relu_max{.json, _weights.h5} - Binary dense layer, batch
normalization and ‘clipped ReLU’ activation (~few bits activations)

- KERAS_3layer_ternary_small{.json, _weights.h5} - Ternary dense layer, batch normalization
and ternary tanh (2 bit weights & activations)

 27

fpa4hep: real-time deep learning on FPGAs06.02.2019

Binary MNIST Model
• Now a model trained on the MNIST digits, with the same architecture as the last one, but

now with 1 bit weights: 93% accuracy

• Now we use 0 DSPs! The LUTs look a bit high, but note these always go down a lot after
the later stages of Xilinx compilation flow (goes down to 14%)

 28

==
== Performance Estimates
==
+ Timing (ns):
 * Summary:
 +--------+-------+----------+------------+
 | Clock | Target| Estimated| Uncertainty|
 +--------+-------+----------+------------+
 |ap_clk | 5.00| 4.375| 0.62|
 +--------+-------+----------+------------+

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+----------+
 | Latency | Interval | Pipeline |
 | min | max | min | max | Type |
 +-----+-----+-----+-----+----------+
 | 516| 520| 128| 128| dataflow |
 +-----+-----+-----+-----+----------+

==
== Utilization Estimates
==
* Summary:
+---------------------+---------+-------+---------+--------+
| Name | BRAM_18K| DSP48E| FF | LUT |
+---------------------+---------+-------+---------+--------+
|DSP | -| -| -| -|
|Expression | -| -| 0| 3144|
|FIFO | 1394| -| 28998| 39646|
|Instance | 59| 0| 65662| 209840|
|Memory | -| -| -| -|
|Multiplexer | -| -| -| 7002|
|Register | -| -| 778| -|
+---------------------+---------+-------+---------+--------+
|Total | 1453| 0| 95438| 259632|
+---------------------+---------+-------+---------+--------+
|Available SLR | 2160| 2760| 663360| 331680|
+---------------------+---------+-------+---------+--------+
|Utilization SLR (%) | 67| 0| 14| 78|
+---------------------+---------+-------+---------+--------+
|Available | 4320| 5520| 1326720| 663360|
+---------------------+---------+-------+---------+--------+
|Utilization (%) | 33| 0| 7| 39|
+---------------------+---------+-------+---------+--------+

