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This talk:	
	
•  Motivate need for fast ML for neutrinos	
•  Deep Underground Neutrino Experiment (DUNE) as application case study,	

	based on collaborative work with Y. Jwa, G. Di Guglielmo, and L. Carloni, Columbia U.	



Neutrino detection 49 years ago… 
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…and neutrino detection today! 
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One of the first neutrino 
events observed in the  
MicroBooNE Liquid Argon 
Time Projection Chamber 	
	
	
•  Different detector 

technology	
•  Similar images	
•  Automated, often 

continuous readout  
à lots and lots of data!	
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The data outputs of many neutrino detectors can be viewed as images, which invites the application 
of computer-vision techniques for data analysis, and event identification.	

“…by taking advantage of accelerated 
computing on GPUs, these CNNs can 
run much faster than the conventional 
algorithms used by previous neutrino 
experiments. This makes them ideally 
suited to the task of real-time image 
classification and object detection.”	
	



“(Fast) Machine Learning for Neutrinos” 
 or 

“Acceleration of CNNs for real-time inference”  
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Special case: LArTPC Technology 
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One of the first neutrino 
events observed in the  
MicroBooNE Liquid 
Argon Time Projection 
Chamber 	



LArTPC operating principles 
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•  particle-imaging detector	

•  stereoscopic “video capture” of 
activity within detector volume 
with sub-mm spatial resolution	

•  high-resolution “video” streams: 	
•  O(10) megapixel per 

O(1) ms for a volume the 
size of ~a small room	

•  Usually 12-bit resolution 	



MicroBooNE 
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E field 

625 frames per plane per second,	
~2700 x 3200 = 8.6M pixels each	

	

Three charge sensing planes, provide three  
2D projected views of detector volume	

“school bus”-sized detector	



Machine Learning @ MicroBooNE 
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MicroBooNE is pioneering 
machine learning applications 
for LArTPCs – offline analysis.	

See, e.g.:  
[1] “Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber,” 
Phys. Rev. D99 (2019) No. 9, 092001.    
[2] “Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber,” JINST 12 (2017) No. 03, P03011. 

[1] 
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Machine Learning @ MicroBooNE 
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CNNs can be trained to do 
particle classification, particle 

and neutrino detection, and 
neutrino event identification [2]. 

See, e.g.:  
[1] “Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber,” 
Phys. Rev. D99 (2019) No. 9, 092001.    
[2] “Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber,” JINST 12 (2017) No. 03, P03011. 

MicroBooNE is pioneering 
machine learning applications 
for LArTPCs – offline analysis.	
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Application Case: DUNE (~500x MicroBooNE!) 

Primary physics goals of DUNE:	
●  Leptonic CP violation and 

neutrino mass hierarchy	
●  Off-beam rare event searches	
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4 neutrino 
detector modules 

1 mile underground	
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DUNE rare event 
searches 
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proton decay, 
baryon number 
violation  

  

neutrinos from 
nearby supernova 
bursts 

[DUNE TDR] 
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DUNE’s Data 
(Selection) 
Challenge 
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High-resolution “video” streams:	
	
•  from up to 4x150 independent detector volumes	
•  11.5 megapixel frames (all 3 planes) per 2.25ms	
•  12-bit resolution	
	
A total of ~40 terabits per second	
	
100% live time	
continuous operation for more than a decade	
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DUNE’s Data 
(Selection) 
Challenge 

Rare event searches require data-driven self-triggering	
Data selection system must digest full data stream and 
identify signatures of interest.	
	
Requires:	
	
●  Fast and efficient data processing for trigger 

decision (2.25 ms)	

●  Large buffering to hold data while decision is 
being made (a full drift for DUNE SP is 2.6 GB)	

	
●  Orders of magnitude more buffering and 

processing for a supernova burst trigger, which 
looks for correlated signatures in O(10) seconds!	

15 
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DUNE signatures 

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019 
16 

time 
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ne
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Single frame from high-resolution video:  
One of three 2D views from one of hundreds  
of cells in the detector	
	
	
“Static” is noise and small energy deposits 
from radiological impurities in the detector	

Deep Underground = “quiet” environment	



DUNE signatures: HE events 
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Atmospheric neutrino 
Neutron-antineutron  
oscillation Cosmic ray  

Proton decay 



DUNE signatures: HE events 
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Special challenge: neutrinos from supernova core collapse	
Very low energy and small (in extent) topology, similar to radiological background activity in the detector	

Need O(104) 
background 
suppression, while 
maintaining high 
efficiency to a 
frame containing a 
supernova 
neutrino 
interaction	

[simulation] 



DUNE signatures: HE events 
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Radiological background only SN interaction + 
radiological background  

[simulation] 

Special challenge: neutrinos from supernova core collapse	
Very low energy and small (in extent) topology, similar to radiological background activity in the detector	

Need O(104) 
overall 
background 
suppression, while 
maintaining high 
efficiency to a 
frame containing a 
supernova 
neutrino 
interaction	



ML-based data selection (trigger) in DUNE 

Raw LArTPC data format ideally suited for image analysis!	
	

E.g., Convolutional Neural Networks (CNNs)* could be applied for real-time image 
classification, using hardware acceleration (FPGA), or online in GPU or CPU.	
	
A data selection (trigger) scheme could, e.g.,	
○  Work with only one projection (2D), preferably collection plane	
○  Down-sample and resize image if/as needed	
○  Classify via CNN as whether it contains an interaction of interest	
○  For supernova interaction-containing frames, consider them in coincidence 

with frames across the entire the detector over a 10 second period 
 (higher-level data selection decision) 
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*translation-invariant feature extraction	
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Case study 1: Full stream, frame-by-frame classification 

Starting with raw LArTPC images, how well can a CNN classify data?	
Consider three classes:  
background (NB)/supernova-like low energy activity (LE)/high-energy activity (HE) 
Train CNN (vgg16b) for classification on GPU, and test (on any given platform)	
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Raw image  
input  

(4488x480)	

Down-sampling, 
resizing (600x600)	

CNN  
classification	

Selection (e.g., by highest 
class score)	

NB 

LE 

HE 
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Case study 1: Full stream, frame-by-frame classification 

Results obtained with vgg16b network: 
(600x600 input image)	
	
	
•  HE events correctly classified with  

	> 90% efficiency	
•  LE events correctly classified with > 95% efficiency	
•  ~8.5% mis-classification rate of background frames as containing LE events, but could be 

further reduced with a higher-level selection	
	
Still, inference time is ~28ms for a 2.25ms image à x10 off what might be a reasonable goal even 
with a 200-fold parallelization (200 images/2.25 ms/module)	

22 
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Case study 2: Down-selection, frame-by-frame classification 
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Long inference time: A consequence of both 
input image size and network architecture!	
	
Smaller input images?	
	
Pre-processing of collection plane images for	
1.  De-noising	
2.  Region of Interest (ROI) finding	
3.  Re-sizing to 64x64	

De-noise 
and ROI-finding, 
then re-sizing to 
64x64 

time 

ch
an

ne
l 
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Case study 2: Down-selection, frame-by-frame classification 
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Long inference time: A consequence of both 
input image size and network architecture!	
	
Smaller input images?	
	
Pre-processing of collection plane images for	
1.  De-noising	
2.  Region of Interest (ROI) finding	
3.  Re-sizing to 64x64	

De-noise 
and ROI-finding, 
then re-sizing to 
64x64 

time 

ch
an

ne
l 

(empty ROI, though 
sometimes (2%) noise 
artifacts…) 
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Case study 2: Down-selection, frame-by-frame classification 

25 

Results obtained with vgg16b network:	
(64x64 input image)	
	
	
•  HE events correctly classified with  

	> 90% efficiency	
•  LE events correctly classified with > 95% efficiency	
•  ~0.4% mis-classification rate of background frames as containing LE events, and could be 

further reduced with a higher-level selection	
	
Inference time is ~5ms for a 2.25ms image à x2 off what might be a reasonable goal, assuming a 
200-fold parallelization (200 images/2.25 ms/module)	
*Added advantage: 98% of NB ROIs are empty, so inference stage could be skipped, gaining x50 

	in classification rate!	
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Case study 2: Down-selection, frame-by-frame classification 
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Smaller input images help!	
What about smaller networks?	
	
Consider smaller CNN, “CNN_s”	
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Case study 2: Down-selection, frame-by-frame classification 
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Smaller input images help!	
What about smaller networks?	
	
Consider smaller CNN, “CNN_s”	
	
	
	
	
	
Comparable efficiencies as with vgg16b (64x64).	
>3x reduction in inference time à online classification  
is possible for 200-fold parallelization	
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Online vs. real-time implementation: Considerations for DUNE 
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Online implementation,  
e.g. in GPU:	
	
GPU advantages: High 
computational density,  
level of programmability,  
data-parallelism, flexibility	
	
Downsides: Long-term 
operation reliability and  
power utilization,  
especially underground	

[DUNE TDR, in preparation]	 Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019 
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Online vs. real-time implementation: Considerations for DUNE 

Real-time implementation,  
in FPGA:	
	
FPGA: power-aware platform for CNN 
acceleration	
Concerns for application: resource constrains 
given network size, input image size are large	
	
FPGA advantages: power-
efficiency enables upstream 
implementation, deterministic	
	
Downsides: Ease of 
programmability, resource 
constraints	

[DUNE TDR, in preparation]	 Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019 



Convolutional Layers 

Convolutional layers are the most 
computational intensive part in CNNs	
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Distribution of floating-point operations 
per stage in vgg16b	
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Accelerating CNN’s for real-time inference 

Xilinx ZynqMP UltraScale+  
XCZU9EG 

•  Exploring CNN acceleration using a 
customizable and efficient hardware 
accelerator design for the various layers of 
CNN, utilizing High Level Synthesis (HLS)-
based design flow	

•  Flexibility for optimization (processing time, 
efficiency, resource utilization)	

	
 	

[Studies and results forthcoming in IEEE proceedings] 
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Balance of 
Computation and 
Communication 
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Carefully design the algorithm to reuse data 
as much as possible, thus reducing 
expensive memory transfers from and to 
off-chip DRAM	
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Balance of 
Computation and 
Communication 
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Tailoring Private 
Local Memory 

Both inputs and weights are divided in 
chucks and the computation is done 
only with the on-chip copy of the data	
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Accelerator structure: Highly-configurable accelerator 

Allows exploration of large (in size) networks (e.g. vgg16)	
Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019 
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Performance 

Implemented customized CNN_s on  
(1) FPGA accelerator and  
(2) in C on ARM Cortex-A53 CPU as a reference  
for performance and power analysis.	
	
Performance when leveraging FPGA for  
acceleration*:	
	
1.7x average speedup for inference	
2.6x more power efficient w.r.t software implementation on ARM Cortex A53	
	
*Note: Accelerator designed for optimization of even larger networks.	
Much higher energy efficiency is achieved for larger networks than CNN_s,  
but resource allocation is an issue à more communication à longer latency	
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Summary 
Neutrino detection involves large, uniform detector volumes, often sparsely occupied with activity, 
where neutrino interactions can happen anywhere within the detector volume.	
	

	à Ideal for applications of image analysis, CNNs, deep CNNs…	
	
In recent years, the size and resolution of data from neutrino detectors has been growing drastically. 
Current technologies, most notably LArTPC’s (DUNE) are faced with major data-processing challenges.	
	
Fast ML needs are increasing for offline analysis.	
With sufficient acceleration, real-time ML could prove advantageous for long-term operating detectors.	
	
Ongoing efforts demonstrate viability of CNN-based real-time/online triggering in DUNE and invite 
further exploration of such application.	
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Thank you! 
Questions? 
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HE ROIs	
	
	
	
	
	
	
	
	
LE ROIs	
	
	
	
	
Noise ROIs	
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Noise removal cut: dashed gray line, at 520 ADC 
ROI cut: dashed black line, at 560 ADC 
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Alternate classification scheme: 
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Accelerator	

15x average speedup 
45x more power efficient 
w.r.t software implementation 
on ARM Cortex A53 

Xilinx ZynqMP UltraScale+  
XCZU9EG 
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