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(Fast) Machine Learning for Neutrinos

This talk:

*  Motivate need for fast ML for neutrinos
*  Deep Underground Neutrino Experiment (DUNE) as application case study,
based on collaborative work with Y. Jwa, G. Di Guglielmo, and L. Carloni, Columbia U.
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Neutrino detection 49 years ago...
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...and neutrino detection today!

uBooNE
=

One of the first neutrino
events observed in the
MicroBooNE Liquid Argon

Time Projection Chamber

Run 3493 Event 41075, October 237¢, 2015

Georgia Karagic

Different detector

technology

Similar images
Automated, often
continuous readout

- lots and lots of data!



Machine Learning for Neutrinos

The data outputs of many neutrino detectors can be viewed as images, which invites the application
of computer-vision techniques for data analysis, and event identification.

nature

International journal of science

Review Article | Published: 01 August 2018

Machine learning at the energy and
intensity frontiers of particle physics

Alexander Radovic , Mike Williams, David Rousseau, Michael Kagan, Daniele Bonacorsi,

Alexander Himmel, Adam Aurisano, Kazuhiro Terao & Taritree Wongjirad

Nature 560,41-48 (2018) = Download Citation %

“...by taking advantage of accelerated
computing on GPUs, these CNNs can
run much faster than the conventional
algorithms used by previous neutrino
experiments. This makes them ideally
suited to the task of real-time image

classification and object detection.”
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“(Fast) Machine Learning for Neutrinos”

“*Acceleration of CNNs for real-time inference”




Special case: LAITPC Technology

uBooNE
=

One of the first neutrino
events observed in the
MicroBooNE Liquid
Argon Time Projection
Chamber

Run 3493 Event 41075, October 237¢, 2015

Georgia Karagic



LArTPC operating principles

Senne Wies
Uy vy ¥ wire plave mrwiorm

Liguad Argen IPC

* particle-imaging detector

il {1 \ + stereoscopic “video capture” of
| N activity within detector volume
\/ with sub-mm spatial resolution

Crarged Parthdes

Cathode I ]
Mane | EERS! { N . .
T * high-resolution “video” streams:
*  0O(10) megapixel per

J O(1) ms for a volume the
—, - size of ~a small room

N *  Usually 12-bit resolution

©

Lain

Y wiw plane wawelorrma ¢ 8

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019




MicroBooNE

uBooNE _ Three charge sensing planes, provide three
2D projected views of detector volume

Run 3469 Event 28734, October

Run 3469 Event 28734, October 21%, 2015

E field

625 frames per plane per second,
~2700 x 3200 = 8.6M pixels each

“school bus”-sized detector
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Machine Learning @ MicroBooNE

MicroBooNE MicroBooNE MicroBooNE
Data , Data Data

machine learning applications

for LArTPCs — offline analysis. L, L, L,

30 cm 30 cm 30 cm

MicroBooNE is pioneering

15 cm MicroBooNE 15 cm MicroBooNE 15 cm MicroBooNE

1—V Data I—V Data l—’ Data
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See, e.9.:

[1] “Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber,”
Phys. Rev. D99 (2019) No. 9, 092001.

[2] “Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber,” JINST 12 (2017) No. 03, P03011. 10




Machine Learning @ MicroBooNE

MicroBooNE is pioneering Nu: 0.926

machine learning applications
for LArTPCs — offline analysis.

133.1 cm

CNNs can be trained to do 293.3 cm
particle classification, particle
and neutrino detection, and
neutrino event identification [2].

MicroBooNE
Simulation + Data Overlay

See, e.9.:
[1] “Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber,”

Phys. Rev. D99 (2019) No. 9, 092001.
[2] “Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber,” JINST 12 (2017) No. 03, P03011




(\

App”COﬂOﬂ Case: DUNE (~500x MicroBooNE!) NEUTRING

..................
...................

4 neutrino  ZAGSRRTTINICEIE | Primary physics goals of DUNE:
detector modules 55 e Leptonic CP violation and

1 mile underground neutrino mass hierarchy

e Off-beam rare event searches
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Interaction Type | Event Type | Expected Rate

Rare off-beam events

D U N E rG re eve n-l- Proton decay High Energy (HE) | < 1/ year
Neutron-antineutron oscillation | High Energy (HE) | < 1/ year
Galactic supernova burst® Low Energy (LE) < 1/ year

S e O rC h eS Other off-beam events

Atmospheric neutrinos High Energy (HE) | 1200 / year

Cosmic ray muons High Energy (HE) | 1.3x10° / year

3SAr
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Figure 1.2: Expected physics-related activity rates in a single 10 kt module.
[DUNE TDRI 13
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D U NI= ’ S DQ TCI High-resolution “video” streams:

(S e | eCh @) ﬂ) « from up to 4x150 independent detector volumes

* 11.5 megapixel frames (all 3 planes) per 2.25ms
C h a | en g e * 12-bit resolution

A total of ~40 terabits per second

100% live time
continuous operation for more than a decade
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DUNE's Data
(Selection)
Challenge

Rare event searches require data-driven self-triggering
Data selection system must digest full data stream and
identify signatures of interest.

Requires:

e Fast and efficient data processing for trigger
decision (2.25 ms)

e Large buffering to hold data while decision is
being made (a full drift for DUNE SP is 2.6 GB)

e Orders of magnitude more buffering and
processing for a supernova burst trigger, which
looks for correlated signatures in O(10) seconds!
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DUNE signatures

Deep Underground = “quiet” environment

Single frame from high-resolution video:
One of three 2D views from one of hundreds

of cells in the detector

“Static” is noise and small energy deposits
from radiological impurities in the detector




DUNE signatures: HE events

.. Atmosphefic neutrino

~Neutron-antineutron ' R s e e
oscillation - v EOERIETEY st Ty

[simulation]




DUNE signatures: HE events

Special challenge: neutrinos from supernova core collapse
Very low energy and small (in extent) topology, similar to radiological background activity in the detector

Need O(10%)
background
suppression, while
maintaining high
efficiency to a
frame containing a
supernova
neutrino
interaction

[simulation]




DUNE signatures: HE events

Special challenge: neutrinos from supernova core collapse
Very low energy and small (in extent) topology, similar to radiological background activity in the detector

SN mteractton + i « Radiological background only -

fadlologlcal background e SRRt e Pt sl Need O(10Y)
background
suppression, while
maintaining high
efficiency to a
frame containing a
supernova
neutrino
interaction

[simulation]




ML-based data selection (frigger) in DUNE

Raw LArTPC data format ideally suited for image analysis!

E.g., Convolutional Neural Networks (CNNs)* could be applied for real-time image
classification, using hardware acceleration (FPGA), or online in GPU or CPU.
*translation-invariant feature extraction
A data selection (trigger) scheme could, e.g.,
o Work with only one projection (2D), preferably collection plane
o Down-sample and resize image if/as needed
o Classify via CNN as whether it contains an interaction of interest
o For supernova interaction-containing frames, consider them in coincidence
with frames across the entire the detector over a 10 second period

(higher-level data selection decision)
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Case study 1: Full stream, frame-by-frame classification

Starting with raw LArTPC images, how well can a CNN classify data?
Consider three classes:
background (NB)/supernova-like low energy activity (LE)/
Train CNN (vggléb) for classification on GPU, and test (on any given platform)

O nB
O 1
O

Raw image Down-sampling, CNN Selection (e.g., by highest
input resizing (600x600) classification class score)
(4488x480)
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Case study 1: Full stream, frame-by-frame classification

Results obtained with Vgg16b network: Train Test Accuracy (%) Inference
(600x600 input image) Sample | Size Size € erg | emp | Time (ms)
NB 51,100 | 99,000 { 91.45 0.06
LE 44,900 | 29,800 | 317 | 96.83 L 0
HE 52,828 | 67,178 6.03 . ! 90.48

* LE events correctly classified with > 95% efficiency
* ~8.5% mis-classification rate of background frames as containing LE events, but could be
further reduced with a higher-level selection

Still, inference time is ~28ms for a 2.25ms image > x10 off what might be a reasonable goal even
with a 200-fold parallelization (200 images/2.25 ms/module)
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Case study 2: Down-selection, frame-by-frame classification

Long inference time: A consequence of both
input image size and network architecture!

2 : High Energy Event

o

120
240
360

1122 2244 3366

<—— channel
o

Smaller input images?

2 : High Energy Event

Pre-processing of collection plane images for
1. De-noising

2. Region of Interest (ROI) finding De-noise
3. Re-sizing to 64x64 :hen re-sizing tgc;
64x64
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Case study 2: Down-selection, frame-by-frame classification

Long inference time: A consequence of both
input image size and network architecture!

0 : Background Noise

1122 2244 3366

<—— channel
o

Smaller input images?

0 : Background Noise

Pre-processing of collection plane images for
1. De-noising

. . . . (empty ROI, though
2. Region of Interest (ROI) finding De-noise .| sometimes (2%) noise
.. and ROI-finding, artifacts...)
3. Re-51zmg to 64x64 then re-sizing to
64x64

00000

00000

ooooo
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Case study 2: Down-selection, frame-by-frame classification

Results obtained with vggl6b network:
(64x64 input image)

Train Test Accuracy (%) Inference
Sample Size Size ere | egp | Time (ms)
NB 12,023 | 4,027 ( 99.65 0.35 0
NB* | 12,023 | 293 2 0.34
LE 12,050 | 3,970 3.78 05.04 118
HE 10,137 | 3,417 2.99 | 90.14

* LE events correctly classified with > 95% efficiency

* ~0.4% mis-classification rate of background frames as containing LE events, and could be

further reduced with a higher-level selection

Inference time is ~5ms for a 2.25ms image = x2 off what might be a reasonable goal, assuming a

200-fold parallelization (200 images/2.25 ms/module)

*Added advantage: 98% of NB ROIs are empty, so inference stage could be skipped, gaining x50

in classification rate!

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019
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Case study 2: Down-selection, frame-by-frame classification

Input (64, 64, 1)

Smaller input images help! T T e
- output: | (None, 64, 64, 32)
What about smaller networks?

input: | (None, 64, 64, 32)
output: | (None, 32, 32, 32)

max_pooling2d_1: MaxPooling2D

Consider smaller CNN, “CNN_s”

input: (None, 32, 32, 32)

dropout_1: Dropout
Po Po output: | (None, 32, 32, 32)

input: (None, 32, 32, 32)
output: (None, 32768)

flatten_1: Flatten

input: | (None, 32768)

dense_l: Dense

output: (None, 8)

input: None, 8
dense_2: Dense P ¢ )

output: | (None, 3)
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Case study 2: Down-selection, frame-by-frame classification

Input (64, 64, 1)

Smaller input images help! T T e
- “ | output: | (None, 64, 64, 32)
What about smaller networks?

input: | (None, 64, 64, 32)
max_pooling2d_1: MaxPooling2D

. output: | (None, 32, 32, 32)
Consider smaller CNN, “CNN_s”
J 1D . input: (None, 32, 32, 32)
. iropout_1: Dropoul
Train Test Accuracy (%) Inference re PO I output: | (None, 32, 32, 32)

Shmple Size Size eLe | emrp | Time (ms)

NB 12,023 | 4,027 (| 99.53 ) i 0.12 mput- | (None, 32, 32, 32)
LE 12,050 | 3,970 W 94.48 151 (C1.6+01 ) flatten_1: Flatten ou:;,u,: (None, 32768)
HE 10,137 | 3,417 3.63 . | 90.22 |

input: | (None, 32768)
dense_l: Dense

Comparable efficiencies as with vggl16b (64x64). R
>3x reduction in inference time = online classification -

is possible for 200-fold parallelization e 27
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Online vs. real-time implementation: Considerations for DUNE

above ground
in South Dakota batch

~few Tbps

40 Tbps real-time or
RSt batch processing

1 mile underground
in South Dakota

detector

[DUNE TDR, in preparation]

off-site permanent

data storage and offline
processing in Illinois,
and international sites

Online implementation,
e.g.in GPU:

GPU advantages: High
computational density,
level of programmability,
data-parallelism, flexibility

Downsides: Long-term
operation reliability and
power utilization,
especially underground
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Online vs. real-time implementation: Considerations for DUNE

above ground
in South Dakota batch

processing off-site permanent
data storage and offline

100 Gbps ge and >
_________ *= . — - =>» processing in Illinois,
and international sites

~few Tbps

40 Tbps real-time or
RSt batch processing

1 mile underground
in South Dakota

detector

[DUNE TDR, in preparation]

Real-time implementation,
in FPGA:

FPGA: power-aware platform for CNN
acceleration

Concerns for application: resource constrains
given network size, input image size are large

FPGA advantages: power-
efficiency enables upstream
implementation, deterministic

Downsides: Ease of
programmability, resource
constraints
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Convolutional Layers

Convolutional layers are the most
computational intensive part in CNNs

— 18%
® Stage 1
® Stage?

Stage 3
® Stage 4
® Stage5

Stage FC

Distribution of floating-point operations
per stage in vggl6b

C—1 C—=1F=1F-1

c=0 c=0 x=0y=0

Input Image Filter Bank Output Feature Map
=
=)
[J]
=

«—— width —— 3
30
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Accelerating CNN's for real-fime inference

* Exploring CNN acceleration using a
customizable and efficient hardware Xilinx ZyngMP UltraScale+
accelerator design for the various layers of XCZU9EG
CNN, utilizing High Level Synthesis (HLS)-
based design flow

* Flexibility for optimization (processing time,
efficiency, resource utilization)

[Studies and results forthcoming in IEEE proceedings] 31
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Balance of
Computation and
Communication

Carefully design the algorithm to reuse data
as much as possible, thus reducing
expensive memory transfers from and to
off-chip DRAM

Input Image

Filters Bank

Output Map

32
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Filters Bank
Input Image

BO'O nce Of -/ Output Map
Computation and
Communication o

Filters Bank
. . . Input Image
TGIlorlng P”VOTe Output Map
Local Memory
Chunk done
Both inputs and weights are divided in
chucks and the computation is done
only with the on-chip copy of the data
Loaded Chunk —
Loaded Filters
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Accelerator structure: Highly-configurable accelerator

Patch Extractor
Input PLM 3Xx3
E_? Prefetch Engine 5X5
Multiply
Accumulators
A [l Output PLM
1x1M H H
i HHHJ i ‘HH}U
Weights PLM o o >
— W — = =
= =
I | = =
l:% Prefetch Engine . . ﬁ [I’I]'I]'D ﬁ [H]'[I'D
m = =l
Allows exploration of large (in size) networks (e.g. vgg16) 34
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Performance

Implemented customized CNN_s on

(1) FPGA accelerator and Platform Model Time | Power | Energy Efficiency

(2) in C on ARM Cortex-A53 CPU as a reference (s) W) (img/s/W)

for performance and power analysis. ARM C-A53 | CNN_s | 0.0855 | 2871 4.074
FPGA CNN_s | 0.0511 1.110 17.630

Performance when leveraging FPGA for
acceleration™:

1.7x average speedup for inference
2.6x more power efficient w.r.t software implementation on ARM Cortex A53

*Note: Accelerator designed for optimization of even larger networks.
Much higher energy efficiency is achieved for larger networks than CNN_s,
but resource allocation is an issue = more communication = longer latency
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Summary

Neutrino detection involves large, uniform detector volumes, often sparsely occupied with activity,
where neutrino interactions can happen anywhere within the detector volume.

- Ideal for applications of image analysis, CNNs, deep CNN:s...

In recent years, the size and resolution of data from neutrino detectors has been growing drastically.
Current technologies, most notably LArTPC’s (DUNE) are faced with major data-processing challenges.

Fast ML needs are increasing for offline analysis.
With sufficient acceleration, real-time ML could prove advantageous for long-term operating detectors.

Ongoing efforts demonstrate viability of CNN-based real-time/online triggering in DUNE and invite
further exploration of such application.




Thank you!
Questions?
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LE ROIs

Noise ROIs
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Entries (normalized)

Pixel ADC value distribution

108 E ! Low energy supernova neutrino image
E E High energy neutrino image
5 n
10 EE E Background and noise only image
— 1
104 = E nnnnnnn Noise cut
§ ------- Region-of-interest (ROI) cut
10° &=
100
10 E
! |
300 400 500 600 700 1000 2000 3000 4000
Pixel ADC

Noise removal cut: dashed gray line, at 520 ADC
ROI cut: dashed black line, at 560 ADC

39



GPU INFERENCE RESULTS USING METHOD 2, OBTAINED WITH THE
MLP_1 NETWORK (TRAINING FOR 65 EPOCHS AND LEARNING RATE SET

TO 2 x 10™4).
Train Test Accuracy (%) Inference
Sample Size Size ENB €ELE egge | Time (ms)
NB 12,023 | 4,027 | 99.50 | 0.45 0.05
LE 12,050 | 3,970 | 4.48 89.70 | 5.82 1.0£0.08
HE 10,137 | 3,417 7.29 13.08 | 79.63

GPU INFERENCE RESULTS USING METHOD 2, OBTAINED WITH THE
RESNETS0 NETWORK (TRAINING FOR 30 EPOCHS AND LEARNING RATE

SET TO 1075).

Train Test Accuracy (%) Inference
Sample Size Size ENB €ELE egge | Time (ms)
NB 12,023 | 4,027 | 99.28 0.55 0.17
LE 12,050 | 3,970 3.55 88.89 7.56 15.34+£1.2
HE 1D,137 | 3,417 2.84 15.13 | 82.03
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Alternate classification scheme:

Accuracy (%)
NBcut | enp | €LE | €HE | €HE:nnbar | €HE:ndk | €HE:atm | €HE:cosmic
0.1 0.73 88.18 | 96.12 99.98 99.29 092.24 092.57
0.01 0.14 83.27 | 95.68 99.98 99.18 91.01 092.46
0.001 0.033 | 77.11 05.21 99.98 99.05 890.76 092.23
0.0001 0.011 69.74 | 94.61 99.97 08.74 88.39 91.71
0.00001 0.002 | 60.73 | 93.79 99.95 08.22 86.61 90.97
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CPU Accelerator
| MFLOP || Time | GFLOPS || Time | GFLOPS | Speedup

convl_1 [ 86.7 2.17 0.04 0.21 0.41 10.31
convl 2 | 3699.4 | 51.05 | 0.07 3.66 1.01 13.95
conv2_1 | 1849.7 | 25.24 | 0.07 1.82 1.02 13.87
conv2 2 | 3699.4 || 51.27 0.07 3.46 1.07 14.82
conv3_1 | 1849.7 | 24.84 | 0.07 1.72 1.08 14.44
conv3_2 | 3699.4 | 50.85 | 0.07 3.37 1.10 15.09
conv3_3 | 3699.4 | 51.24 | 0.07 3.37 1.10 15.20
conv4_1 | 1849.7 || 25.23 | 0.07 1.68 1.10 15.02
conv4_2 | 3699.4 | 50.68 | 0.07 3.34 1.11 15.17
conv4_3 | 3699.4 | 50.68 | 0.07 3.34 1.11 15.17
conv5_1 | 9248 | 12.46 | 0.07 0.84 1.10 14.83
conv5_2 | 9248 | 12.46 | 0.07 0.84 1.10 14.83
conv5_3 | 9248 | 12.46 | 0.07 0.84 1.10 14.83
|| Time (s) | Power (W) | PET (Img/s/W)

ARM A53 || 420 32 |

Xilinx XCZU9EG FPGA || 28 0.8 |

Xilinx ZyngMP UltraScale+
XCZU9EG

15x average speedup

45x more power efficient
w.r.t software implementation
on ARM Cortex A53
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