(Fast) Machine Learning for Neutrinos

Georgia Karagiorgi, Columbia University

Fast Machine Learning IRIS-HEP Blueprint Workshop

Sep. 10-13, 2019 at Fermi National Lab

(Fast) Machine Learning for Neutrinos

This talk:

- Motivate need for *fast* ML for neutrinos
- Deep Underground Neutrino Experiment (DUNE) as application case study, *based on collaborative work with Y. Jwa, G. Di Guglielmo, and L. Carloni, Columbia U.*

Neutrino detection 49 years ago...

...and neutrino detection today!

One of the first neutrino events observed in the MicroBooNE Liquid Argon Time Projection Chamber

- Different detector technology
- Similar images
- Automated, often continuous readout
 → lots and lots of data!

Machine Learning for Neutrinos

The data outputs of many neutrino detectors can be viewed as **images**, which invites the application of **computer-vision techniques** for data analysis, and event identification.

Alexander Himmel, Adam Aurisano, Kazuhiro Terao & Taritree Wongjirad

Nature 560, 41–48 (2018) Download Citation 🕹

"...by taking advantage of **accelerated computing** on GPUs, these CNNs can run much faster than the conventional algorithms used by previous neutrino experiments. This makes them **ideally suited to the task of real-time image classification and object detection**."

"(Fast) Machine Learning for Neutrinos" or "Acceleration of CNNs for real-time inference"

Special case: LArTPC Technology

One of the first neutrino events observed in the MicroBooNE Liquid Argon Time Projection Chamber

LArTPC operating principles

• particle-imaging detector

٠

- stereoscopic "video capture" of activity within detector volume with sub-mm spatial resolution
 - high-resolution "video" streams:
 - O(10) megapixel per
 O(1) ms for a volume the size of ~a small room
 - Usually 12-bit resolution

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019

MicroBooNE

"school bus"-sized detector

Three charge sensing planes, provide three 2D projected views of detector volume

625 frames per plane per second, ~2700 x 3200 = 8.6M pixels each

Machine Learning @ MicroBooNE

MicroBooNE is pioneering machine learning applications for LArTPCs – offline analysis.

See, e.g.:

[1] "Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber," Phys. Rev. D99 (2019) No. 9, 092001.

[2] "Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber," JINST 12 (2017) No. 03, P03011. 10

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019

Machine Learning @ MicroBooNE

MicroBooNE is pioneering machine learning applications for LArTPCs – offline analysis.

> CNNs can be trained to do particle classification, particle and neutrino detection, and neutrino event identification [2].

See, e.g.:

[1] "Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber," Phys. Rev. D99 (2019) No. 9, 092001.

[2] "Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber," JINST 12 (2017) No. 03, P03011. 11

Application Case: DUNE (~500x MicroBooNE!)

Sanford Underground Research Facility, South Dakota

Fermi National Accelerator Laboratory, Illinois

4 neutrino detector modules 1 mile underground

800 miles/1300 km

Primary physics goals of DUNE:

- Leptonic CP violation and neutrino mass hierarchy
- Off-beam rare event searches

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019

DUNE rare event searches

Interaction Type	Event Type	Expected Rate	
Rare off-beam events			
Proton decay	High Energy (HE)	< 1 / year	
Neutron-antineutron oscillation	High Energy (HE)	< 1 / year	
Galactic supernova burst ^a	Low Energy (LE)	< 1 / year	
Other off-beam events			
Atmospheric neutrinos	High Energy (HE)	1200 / year	
Cosmic ray muons	High Energy (HE)	1.3×10^{6} / year	

neutrinos from nearby supernova bursts

proton decay, baryon number violation

13

Figure 1.2: Expected physics-related activity rates in a single 10 kt module.

[DUNE TDR]

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019

DUNE's Data (Selection) Challenge

High-resolution "video" streams:

- from up to 4x150 independent detector volumes
- 11.5 megapixel frames (all 3 planes) per 2.25ms
- 12-bit resolution

A total of ~40 terabits per second

100% live time continuous operation for more than a decade

DUNE's Data (Selection) Challenge

Rare event searches require **data-driven self-triggering** Data selection system must digest full data stream and identify signatures of interest.

Requires:

- Fast and efficient data processing for trigger decision (2.25 ms)
- Large buffering to hold data while decision is being made (a full drift for DUNE SP is 2.6 GB)
- Orders of magnitude more buffering and processing for a **supernova burst trigger**, which looks for correlated signatures in O(10) seconds!

DUNE signatures

Deep Underground = "quiet" environment

Single frame from high-resolution video: One of three 2D views from one of hundreds of cells in the detector

"Static" is noise and small energy deposits from radiological impurities in the detector

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019

DUNE signatures: HE events

Special challenge: neutrinos from supernova core collapse

Very low energy and small (in extent) topology, similar to radiological background activity in the detector

Need O(10⁴) background suppression, while maintaining high efficiency to a frame containing a supernova neutrino interaction

18

[simulation]

DUNE signatures: HE events

Special challenge: neutrinos from supernova core collapse

Very low energy and small (in extent) topology, similar to radiological background activity in the detector

Need O(10⁴) overall background suppression, while maintaining high efficiency to a frame containing a supernova neutrino interaction

[simulation]

ML-based data selection (trigger) in DUNE

Raw LArTPC data format ideally suited for image analysis!

E.g., **Convolutional Neural Networks (CNNs)*** could be applied for real-time image classification, using hardware acceleration (FPGA), or online in GPU or CPU.

 $``translation-invariant\ feature\ extraction$

A data selection (trigger) scheme could, e.g.,

- Work with only one projection (2D), preferably collection plane
- Down-sample and resize image if/as needed
- Classify via CNN as whether it contains an interaction of interest
- For supernova interaction-containing frames, consider them in coincidence with frames across the entire the detector over a 10 second period (higher-level data selection decision)

Case study 1: Full stream, frame-by-frame classification

Starting with raw LArTPC images, how well can a CNN classify data? Consider three classes:

background (NB)/supernova-like low energy activity (LE)/high-energy activity (HE) Train CNN (vgg16b) for classification on GPU, and test (on any given platform)

Case study 1: Full stream, frame-by-frame classification

Results obtained with vgg16b network: (600x600 input image)

	Train	Test	Accuracy (%)			Inference
Sample	Size	Size	END	ϵ_{LE}	ϵ_{HE}	Time (ms)
NB	51,100	99,000	91.45	8.49	0.06	
LE	44,900	29,800	3.17	96.83	0	(27.7 ± 8.6)
HE	52,828	67,178	6.03	3.48	90.48	

- HE events correctly classified with > 90% efficiency
- LE events correctly classified with > 95% efficiency
- ~8.5% mis-classification rate of background frames as containing LE events, but could be further reduced with a higher-level selection

Still, **inference time is ~28ms for a 2.25ms image** \rightarrow x10 off what might be a reasonable goal even with a 200-fold parallelization (200 images/2.25 ms/module)

Long inference time: A consequence of both input image size and network architecture!

Smaller input images?

Pre-processing of collection plane images for

- 1. De-noising
- 2. Region of Interest (ROI) finding
- 3. Re-sizing to 64x64

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019

Long inference time: A consequence of both input image size and network architecture!

Smaller input images?

Pre-processing of collection plane images for

- 1. De-noising
- 2. Region of Interest (ROI) finding
- 3. Re-sizing to 64x64

Results obtained with vgg16b network: (64x64 input image)

- HE events correctly classified with >90% efficiency
- LE events correctly classified with > 95% efficiency
- ~0.4% mis-classification rate of background frames as containing LE events, and could be further reduced with a higher-level selection

Inference time is ~5ms for a 2.25ms image \rightarrow x2 off what might be a reasonable goal, assuming a 200-fold parallelization (200 images/2.25 ms/module) *Added advantage: 98% of NB ROIs are empty, so inference stage could be skipped, gaining x50 in classification rate!

	Train	Test	Accuracy (%)			Inference
Sample	Size	Size	ϵ_{NB}	ϵ_{LE}	ϵ_{HE}	Time (ms)
NB	12,023	4,027 🔇	99.65	0.35	0	
NB*	12,023	293	79.9	19.8	0.34	(5.0 ± 0.3)
LE	12,050	3,970	3.78	95.04	1 18	
HE	10,137	3,417	2.99	6.88	90.14	

Smaller input images help! What about smaller networks?

Consider smaller CNN, "CNN_s"

Smaller input images help! What about smaller networks?

Consider smaller CNN, "CNN s"

	Train	Test	Accuracy (%)			Inference
Sample	Size	Size	END	ϵ_{LE}	ϵ_{HE}	Time (ms)
NB	12,023	4,027 (99.53	0.47	0.12	
LE	12,050	3,970	4.01	94.48	1.51	(1.6 ± 0.1)
HE	10,137	3,417	3.63	6.15	90.22	

Comparable efficiencies as with vgg16b (64x64). >3x reduction in inference time \rightarrow online classification is possible for 200-fold parallelization

Online vs. real-time implementation: Considerations for DUNE

Online implementation, e.g. in GPU:

GPU advantages: High computational density, level of programmability, data-parallelism, flexibility

Downsides: Long-term operation reliability and power utilization, especially underground

[DUNE TDR, in preparation]

Online vs. real-time implementation: Considerations for DUNE

Real-time implementation, in FPGA:

FPGA: power-aware platform for CNN acceleration

Concerns for application: resource constrains given network size, input image size are large

FPGA advantages: powerefficiency enables upstream implementation, deterministic

Downsides: Ease of programmability, resource constraints

Convolutional Layers

Convolutional layers are the most computational intensive part in CNNs

Distribution of floating-point operations per stage in vgg16b

$$\mathbf{Y}_{k,i,j} = \sum_{c=0}^{C-1} \mathbf{X}_{c} * \mathbf{W}_{k,c} + B_{k} = \left[\sum_{c=0}^{C-1} \sum_{x=0}^{F-1} \sum_{y=0}^{F-1} \mathbf{X}_{c,i+x-\frac{F}{2},j+y-\frac{F}{2}} \cdot \mathbf{W}_{k,c,x,y} \right] + B_{k}$$

Accelerating CNN's for real-time inference

- Exploring CNN acceleration using a customizable and efficient hardware accelerator design for the various layers of CNN, utilizing High Level Synthesis (HLS)based design flow
- Flexibility for optimization (processing time, efficiency, resource utilization)

Balance of Computation and Communication

Carefully design the algorithm to reuse data as much as possible, thus reducing expensive memory transfers from and to off-chip DRAM

Balance of Computation and Communication

Tailoring Private Local Memory

Both inputs and weights are divided in chucks and the computation is done only with the on-chip copy of the data

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019

Accelerator structure: Highly-configurable accelerator

Allows exploration of large (in size) networks (e.g. vgg16)

Performance

Implemented customized CNN_s on
(1) FPGA accelerator and
(2) in C on ARM Cortex-A53 CPU as a reference for performance and power analysis.

Platform	Model	Model Time		Energy Efficiency
		(s)	(W)	(img/s/W)
ARM C-A53	CNN_s	0.0855	2.871	4.074
FPGA	CNN_s	0.0511	1.110	17.630

Performance when leveraging FPGA for acceleration*:

1.7x average speedup for inference2.6x more power efficient w.r.t software implementation on ARM Cortex A53

**Note:* Accelerator designed for optimization of even larger networks. Much higher energy efficiency is achieved for larger networks than CNN_s, but resource allocation is an issue \rightarrow more communication \rightarrow longer latency

Neutrino detection involves large, uniform detector volumes, often sparsely occupied with activity, where neutrino interactions can happen anywhere within the detector volume.

→ Ideal for applications of image analysis, CNNs, deep CNNs...

In recent years, the **size and resolution of data** from neutrino detectors has been growing drastically. Current technologies, most notably **LArTPC's (DUNE)** are faced with **major data-processing challenges**.

Fast ML needs are increasing for **offline** analysis. With sufficient acceleration, **real-time** ML could prove advantageous for long-term operating detectors.

Ongoing efforts demonstrate **viability of CNN-based real-time/online triggering in DUNE** and invite further exploration of such application.

Thank you! Questions?

Georgia Karagiorgi, Columbia @ Fast Machine Learning - 2019

HE ROIs

LE ROIs

Noise ROIs

Pixel ADC value distribution

Noise removal cut: dashed gray line, at 520 ADC ROI cut: dashed black line, at 560 ADC

GPU inference results using Method 2, obtained with the MLP_1 network (training for 65 epochs and learning rate set to 2×10^-4).

	Train	Test	Accuracy (%)			Inference
Sample	Size	Size	ϵ_{NB}	ϵ_{LE}	ϵ_{HE}	Time (ms)
NB	12,023	4,027	99.50	0.45	0.05	
LE	12,050	3,970	4.48	89.70	5.82	1.0 ± 0.08
HE	10,137	3,417	7.29	13.08	79.63	

GPU inference results using Method 2, obtained with the ResNet50 network (training for 30 epochs and learning rate set to $10^{-}5).$

	Train	Test	Accuracy (%)			Inference
Sample	Size	Size	ϵ_{NB}	ϵ_{LE}	ϵ_{HE}	Time (ms)
NB	12,023	4,027	99.28	0.55	0.17	
LE	12,050	3,970	3.55	88.89	7.56	15.3 ± 1.2
HE	10,137	3,417	2.84	15.13	82.03	

Alternate classification scheme:

	Accuracy (%)						
NB cut	ϵ_{NB}	ϵ_{LE}	ϵ_{HE}	$\epsilon_{HE:nnbar}$	$\epsilon_{HE:ndk}$	$\epsilon_{HE:atm}$	$\epsilon_{HE:cosmic}$
0.1	0.73	88.18	96.12	99.98	99.29	92.24	92.57
0.01	0.14	83.27	95.68	99.98	99.18	91.01	92.46
0.001	0.033	77.11	95.21	99.98	99.05	89.76	92.23
0.0001	0.011	69.74	94.61	99.97	98.74	88.39	91.71
0.00001	0.002	60.73	93.79	99.95	98.22	86.61	90.97

		CPU		Accelerator		
	MFLOP	Time	GFLOPS	Time	GFLOPS	Speedup
conv1_1	86.7	2.17	0.04	0.21	0.41	10.31
conv1_2	3699.4	51.05	0.07	3.66	1.01	13.95
conv2_1	1849.7	25.24	0.07	1.82	1.02	13.87
conv2_2	3699.4	51.27	0.07	3.46	1.07	14.82
conv3_1	1849.7	24.84	0.07	1.72	$1.08 \\ 1.10 \\ 1.10$	14.44
conv3_2	3699.4	50.85	0.07	3.37		15.09
conv3_3	3699.4	51.24	0.07	3.37		15.20
conv4_1	1849.7	25.23	0.07	1.68	$1.10 \\ 1.11 \\ 1.11$	15.02
conv4_2	3699.4	50.68	0.07	3.34		15.17
conv4_3	3699.4	50.68	0.07	3.34		15.17
conv5_1	924.8	12.46	0.07	0.84	1.10	14.83
conv5_2	924.8	12.46	0.07	0.84	1.10	14.83
conv5_3	924.8	12.46	0.07	0.84	1.10	14.83

	Time (s)	Power (W)	PET (Img/s/W)
ARM A53	420	3.2	0.001
Xilinx XCZU9EG FPGA	28	0.8	0.045

Xilinx ZynqMP UltraScale+ XCZU9EG

15x average speedup45x more power efficientw.r.t software implementationon ARM Cortex A53