

Neuromorphic Photonics

Liane Bernstein, Alexander Sludds, Ryan Hamerly, Dirk Englund Quantum Photonics Group, MIT Department of EECS

Deep Neural Networks: Current Limitations

0000	Value network b Tree evalu	uation from value net C	Free evaluation from rollouts				
	Model	Hardware	Power (W)	Hours	kWh·PUE	CO ₂ e	Cloud compute cost
	Transformer _{base}	P100x8	1415.78	12	27	26	\$41-\$140
C	Transformer _{big}	P100x8	1515.43	84	201	192	\$289-\$981
Ċ	ELMo	P100x3	517.66	336	275	262	\$433-\$1472
3	$BERT_{base}$	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
	BERT_{base}	TPUv2x16		96			\$2074-\$6912
-	NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
	NAS	TPUv2x1		32,623			\$44,055-\$146,848
	GPT-2	TPUv3x32		168			\$12,902-\$43,008
Y							

[Strubell, E. et al., arXiv 2019]

- Training: 3 weeks for 340 million training steps
- During gameplay: 1,920 CPUs, and 280 GPUs

[google.com/about/datacenters/gallery/]

Energy consumption and latency

Deep Neural Networks: Inference

X

Matrix-vector multiplication is key!

Matrix-matrix multiplication is key!

Energy Consumption in DNNs

Operations required for matrix multiplication:

Multiplication

Multiply-accumulate (MAC)

- Addition
- Memory access

$$Y = A \cdot X = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix}$$

DRAM access consumes ~100-1000x more energy than the MAC

Specialized Hardware for DNNs

- GPU, TPU, ASICs (Eyeriss*), etc.
- Optimized memory hierarchy for data reuse in matrix mult. & conv.

*[Sze, V. et al., *Proc. IEEE* 2017]

Hardware optimized for DNNs/CNNs with 256 processing elements

State-of-the-art chips for NNs*:

- NVIDIA ~2pJ/MAC
- TPU (Google) ~1pJ/MAC
- Eyeriss ~1pJ/MAC

*including memory access

New Paradigm: Photonics

Low energy consumption

- Passive data transmission
- Passive fan-out
- Multiplication

news.mit.edu

High speed

- Modulators operate at 10s of GHz
- Data transmission at the speed of light

[Xiao, Y. et al., ACP 2018]

codeseeder.com

Past Work: Optical Neural Network (All On-Chip)

- Fast
- Very low energy
- But requires (N²) phase shifters

Difficult to scale beyond 100s of neurons

[*Shen, Y., *Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., Englund, D., and Soljacic, M., Nature Photonics 2017]

New Approach: HD-ONN

Want to achieve *scalable* ONN with combined advantages of:

- Free-space optics
- Nanophotonics

[Hamerly, R., Bernstein, L., Sludds, A., Soljacic, M., Englund, D., PRX 2019]

Homodyne Detection: Optical Multiplication

[Hamerly, R., Bernstein, L., Sludds, A., Soljacic, M., Englund, D., *PRX* 2019]

Optical multiplication + copying + summation

Optical Matrix-Matrix Multiplication

[Hamerly, R., Bernstein, L., Sludds, A., Soljacic, M., Englund, D., PRX 2019]

 A_{1N}

 A_{11}

A_{1N}

A_{MN}

A_{M1}

Optical Matrix-Matrix Multiplication

M * B multiplications per clock cycle

For N * M * B mults.:

- N clock cycles
- **B** + **M** transmitters
- **B** * **M** receiver pixels

[Hamerly, R., Bernstein, L., Sludds, A., Soljacic, M., Englund, D., PRX 2019]

Theoretical Lower Energy Bound (Fundamental Limit)

- Fundamental limit of optics: error due to shot noise
- Simulations of classification error on MNIST dataset
- Lowest energy cut-off \equiv 2X canonical error rate

Theoretical Lower Energy Bound (Practical)

Comparison of HD-ONN with Electronic NN Hardware

Energy and time required for matrix multiplication*

*includes memory access cost!

Other Considerations

Precision

- Shot noise optical input power
- Optical crosstalk

– packing of inputs and detectors

Photons / MAC

Area

- Detector pixel i.e. neuron: \sim (20 x 20) μ m²
- Transmitter: <50 μm
- Optics (lenses, beamsplitter)

20

Conclusions and Outlook

- Neural networks currently limited by energy consumption and speed
- Electronic accelerators reaching the limits of digital CMOS
- Optics provides new paradigm for neural networks and applications requiring large matrix multiplication
- Noise in analog regime (applications must be fault-tolerant)

Acknowledgements

MIT Quantum Photonics Group

- Prof. Dirk Englund
- Dr. Ryan Hamerly
- Alexander Sludds
- Lamia Ateshian

Collaborators

- Marin Soljačić
- Charles Roques-Carmes
- Joel Emer
- Vivienne Sze
- Yannan Wu
- Angshuman Parashar

Funding

