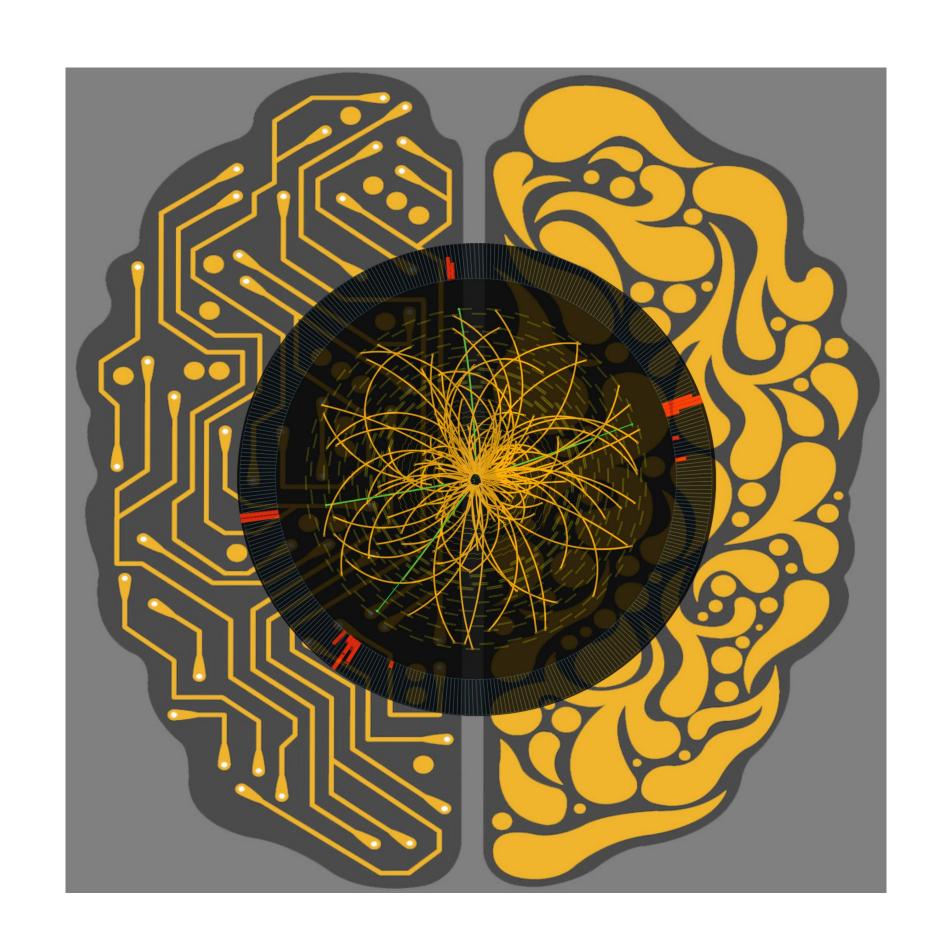


FPGA-accelerated machine learning inference as trigger and computing solutions in particle physics

Mia Liu FNAL

Fast Machine Learning Workshop

September.11.2019



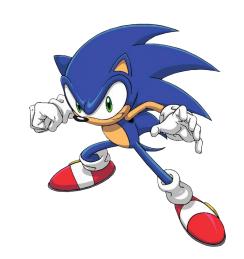
Big data challenge in particle physics

an example:

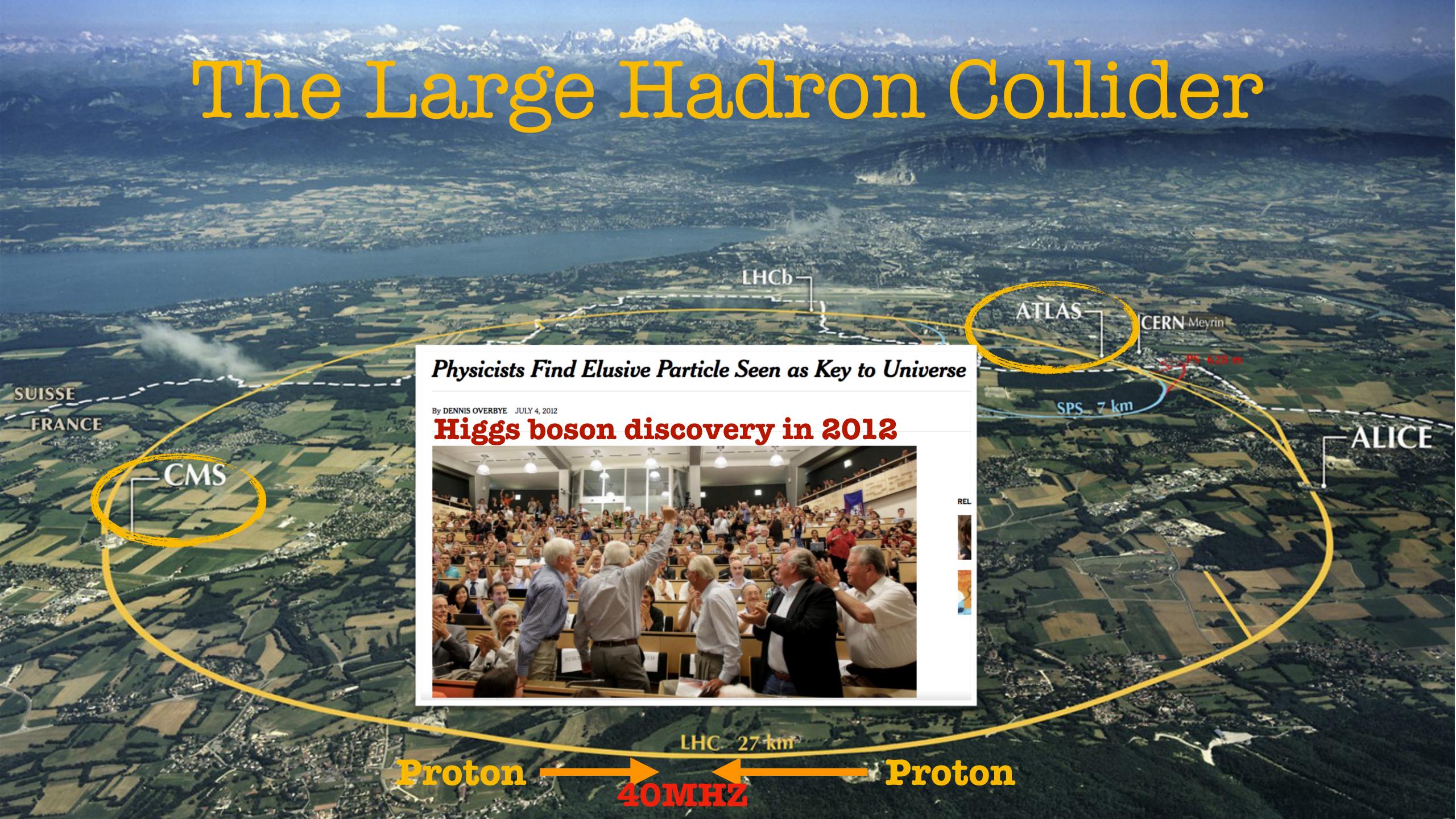
Trigger and computing challenges@LHC: speed, volume, complexity Potential machine learning solutions

SONIC paper

Proof of concept study with Brainwave: Heterogenous computing for particle physics

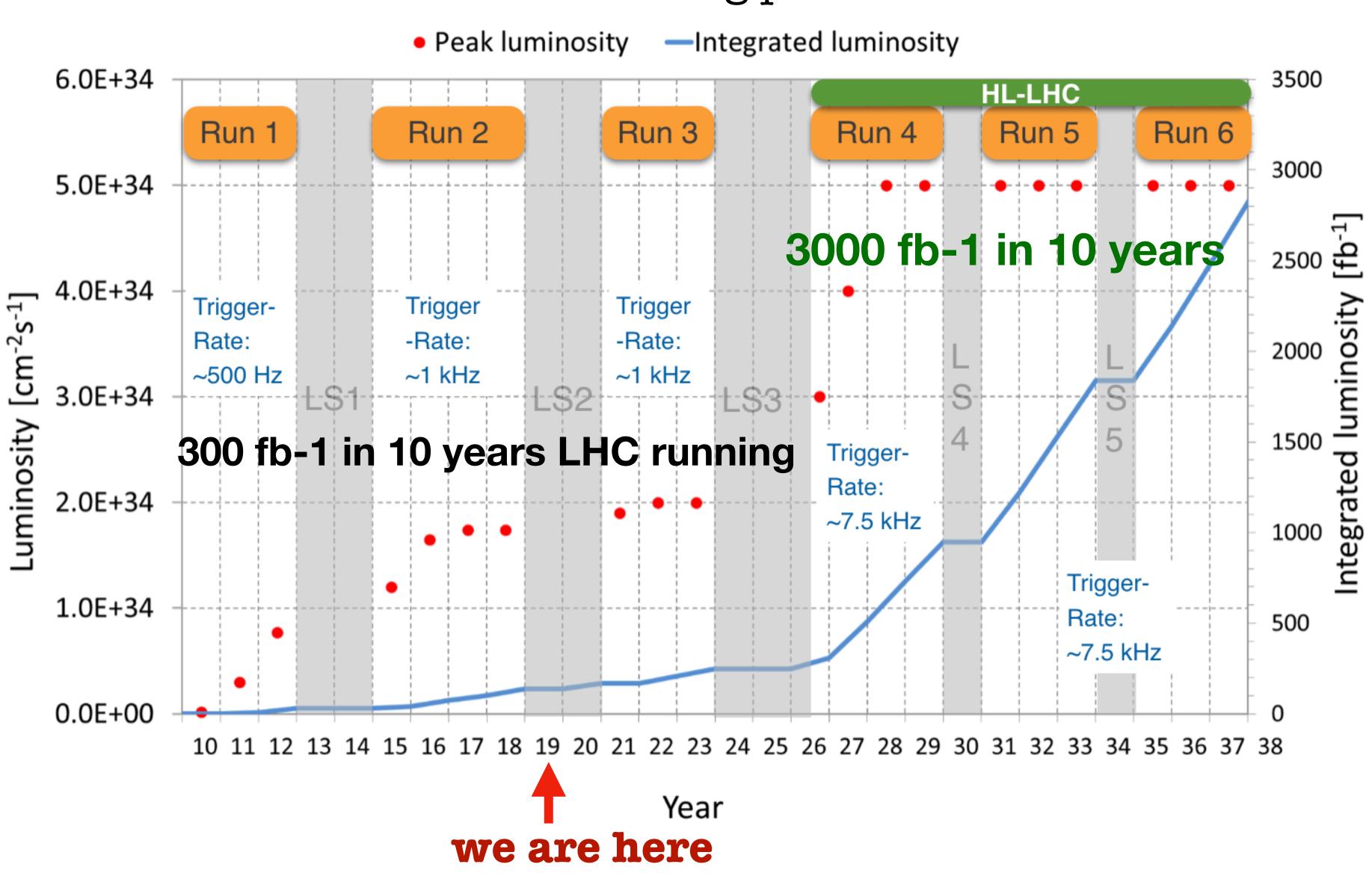


Outlook& takeaways



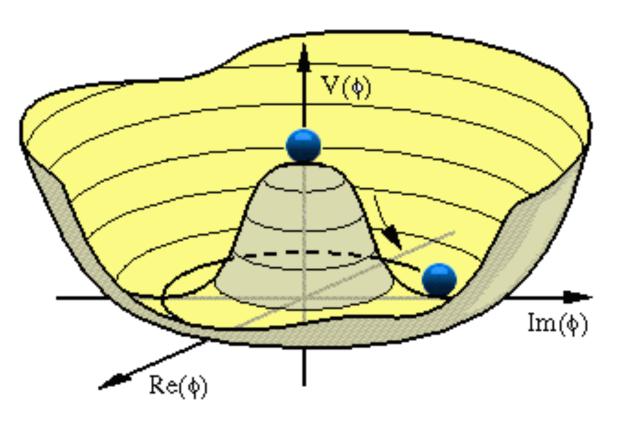
LHC running plan

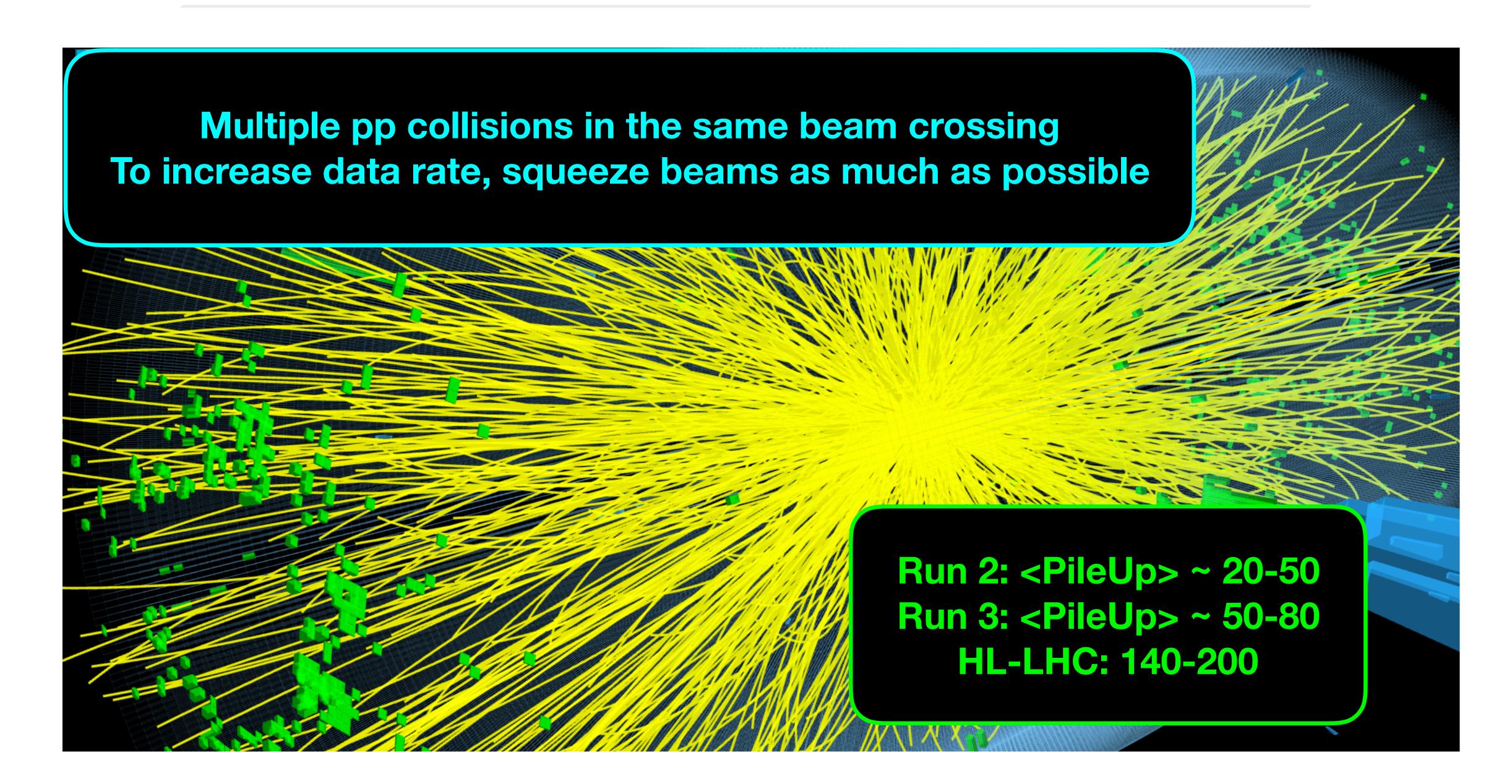
Fermilab

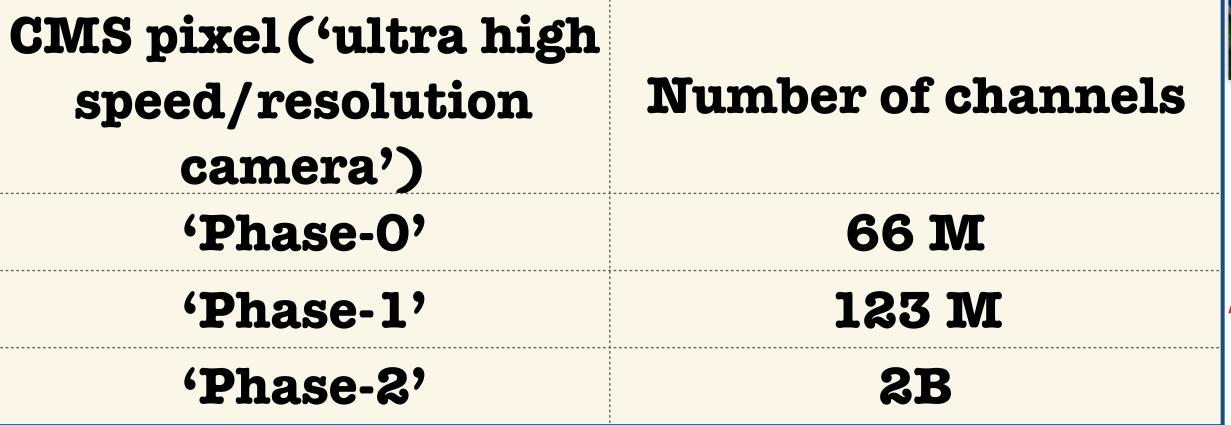


We need the full dataset

example: Study the Higgs boson potential





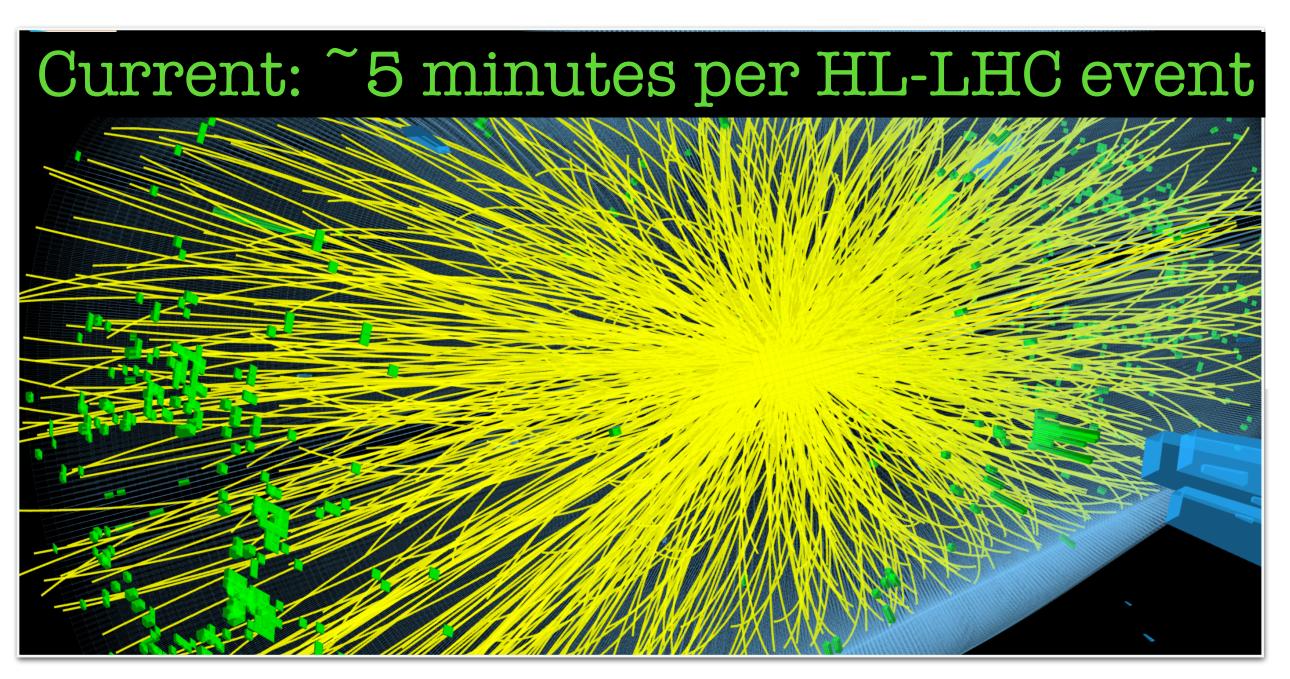


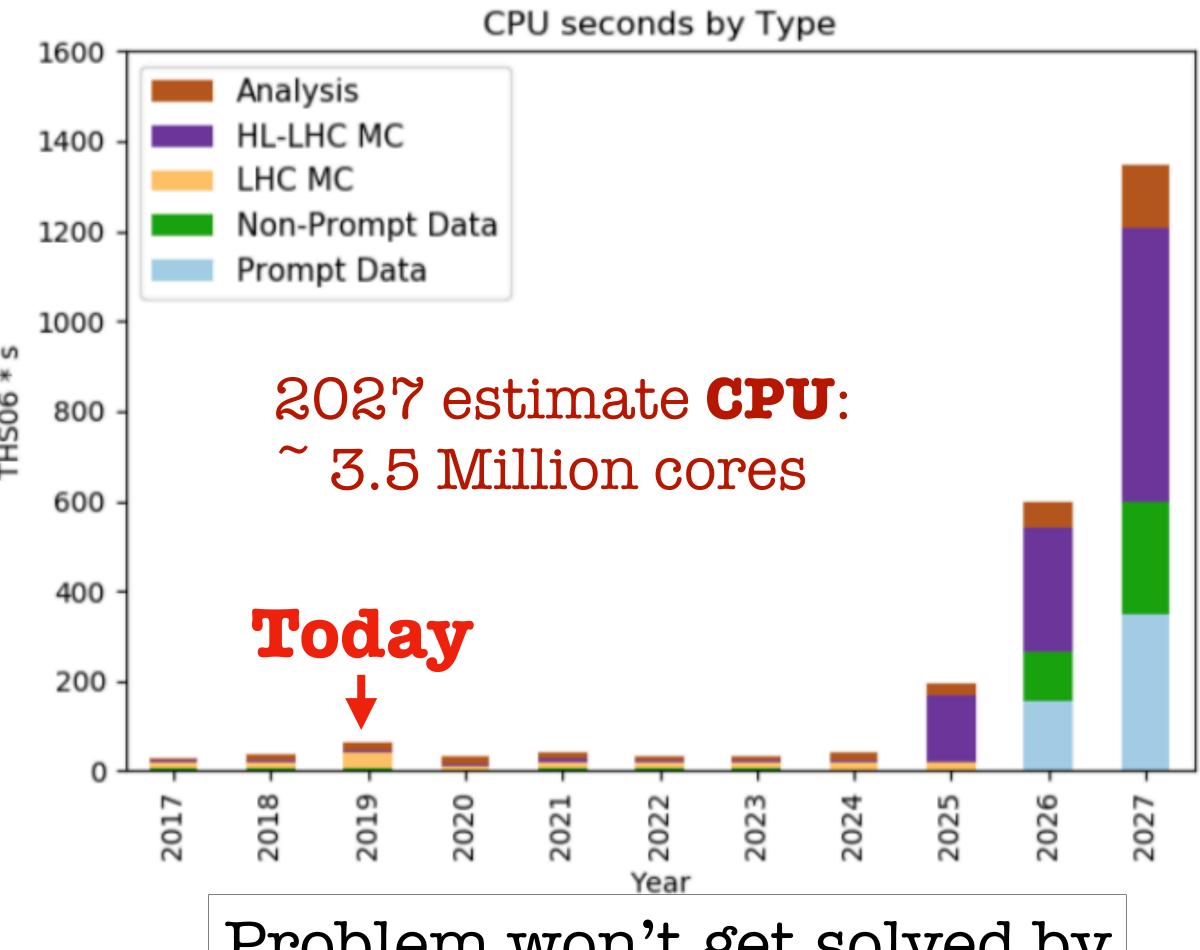
- Building faster detectors with better resolution
- Trigger& computing challenges@HL-LHC: machine learning solutions?

INCREASED DATA VOLUME AND COMPLEXITY

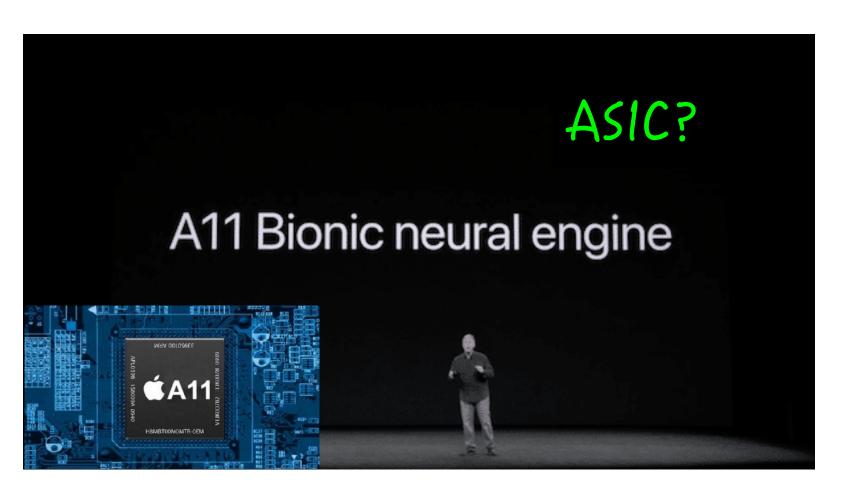
10X more data at the High-luminosity LHC

Event complexity



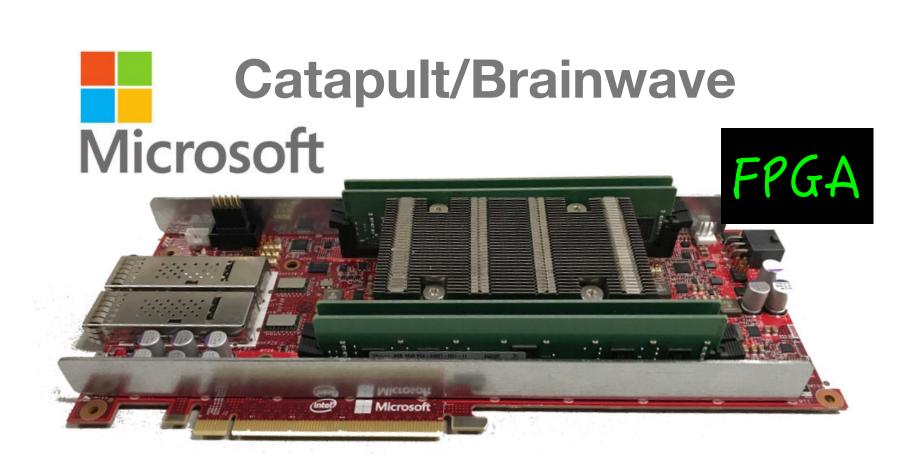


Problem won't get solved by itself: Moore's Law continues
...but Dennard Scaling fails



Specialized coprocessor hardware for machine learning:

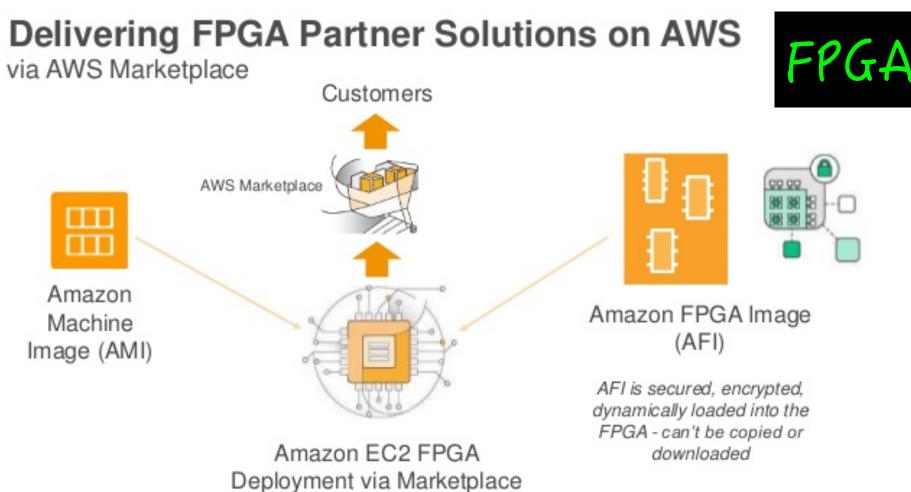
flexibility vs speed (efficiency)



INTEL® FPGA ACCELERATION HUB

The Intel® Xeon® Acceleration Stack for FPGAs is a robust framework enabling data center applications to leverage an FPGA's potential to increase





Option 1

re-write physics algorithms for new hardware

Language: OpenCL, OpenMP,TBB, HLS, ...?

Hardware: FPGA, GPU

Option 2

re-cast physics problem as a machine learning problem

Language: C++, Python (TensorFlow, PyTorch,...)

Hardware: FPGA, GPU, ASIC

e.g. track reconstruction

Option 1: Parallelized and Vectorized Tracking Using Kalman Filters

Option 2: Tracking using CNN and Graph Networks: e.g. HEP.TrkX project.

Advantages:

- Algorithms expressed as matrix multiplications: intrinsically parallelizable
- Take advantage of co-processors optimized for ML fast inference Caveat: challenges of solving our reconstruction problems with NNs.

PROOF OF CONCEPT: SONIC

Way · Dustin Werran · Zhenbin Wu

Services for Optimized Network Inference on Co-processors

FPGA-accelerated machine learning inference as a service for particle physics computing

Javier Duarte · Philip Harris · Scott Hauck · Burt Holzman · Shih-Chieh Hsu · Sergo Jindariani · Suffian Khan · Benjamin Kreis · Brian Lee · Mia Liu · Vladimir Lončar · Jennifer Ngadiuba · Kevin Pedro · Brandon Perez · Maurizio Pierini · Dylan Rankin · Nhan Tran · Matthew Trahms · Aristeidis Tsaris · Colin Versteeg · Ted W.

Question:

How do we help with physics event data processing model with industry developments in co-processors?

Focus on speeding up the inference.

Catapult/Brainwave



Fermilab

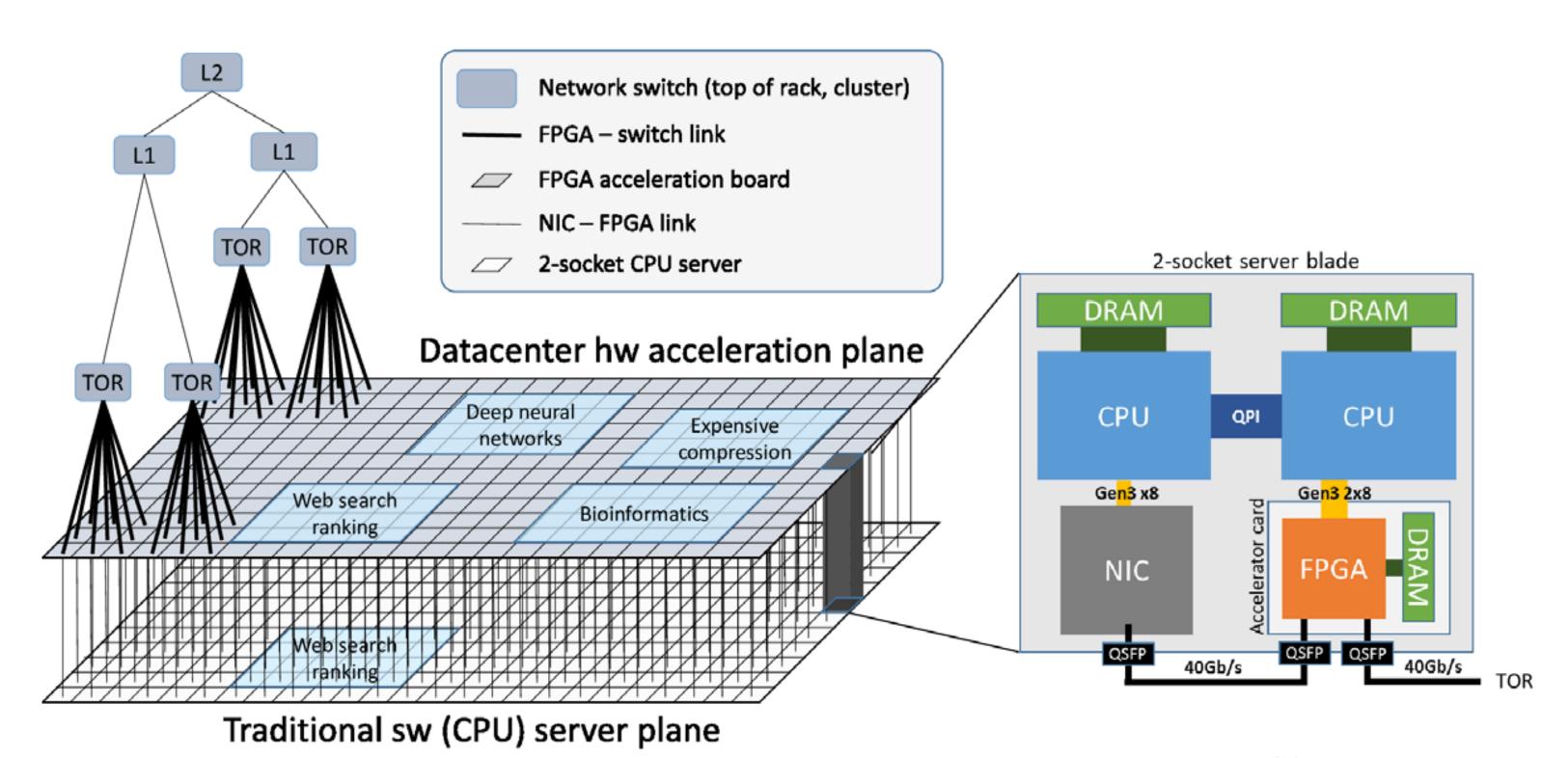
 Proof of concept: Top tagging/neutrino image classification on Brainwave

• Implementation as service in CMSSW in non-disruptive way.

Speed and data throughput performance

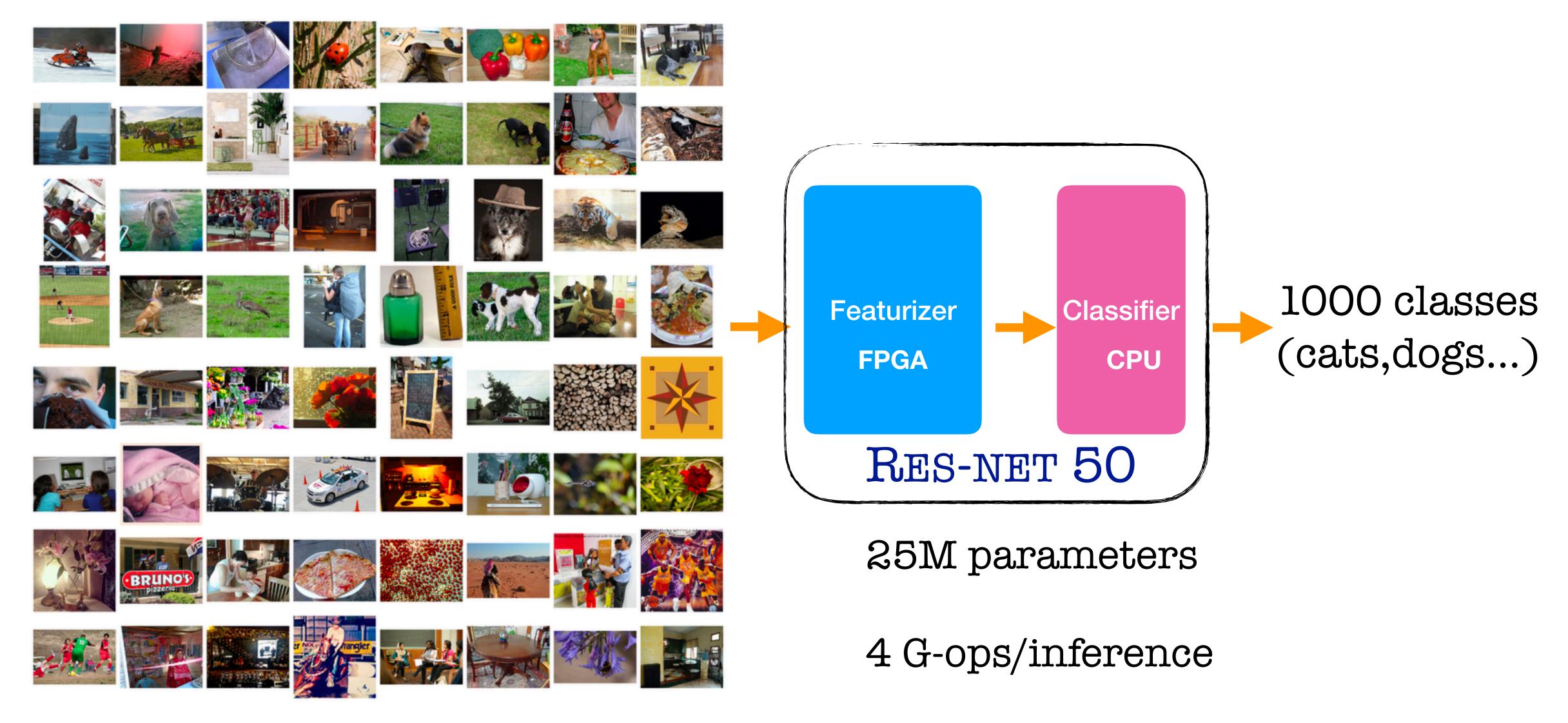
‡ Fermilab

BRAINWAVE

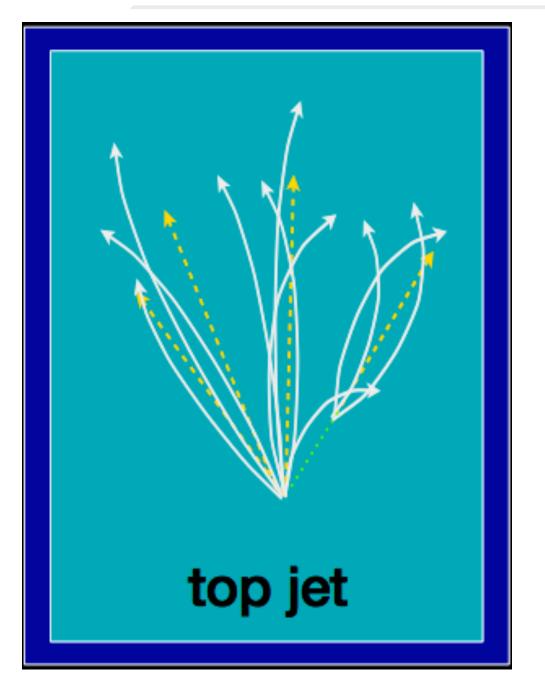


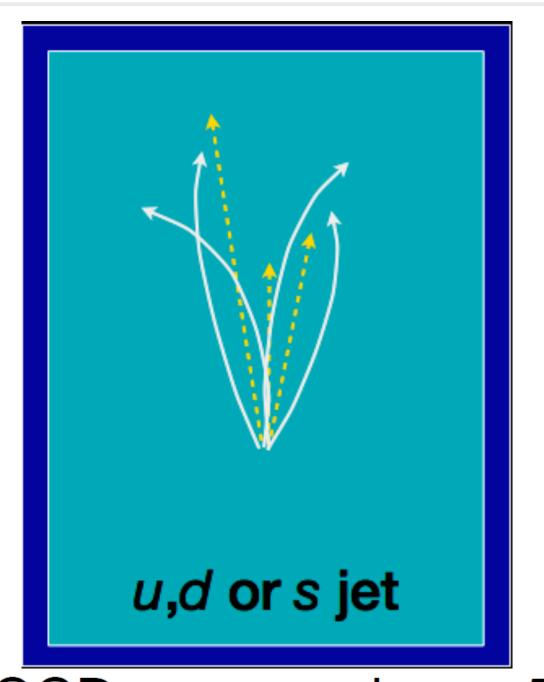
- Provides a full service at scale (more than just a single co-processor)
- Multi-FPGA/CPU fabric accelerates both computing and network
- Models supported:
 - ResNet50, ResNet152, DenseNet121, VGGNet 16
 - Weight retuning available

A PHYSICS CASE: JET TAGGING WITH RES-NET 5013



ImageNet

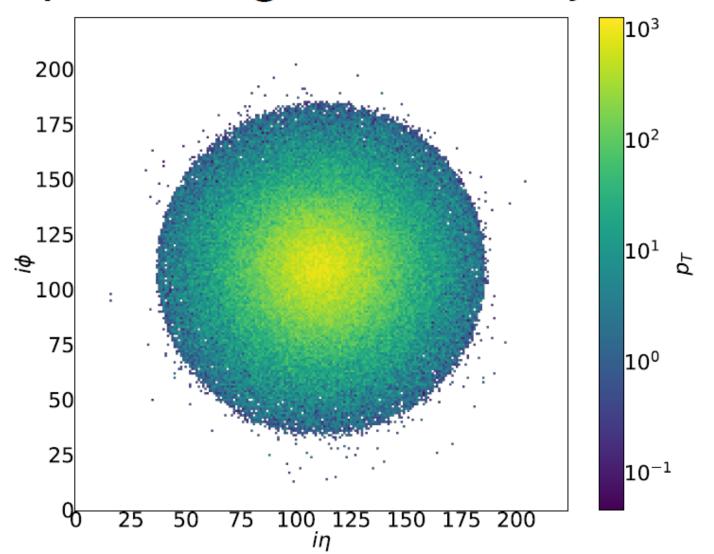




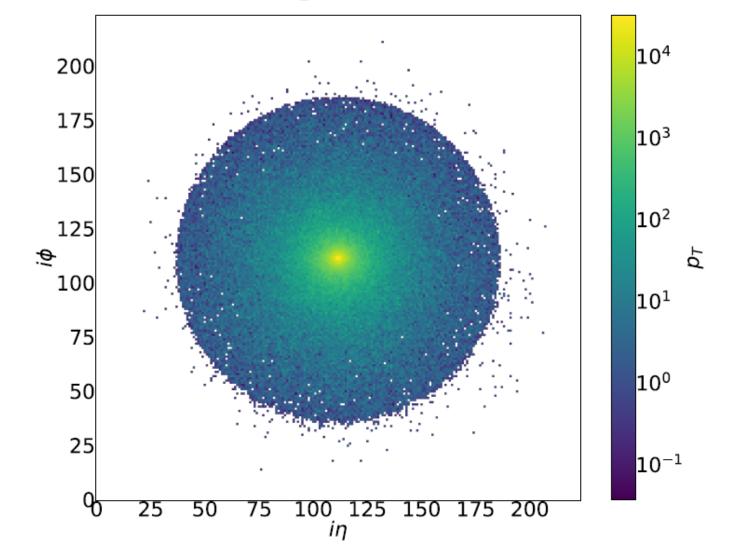
Top tagging benchmark dataset

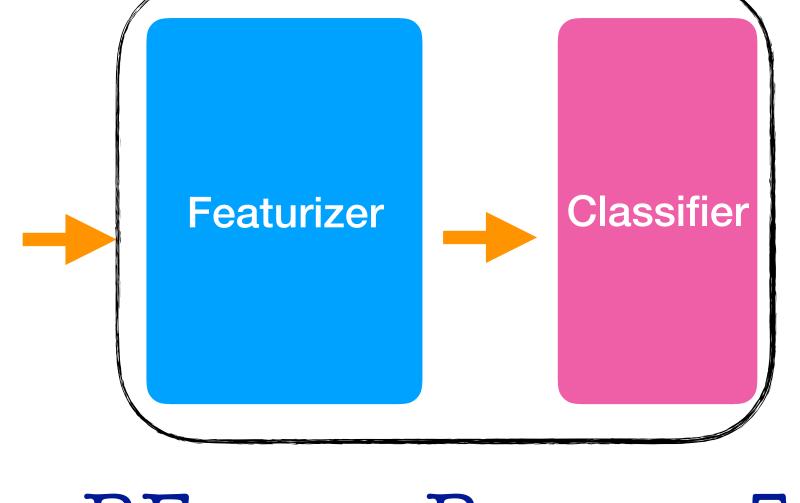
- Images made from density map of the pt of jet constituents in $\eta^* \phi$ space.
 - Grey image, duplicated to RGB.

top, averaged over 5k jets

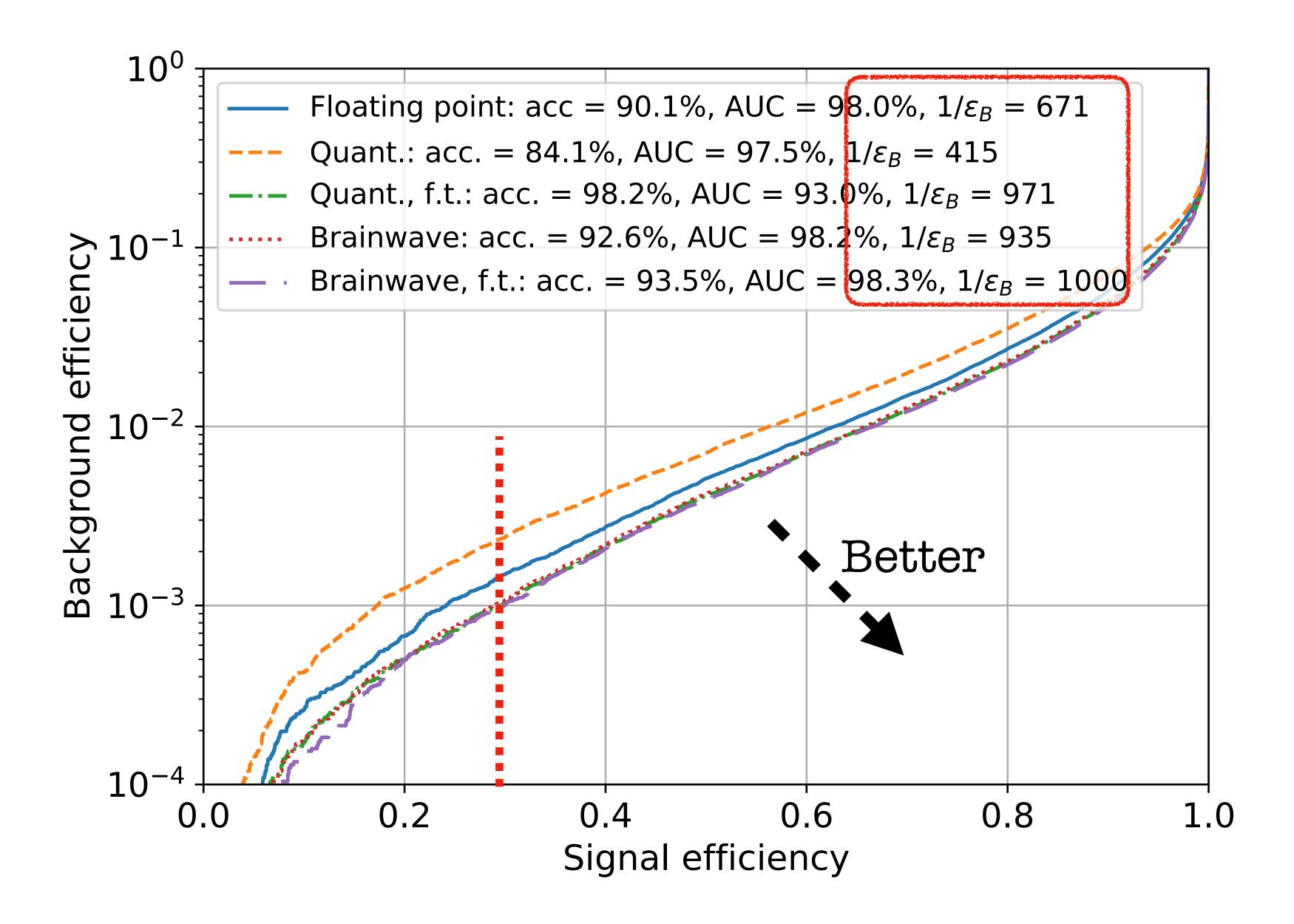


QCD, averaged over 5k jets



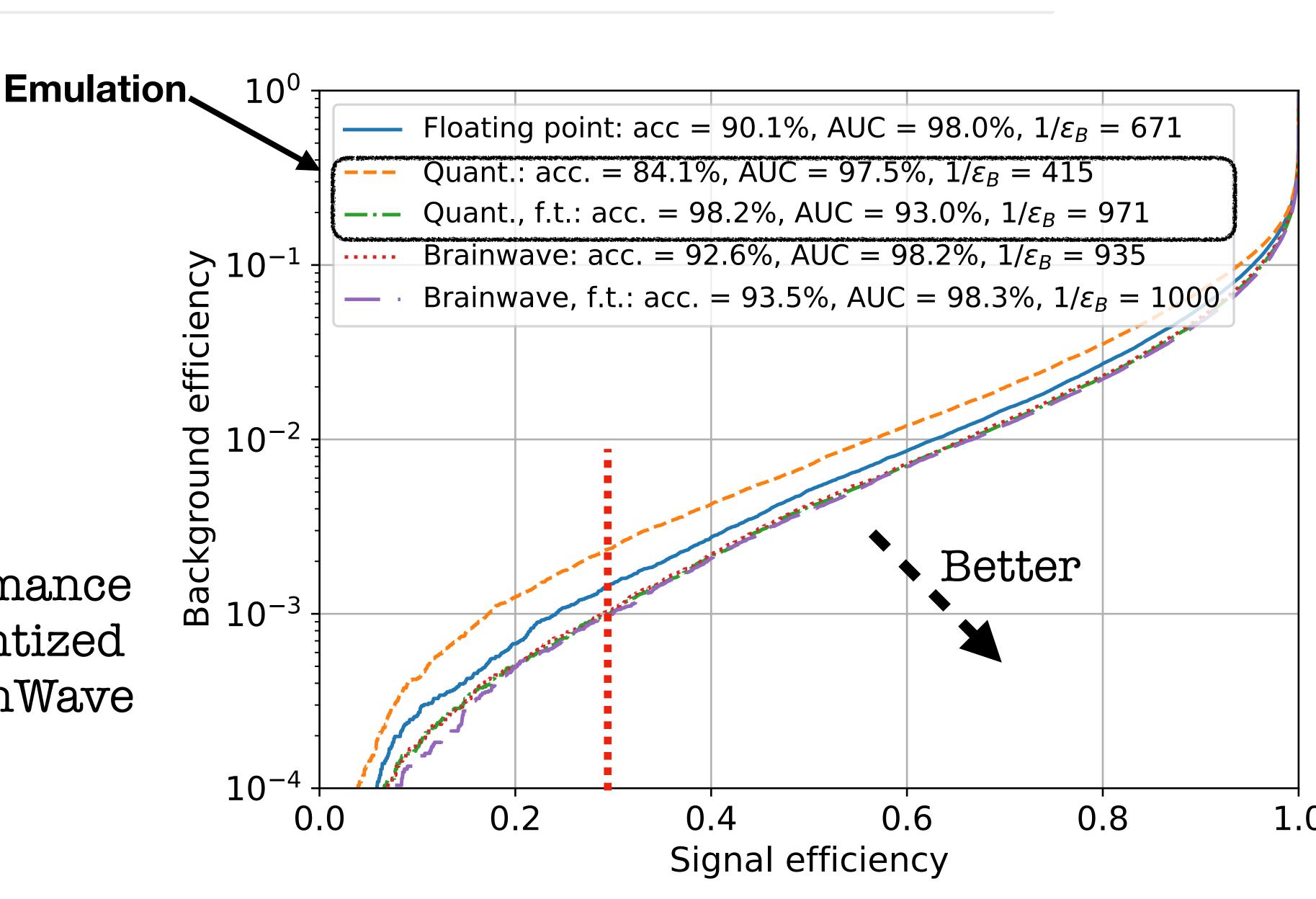


RETRAIN RES-NET 50



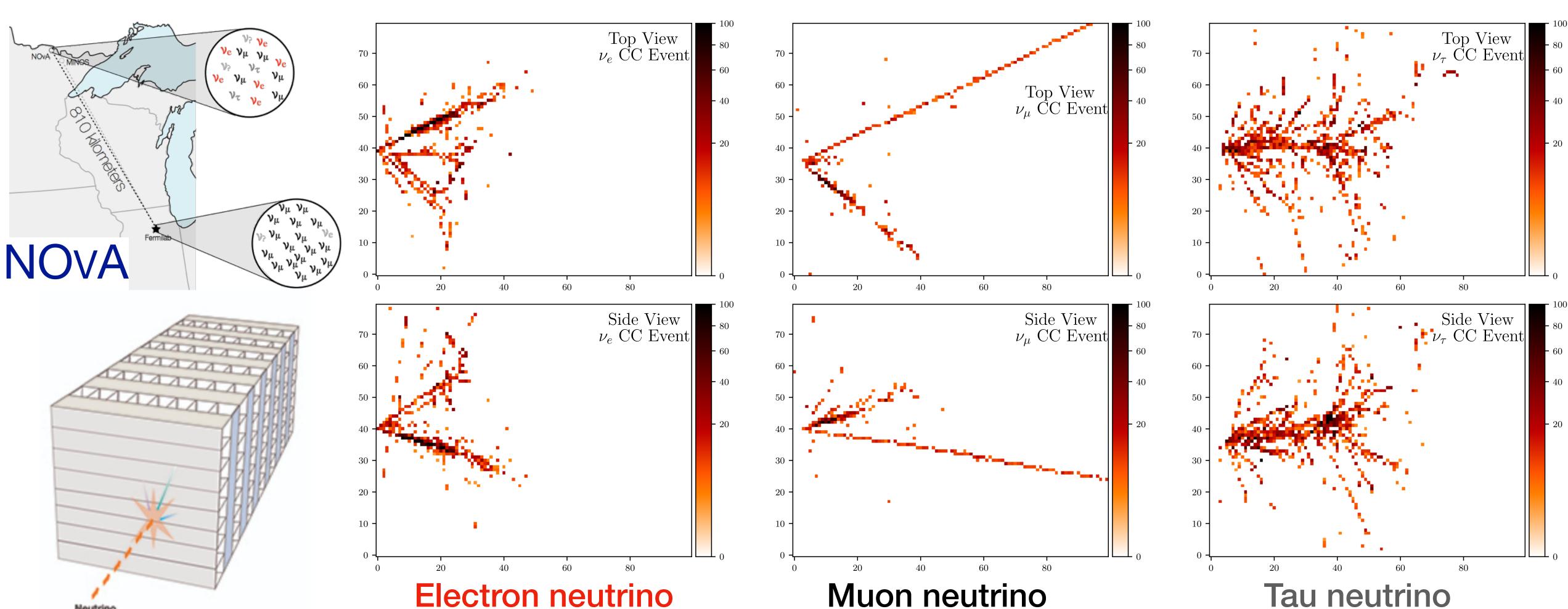
Quantized model:

- Brainwave's implementation of ResNet50 on FPGA
- Can tune weights
- State of art performance achieved with quantized ResNet 50 on BrainWave service



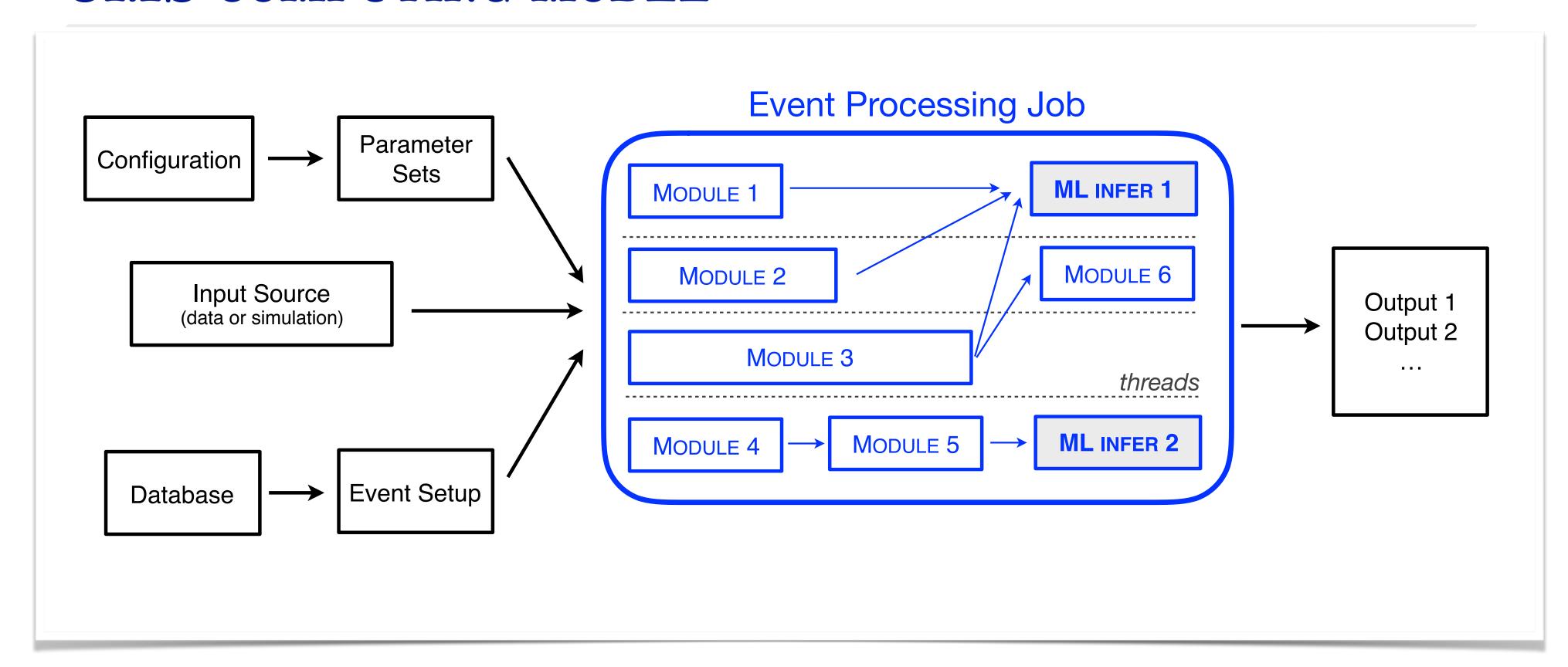
‡ Fermilab

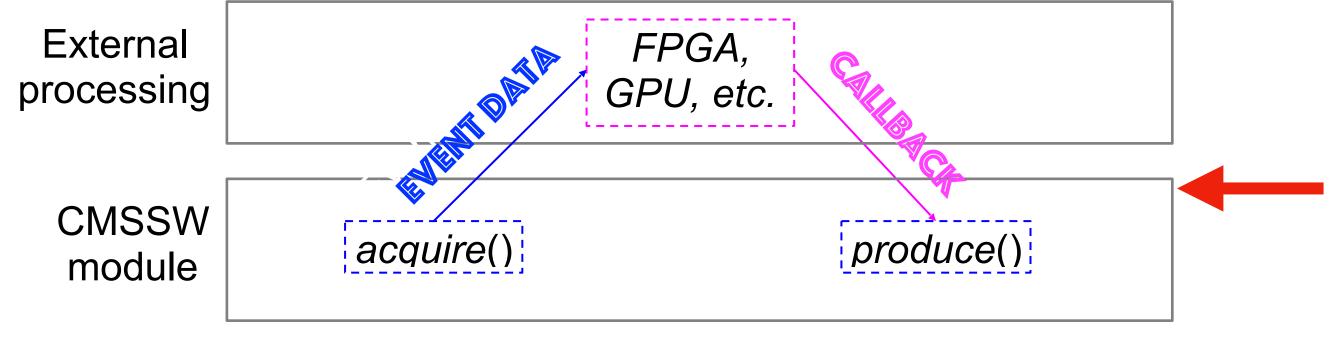
CLASSIFY NEUTRINO IMAGES



- Primary goal of NOvA: measurement of neutrino oscillations via $\nu\mu\rightarrow\nu e$: Classifying neutrinos with ResNet50 (transfer learning).
- Can be used in NOvA event processing as of today: see Thomas's lightening round talk.

CMS COMPUTING MODEL

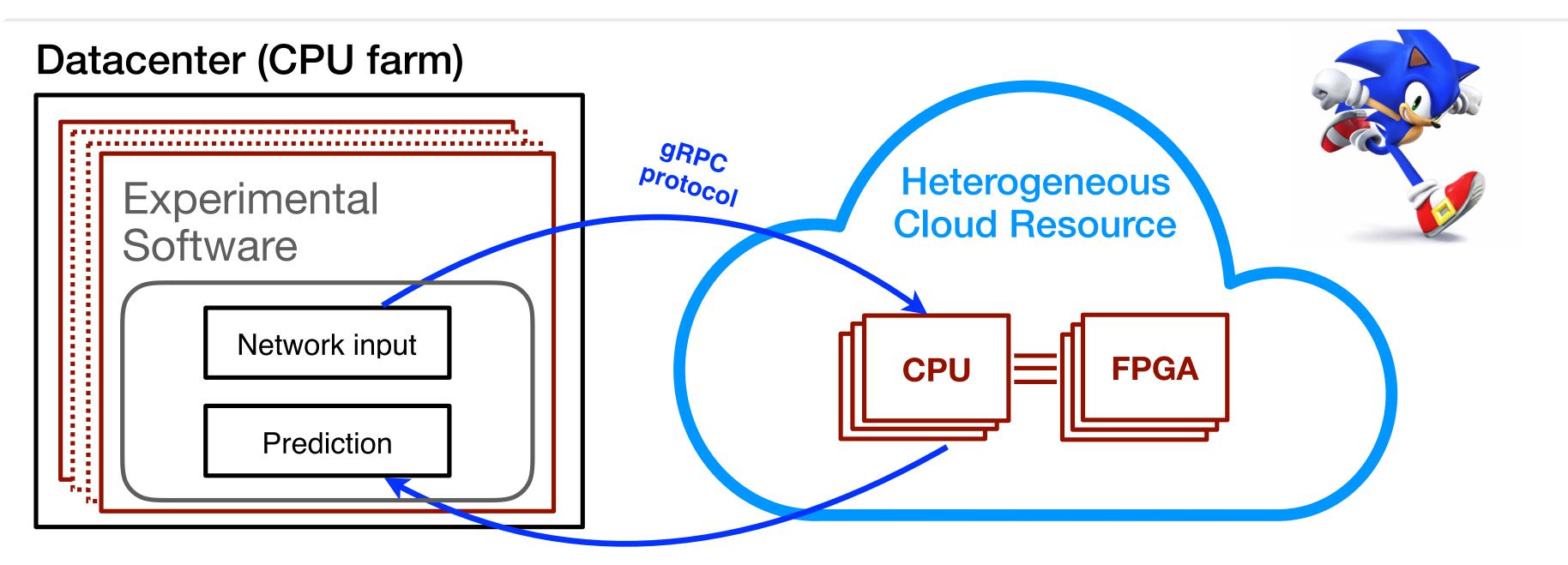


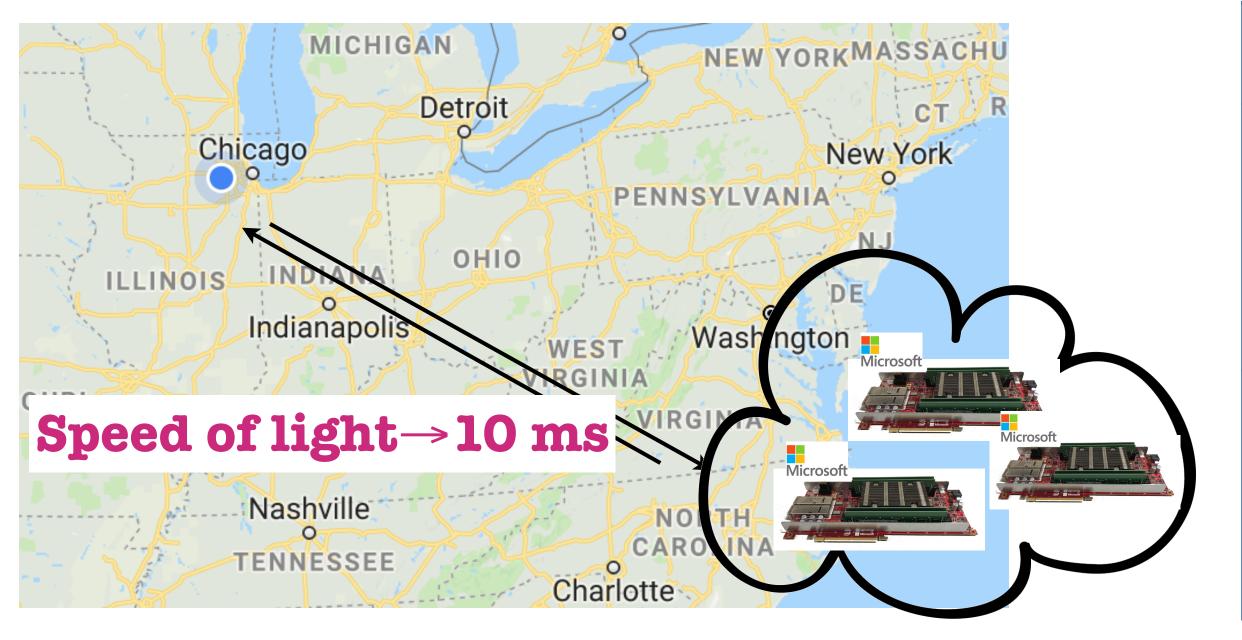


Deploy MS Brainwave as a service:

- Implemented with CMSSW ExternalWork module
- Fits CMS computing model in a nondisruptive way

SINGLE INFERENCE SPEED TESTS





Test	Inference time
local	 10 ms (~2 ms on FPGA + classifying, I/O) Meets HLT latency requirement
remote	 60 ms (includes travel latency) (4/10/100) faster than CPU-only computations

Worker Node

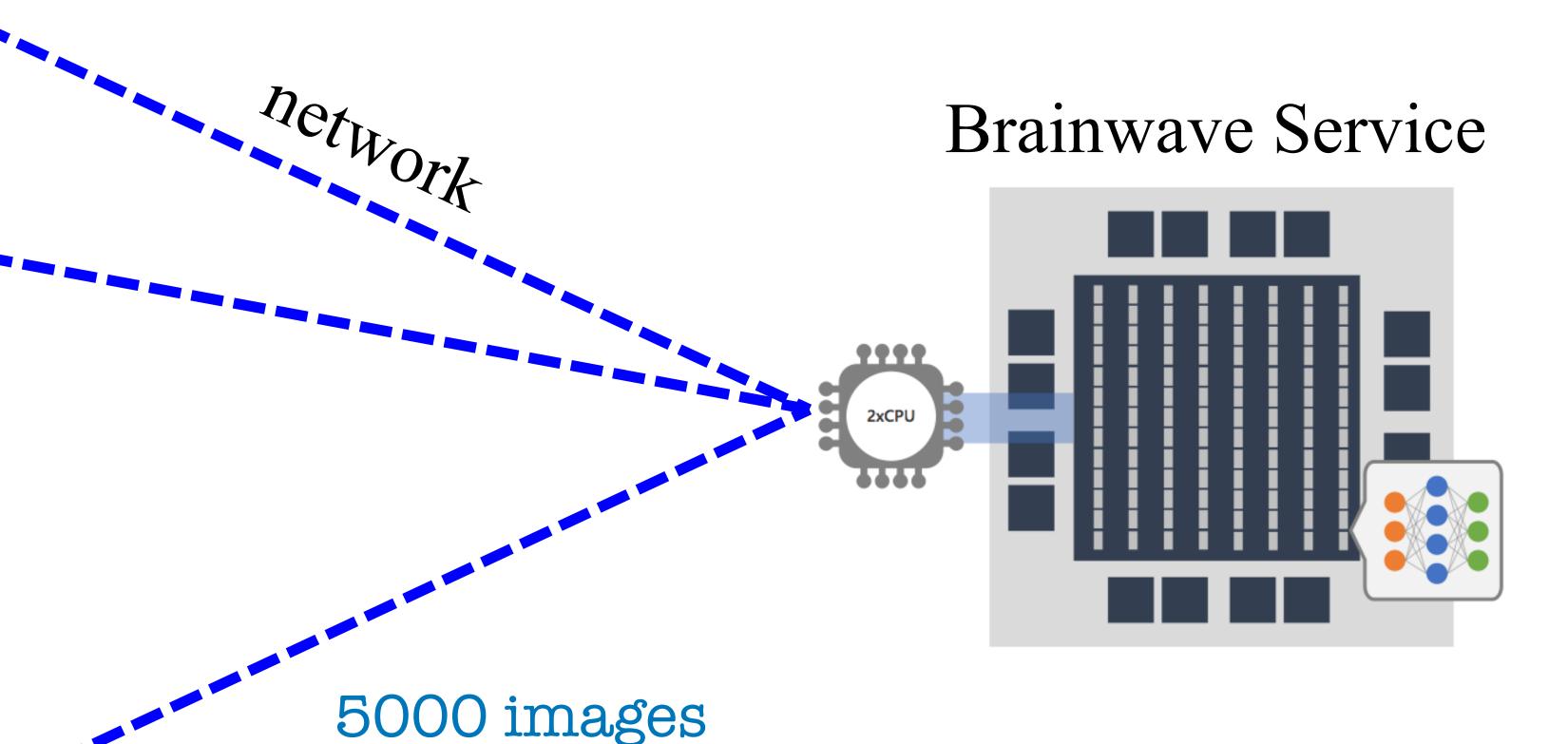
JetImageProducer

Worker Node

JetImageProducer

Worker Node

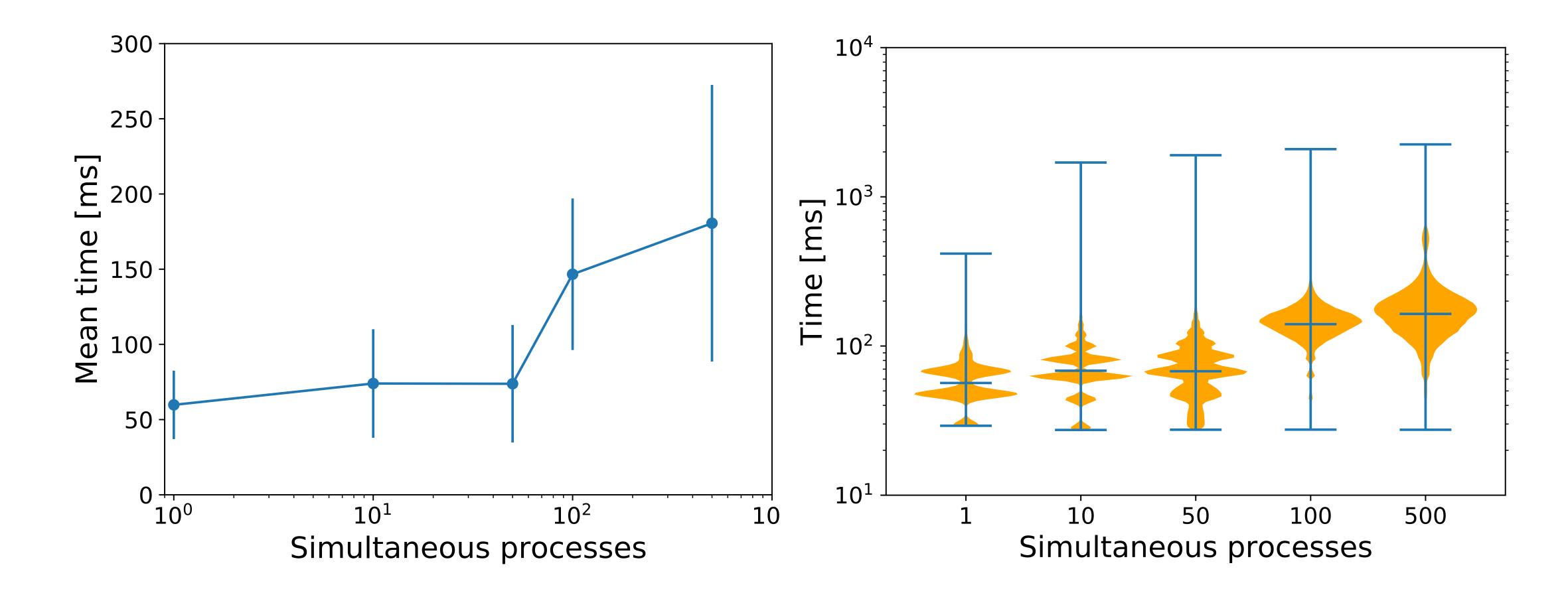
JetImageProducer



- Single FPGA service, multiple CPU requests
- Each request sends 5000 images

N: simultaneous processes

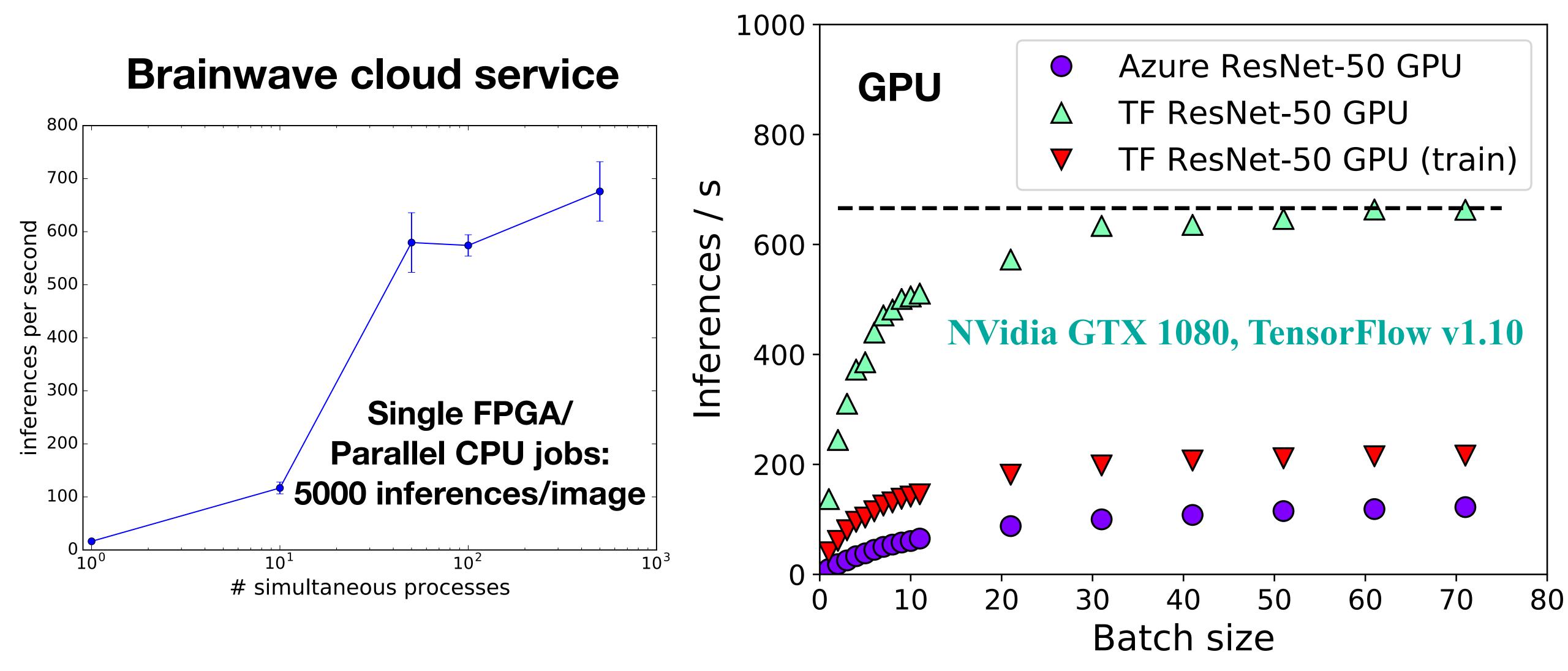
LATENCY SCALING TEST



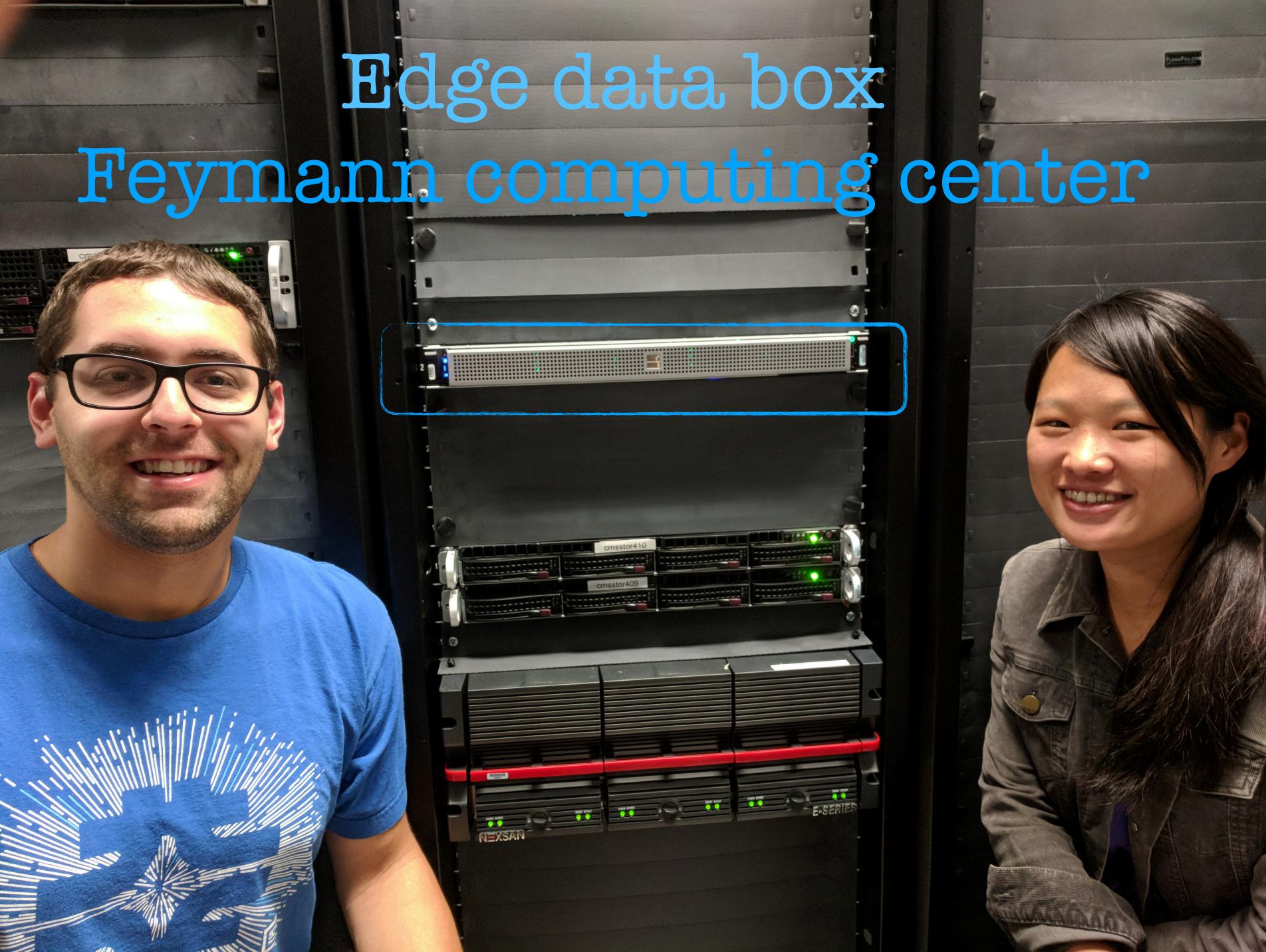
Tests:N=1,10,50,100,500

• Moderate increases in mean, standard deviation, and long tail for latency

o Fairly stable up to N = 50



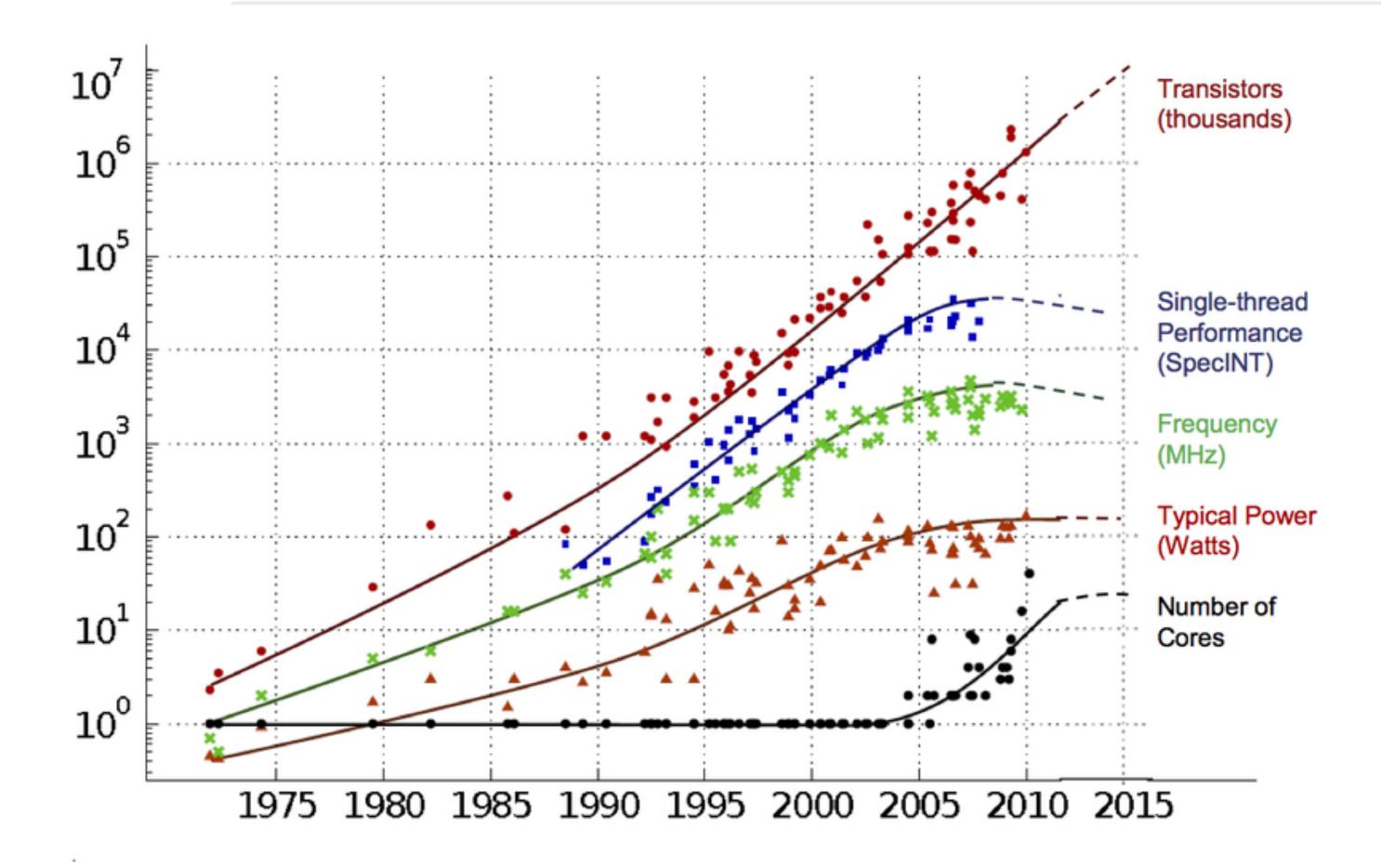
Comparable max data throughout: 600-700 images/



Summary and outlooks

- Proof of concept study with Brainwave:
 - Integrate heterogeneous computing in our software framework
- We are doing studies to benchmark other options (speed and scaling):
 - Intel Open Vino, AWS, Google TPU...
- Other (top) user's considerations for a dream Heterogeneous Computing Platform:
 - Flexibility: Model support
 - e.g. Support for Graph Neural Networks
 - Support for ML framework
 - As a service: Cloud and Edge. Cost model.
- Only works if we can solve our problems with ML! See showcases in the Lightning round talks.

Moore's Law and Dennard Scaling

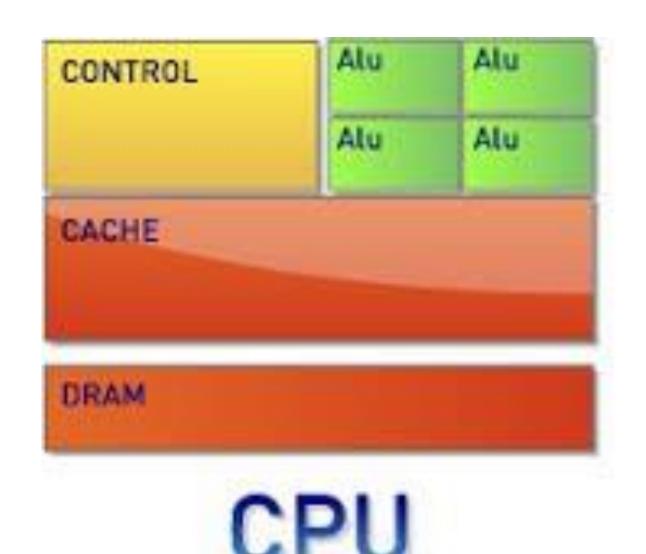


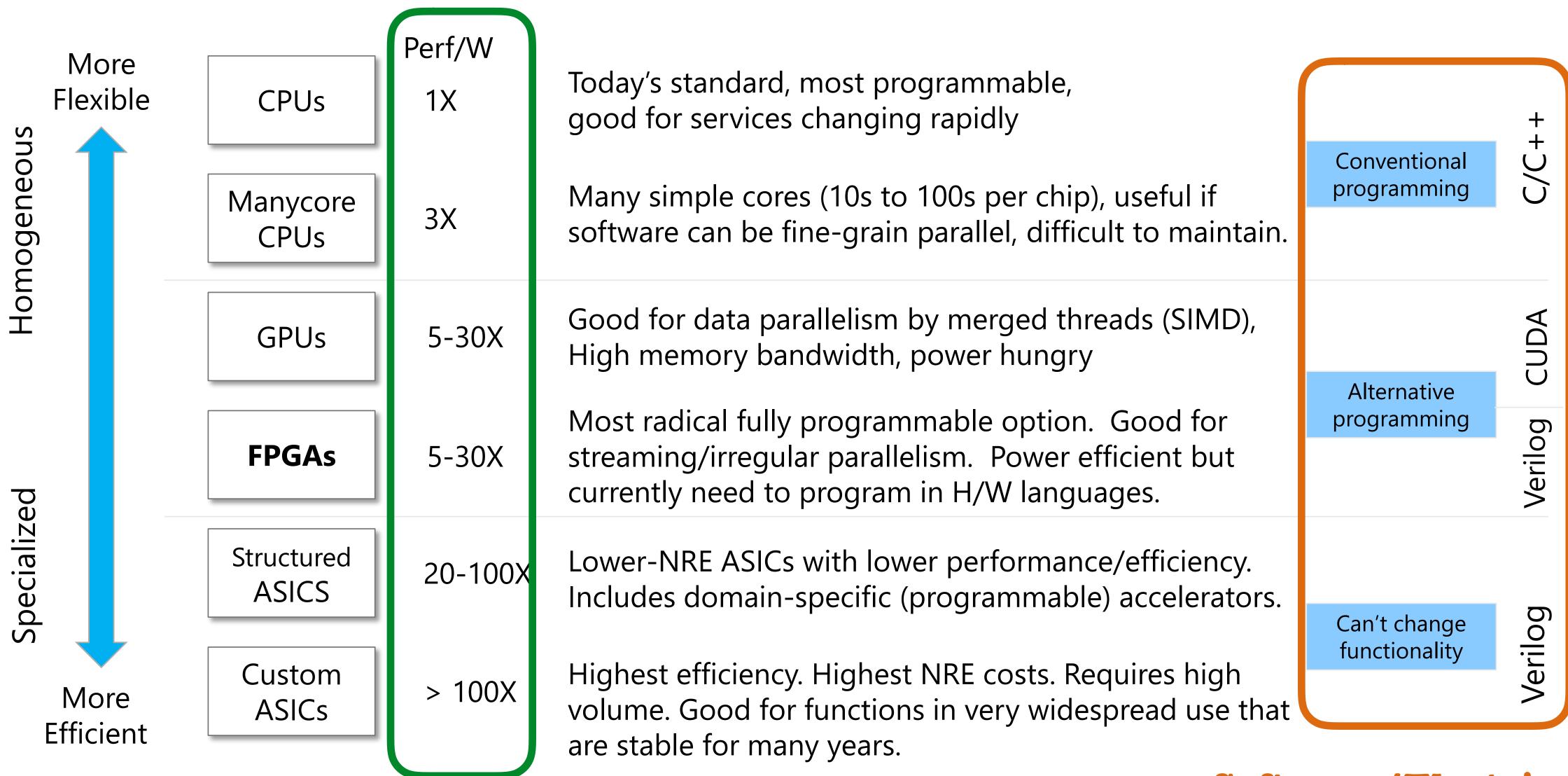
Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

Single threaded performance not improving

~2005: "The Era of Multicore"

Moore's Law continues ...but Dennard Scaling fails

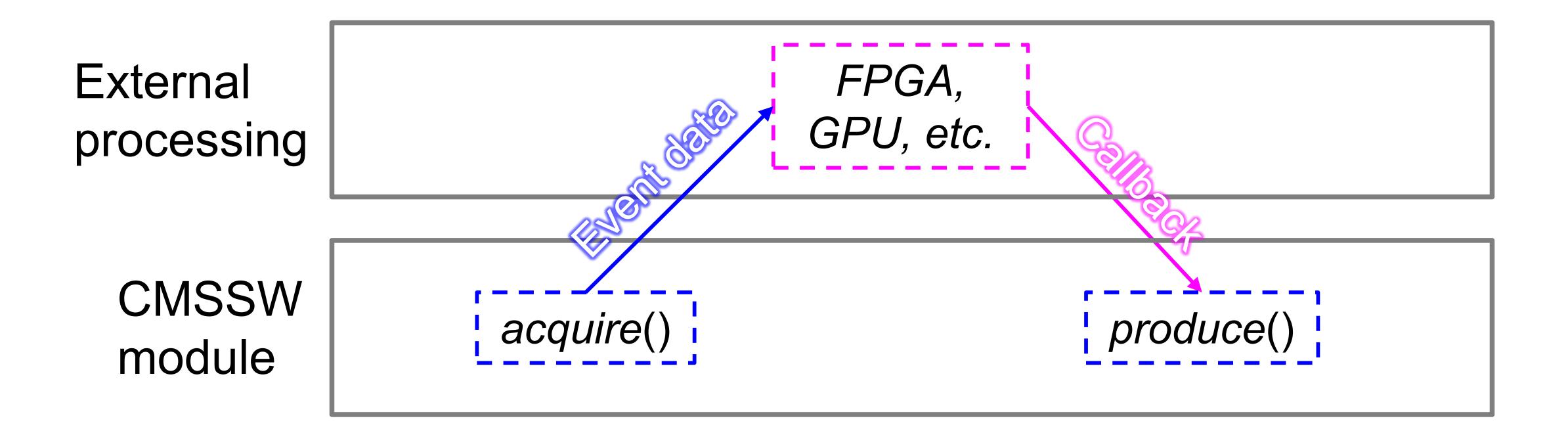




Electricity bill

Software/Electrical engineer hours

SONIC: IMPLEMENTATION IN CMSSW

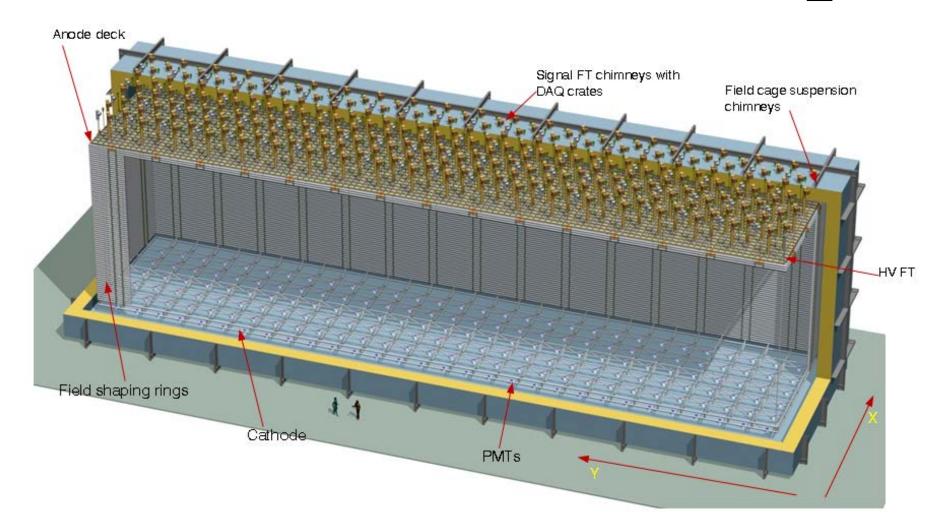


Deploy MS Brainwave as a service:

- Implemented with CMSSW ExternalWork module
- Fits CMS computing model in a non-disruptive way

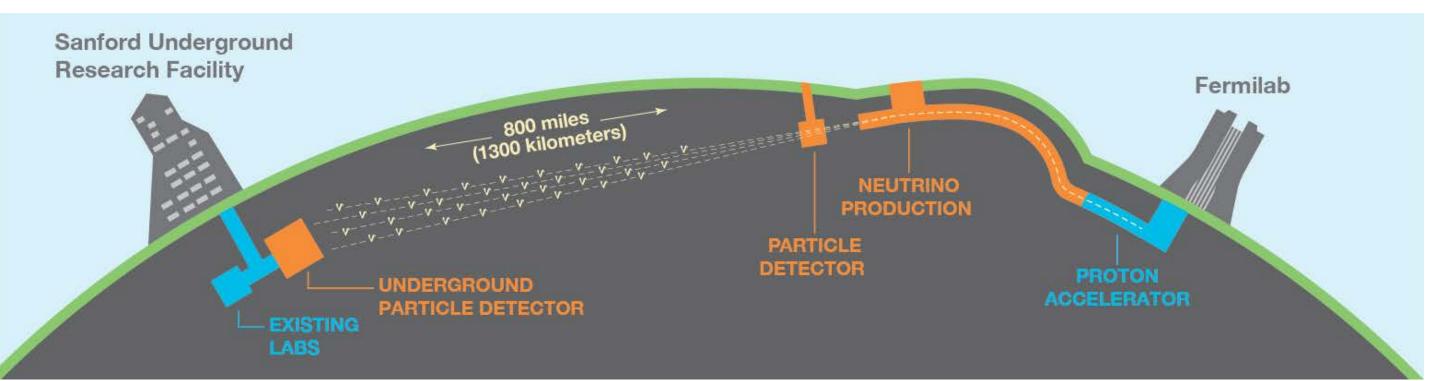
SONIC: IMPLEMENTATION IN CMSSW

Neutrino Computing Challenges



Intensity frontier: DUNE

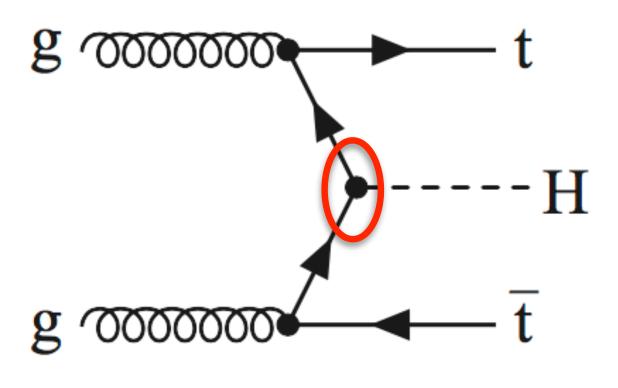
- Largest liquid argon detector ever designed
- ~1M channels, 1 ms integration time w/ MHz sampling
 → 30+ petabytes/year

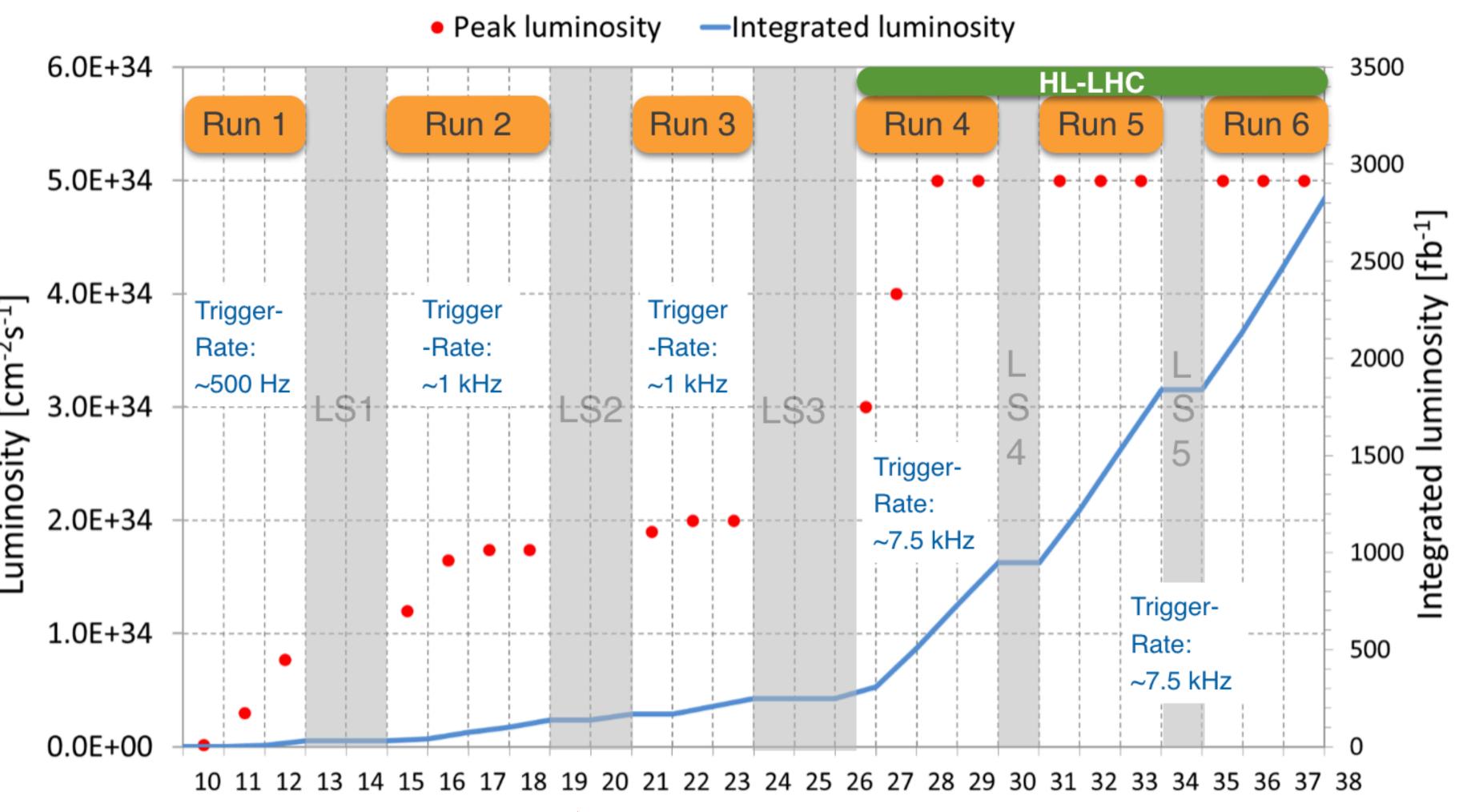


CPU needs for particle physics will increase by more than an order of magnitude in the next decade

Example: First observation of ttH using particle Run 2 data.

ttH production





Year