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OUTLINE

Big data challenge in particle physics 
an example:  

Trigger and computing challenges@LHC: speed, volume, complexity  
Potential machine learning solutions 

SONIC paper 
Proof of concept study with Brainwave: 

Heterogenous computing for particle physics 

Outlook& takeaways 
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The Large Hadron Collider

!3

Higgs boson discovery in 2012

Proton Proton40MHZ



95% DATA TO BE COLLECTED  4
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3000 fb-1 in 10 years

We need the full 
dataset 

example: Study the 
Higgs boson potential 

300 fb-1 in 10 years LHC running

we are here 

LHC running plan 



THE ‘PILEUP’ CHALLENGE  5

Multiple pp collisions in the same beam crossing 
To increase data rate, squeeze beams as much as possible

M.LIU

Run 2: <PileUp> ~ 20-50 
Run 3: <PileUp> ~ 50-80 

HL-LHC: 140-200



FASTER AND MORE COMPLEX DETECTORS  6
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CMS pixel(‘ultra high 
speed/resolution 

camera’)
Number of channels

‘Phase-0’ 66 M
‘Phase-1’ 123 M
‘Phase-2’ 2B

Phase 1 forward pixel detector  
@ Fermilab Compact Muon Solenoid (CMS)

•  Building faster detectors with better 
resolution 

• Trigger& computing challenges@HL-LHC: 
machine learning solutions?



INCREASED DATA VOLUME AND COMPLEXITY  7
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Current: ~5 minutes per HL-LHC event

2027 estimate CPU:  
~ 3.5 Million cores

Today

Event 
 complexity

10X more data  
at the High-

luminosity LHC

Problem won’t get solved by 
itself: Moore’s Law 

continues 
…but Dennard Scaling fails



TRENDING: CO-PROCESSORS  8

Catapult/BrainwaveSpecialized co-
processor hardware 
for machine learning: 

flexibility vs speed 
(efficiency)

FPGA

FPGA

FPGA

ASIC

ASIC?



SOLUTIONS TO PARTICLE PHYSICS PROBLEMS  9

Option 1

re-write physics algorithms for new 
hardware

Language: OpenCL, OpenMP,TBB, 
HLS, …?

Hardware: FPGA, GPU

Option 2

re-cast physics problem as a 
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,…)

Hardware: FPGA, GPU, ASIC

e.g. track reconstruction 
     Option 1: Parallelized and Vectorized Tracking Using Kalman Filters 

 Option 2: Tracking using CNN and Graph Networks: e.g. HEP.TrkX project. 
Advantages:  

•Algorithms expressed as matrix multiplications: intrinsically parallelizable 

• Take advantage of co-processors optimized for ML fast inference 
         Caveat: challenges of solving our reconstruction problems with NNs.

https://arxiv.org/pdf/1810.06111.pdf


PROOF OF CONCEPT: SONIC
Services for Optimized Network Inference on Co-processors
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Question: 
How do we help with physics event data 

processing model with industry 
developments in co-processors?  

Focus on speeding up the inference. 

M.LIU
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ing resources both now and in the future. New het-
erogeneous computing paradigms on dedicated hard-
ware with increased parallelization, such as Field Pro-
grammable Gate Arrays (FPGAs), o↵er exciting solu-
tions with large potential gains. The growing applica-
tions of machine learning algorithms in particle physics
for simulation, reconstruction, and analysis are natu-
rally deployed on such platforms. We demonstrate that
the acceleration of machine learning inference as a web
service represents a heterogeneous computing solution
for particle physics experiments that requires minimal
modification to the current computing model. As ex-
amples, we retrain the ResNet-50 convolutional neural
network to demonstrate state-of-the-art performance
for top quark jet tagging at the LHC and apply a
ResNet-50 model with transfer learning for neutrino
event classification. Using Project Brainwave by Mi-
crosoft to accelerate the ResNet-50 image classifica-
tion model, we achieve average inference times of 60
(10) milliseconds with our experimental physics soft-
ware framework using Brainwave as a cloud (edge or
on-premises) service, representing an improvement by
a factor of approximately 30 (175) in model inference
latency over traditional CPU inference in current ex-
perimental hardware. A single FPGA service accessed
by many CPUs achieves a throughput of 600–700 infer-
ences per second using an image batch of one, compa-
rable to large batch-size GPU throughput and signifi-
cantly better than small batch-size GPU throughput.
Deployed as an edge or cloud service for the particle
physics computing model, coprocessor accelerators can
have a higher duty cycle and are potentially much more
cost-e↵ective.

Keywords particle physics, heterogeneous computing,
FPGA, machine learning
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https://arxiv.org/abs/1904.08986

FPGA

Catapult/Brainwave



SONIC PAPER  11

•Proof of concept: Top tagging/neutrino 
image classification on Brainwave 

•Implementation as service in CMSSW in 
non-disruptive way. 

•Speed and data throughput performance

M.LIU



BRAINWAVE  12
M.LIU

Microsoft Brainwave

21

• Provides a full service at scale
(more than just a single co-processor)

• Multi-FPGA/CPU fabric accelerates
both computing and network

• Weight retuning available: retrain supported 
networks to optimize for a different problem

Brainwave supports:
• ResNet50
• ResNet152
• DenseNet121
• VGGNet16

Catapult_ISCA_2014.pdf

LPC Topic of the Week Kevin Pedro

•Provides a full service at 
scale 
(more than just a single 
co-processor)  

•Multi-FPGA/CPU fabric 
accelerates both 
computing and network  

•Models supported:  
•ResNet50, ResNet152, 

DenseNet121 ,VGGNet
16  
•Weight retuning 

available



A PHYSICS CASE: JET TAGGING WITH RES-NET 50  13

Featurizer Classifier

ImageNet

1000 classes 
(cats,dogs…) 

M.LIU

RES-NET 50

FPGA CPU

25M parameters 

4 G-ops/inference



PASSING JET IMAGES TO RE-TRAIN RES-NET 50  14

Featurizer Classifier

M.LIU

RETRAIN RES-NET 50
• Deep learning in industry focuses on image recognition

• Jets are not images, but can pretend in order to test industry networks

• Convert jets into images using constituent pT, η, φ: 224x224 pixels

• Standardized top quark tagging dataset is publicly available: 
https://goo.gl/XGYju3

Top Tagging with Images

12LPC Topic of the Week Kevin Pedro

• Deep learning in industry focuses on image recognition

• Jets are not images, but can pretend in order to test industry networks

• Convert jets into images using constituent pT, η, φ: 224x224 pixels

• Standardized top quark tagging dataset is publicly available: 
https://goo.gl/XGYju3

Top Tagging with Images

12LPC Topic of the Week Kevin Pedro

• High pT top quarks are boosted: form a single 
large-radius jet with substructure

• Top tagging started as simple cuts on high-
level variables (right)

• Now advanced to particle-level deep neural 
networks (next slide)

• (Can also do Higgs tagging, W/Z tagging, etc.)

Top Tagging

10LPC Topic of the Week Kevin Pedro
CMS-PAS-JME-17-003

Top tagging benchmark dataset 

• Images made from density map of the 
pt of jet constituents in η*φ space. 

• Grey image, duplicated to RGB.

https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit
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Fig. 3: A comparison of QCD (left) and top (right) jet images averaged over 5,000 jets.

Fig. 4: The ROC curves showing the performance of
the floating point and quantized versions (before fine-
tuning, after fine-tuning, and using the Brainwave ser-
vice) of the ResNet-50 top tagging model.

Model Accuracy AUC 1/"B("S = 30%)
Floating point 0.9009 0.9797 670.8

Quant. 0.8413 0.9754 414.6
Quant., f.t. 0.9296 0.9825 970.7
Brainwave 0.9257 0.9821 934.8

Brainwave, f.t. 0.9348 0.9830 999.6

Table 1: The performance of the evaluated models on
the top tagging dataset.

rameters and operations. However, it should be noted
that the best-performing models to date (ResNeXt50
and a directed graph CNN) [32,24] are within a factor
of a few in size with respect to the ResNet-50 model.
We emphasize here that this study is a proof-of-concept
for the physics performance and that there are many
other very challenging, computationally intensive algo-

rithms where machine learning is being explored. We
anticipate that for these looming challenges, the size of
the models will continue to grow to meet the demands
of new experiments.

3.3 Neutrino flavor identification at NOvA

Neutrino event classification can also benefit from ac-
celerating the inference of large ML models. In this
section, due to a lack of publicly available neutrino
datasets, we do not fully quantify the performance of
a particular model. Instead, we present a workflow to
demonstrate that this work is applicable beyond the
LHC.

We illustrate the type of classification task needed
for neutrino experiments by using simulated neutrino
events and cosmic data from the NOvA experiment.
NOvA pioneered the application of convolutional neu-
ral networks (CNN) in particle physics in 2016 by be-
coming the first experiment to use a CNN in a pub-
lished result [7,35]. In our study, we use transfer learn-
ing with ResNet-50 to distinguish between the di↵er-
ent detector signatures associated with various neutrino
interaction types and associated backgrounds. We ex-
tract features from neutrino interaction events using
the ResNet-50 featurizer (pre-trained using the Ima-
geNet dataset [36]) and retrain the final fully connected
classifier layers to perform neutrino event classification.
Specifically, 500,000 simulated neutrino events with cos-
mic data overlays were used for training, with the fol-
lowing five categories: charged current electron neu-
trino, charged current muon neutrino, charged current
tau neutrino, neutral current neutrino interactions, and
cosmic ray tracks. These events are highly amenable to
classification by CNN architectures such as ResNet-50.

RE-TRAIN RESNET-50 FOR TOP TAGGING  15
M.LIU

Better
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Neutrino event classification can also benefit from ac-
celerating the inference of large ML models. In this
section, due to a lack of publicly available neutrino
datasets, we do not fully quantify the performance of
a particular model. Instead, we present a workflow to
demonstrate that this work is applicable beyond the
LHC.

We illustrate the type of classification task needed
for neutrino experiments by using simulated neutrino
events and cosmic data from the NOvA experiment.
NOvA pioneered the application of convolutional neu-
ral networks (CNN) in particle physics in 2016 by be-
coming the first experiment to use a CNN in a pub-
lished result [7,35]. In our study, we use transfer learn-
ing with ResNet-50 to distinguish between the di↵er-
ent detector signatures associated with various neutrino
interaction types and associated backgrounds. We ex-
tract features from neutrino interaction events using
the ResNet-50 featurizer (pre-trained using the Ima-
geNet dataset [36]) and retrain the final fully connected
classifier layers to perform neutrino event classification.
Specifically, 500,000 simulated neutrino events with cos-
mic data overlays were used for training, with the fol-
lowing five categories: charged current electron neu-
trino, charged current muon neutrino, charged current
tau neutrino, neutral current neutrino interactions, and
cosmic ray tracks. These events are highly amenable to
classification by CNN architectures such as ResNet-50.

RE-TRAIN RESNET-50 FOR TOP TAGGING  16
M.LIU

Better

Quantized model: 
•Brainwave’s 

implementation of 
ResNet50 on FPGA 

•Can tune weights 

• State of art performance 
achieved with quantized 
ResNet 50 on BrainWave 
service

Emulation



Tau neutrinoMuon neutrinoElectron neutrino

• Primary goal of NOvA: measurement of neutrino oscillations via νμ→νe: Classifying neutrinos 
with ResNet50 (transfer learning).  

• Can be used in NOvA event processing as of today: see Thomas’s lightening round talk.

NuMI: Neutrinos at the Main 
Injector 
Long-baseline (anti-)neutrino  
oscillation experiment 
Two functionally identical detectors, 
optimized for νe identification 

Primary goal: 
measurement of 3-flavor 
oscillations via νμ→νμ and νμ→νe 

Other goals include:  
Searches for sterile neutrinos 
Neutrino cross sections 
Supernova neutrinos 
Cosmic ray physics

 29THE NOVA EXPERIMENT: NUMI OFF-AXIS   APPEARANCE EXPERIMENT

THE NOVA EXPERIMENT:
NuMI: Neutrinos at the Main 
Injector  
Long-baseline (anti-)neutrino 
oscillation experiment  
Two functionally identical 
detectors, optimized for νe 
identification  
Primary goal: 
measurement of neutrino 
oscillations via νμ→νe  
Other goals include: 
Searches for sterile neutrinos 
Neutrino cross sections 
Supernova neutrinos Cosmic ray 
physics  
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quantify the performance of a particular model. However, it is important to discuss the applicability
of this work beyond LHC applications.

We illustrate the type of classification task needed for neutrino experiments by using simulated
data from the NOvA experiment. NOvA pioneered the application of convolutional neural networks
(CNN) in particle physics, by becoming the first experiment, in 2016, to use a CNN in a published
result [31, 32]. In this study, we used the pre-trained ResNet-5� model to distinguish between
the di�erent detector signatures associated with various neutrino interaction types and associated
backgrounds, by extracting features from neutrino interaction events with the featurizer and re-training
the final fully connected classifier layers to perform neutrino event classification. Specifically, 5⇥ 105

simulated neutrino events were used for training, with the following five categories: charged current
electron neutrino, charged current muon neutrino, charged current tau neutrino, neutral current neutrino
interactions, and cosmic ray tracks. These events are highly amenable to classification by convolutional
neural network architectures such as ResNet-5�.

We then applied the model to a separate test set of 150K neutrino events, and as a visual example,
we show three neutrino interaction type events in Fig. 6 that are selected with probability larger than
0.9. On the left (middle, right) is an example event originating from an electron (muon, tau) neutrino
charged current interaction. While the optimal use of machine learning to improve neutrino event
reconstruction and classification is an active area of research, the most successful approach thus far
employs convolutional neural network architectures, which work well with the homogeneous nature
of the neutrino detectors.
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Figure 6: Example visualizations of neutrino events correctly classified by our ResNet-5� model
with probability > 0.9: electron neutrino (left), muon neutrino (middle), and tau neutrino (right). The
top and bottom rows are the top and side views from the NOvA detector.

Current neutrino experiments, including NOvA and others, are potentially very exciting places to

– 9 –

CLASSIFY NEUTRINO IMAGES  17



CMS COMPUTING MODEL  18

Deploy MS Brainwave as a service: 
• Implemented with CMSSW 

ExternalWork module 
• Fits CMS computing model in a non-

disruptive way

External 
processing

CMSSW 
module acquire()

FPGA, 
GPU, etc.

produce()

Eve
nt 

da
ta Callback

Event data Callback

M.LIU

FPGA-accelerated machine learning inference as a service for particle physics computing 3

particle physics model in a scalable and non-disruptive
way. While accelerating domain-specific algorithms on
specialized hardware is possible, in this paper we study
the second option, where a machine learning algorithm
is adapted to solve a physics challenge and accelerated
using a specialized hardware platform. We will present
physics results for a publicly available top quark tagging
dataset for the LHC [14] and discuss how this could be
applied for neutrino experiments such as NOvA. This
study focuses on the newly available Microsoft Project
Brainwave platform that deploys FPGA co-processors
as a service at datacenter scale [15]. Brainwave provides
a first scalable platform to study, though other such op-
tions exist. Results from this study will serve as a per-
formance benchmark for any similar systems and will
provide valuable lessons for applying new technologies
to particle physics computing.

The rest of this paper is organized as follows. In
Section 2, we describe the requirements of the particle
physics computing model that is used in collider exper-
iments at the LHC and neutrino experiments such as
DUNE. We detail the dire challenges facing this com-
puting model in the future. In Section 3, we explore
some example physics use cases to be deployed on the
Microsoft Brainwave platform. We train and evaluate a
dedicated model identifying particle jet objects at the
LHC and discuss the potential application for neutrino
physics. In Section 4, we then describe the Microsoft
Brainwave platform and how we integrate it into our
experimental computing model to accelerate machine
learning inference. In Section 5, we present latency re-
sults from tests of FPGA coprocessors as a service and
compare the results to benchmark values for CPUs and
GPUs. We also provide first studies on the scalability
of such an approach. Finally, in Section 6, we conclude
by summarizing the study and discussing the next steps
required for further development of this program.

2 Computing in particle physics

2.1 Particle physics computing model

The computing model for many large scale physics ex-
periments is based on processing events. An event here
is defined as a measurement of some physical process
of interest; an example, in the case of the LHC, is a
collision of proton bunches. The event consists of com-
plex detector signals that are filtered, combined, and
analyzed; typically, the raw signal input is turned into
output as objects with more physical meaning. There
are both online processing, where the event is selected
from a bu↵er and analyzed in real time, and o✏ine pro-
cessing, where the event has been written to disk and is

more thoroughly analyzed, with less stringent latency
requirements. The online processing reduces the rate
of events to a manageable level to be recorded for of-
fline processing and is often called triggering. Trigger-
ing typically happens in multiple tiers. The first tier
(Level-1, L1) is performed with custom electronics at
very low latency (⇠µs). The second step (high level
trigger, HLT) is performed on more standard comput-
ing resources and has a latency of ⇠10–100 ms. Finally,
o✏ine analysis of the saved events passing the HLT can
take significantly longer, though ultimately the o✏ine
processing time is limited by available computing re-
sources. The latency landscape for various levels of ex-
perimental event processing is illustrated in Fig. 1.

1μs 1ms 1s

LHC L1 Trigger  
(pipelined)

LHC  
High Level Trigger 

LHC/DUNE 
Offline processing 

Fig. 1: The latency landscape for di↵erent levels of ex-
perimental event processing.

In this paper, we consider the possible gains from
heterogeneous computing resources as applied to both
our HLT and o✏ine processing steps. When consider-
ing how best to use new optimized computing resources
for physics, we must understand the implications of the
event processing model described above. An example
of the current computing model is shown in Fig. 2.
Event data is processed, often sequentially, across mul-
tiple CPU threads.

Event SetupDatabase

Configuration Parameter 
Sets

Input Source
(data or simulation)

Output 1
Output 2

…
threads

MODULE 2

MODULE 1

MODULE 3

MODULE 4

ML INFER 1

MODULE 5

Event Processing Job

ML INFER 2

MODULE 6

Fig. 2: A diagram of the computing model used in the
CMS software.

It is important to note that the basic processing
unit is a single event and performing the same task for
multiple events (batching) becomes significantly more
complex to manage. Because each event contains poten-
tially millions of channels of information, it is optimal
to load the needed components of that event into mem-
ory and then execute all desired algorithms for that
event. The tasks themselves, denoted in Fig. 2 as mod-



SINGLE INFERENCE SPEED TESTS  19

Speed of light→10 ms

M.LIU

Test Inference time

local
• 10 ms (~2 ms on FPGA + 

classifying, I/O) 
• Meets HLT latency 

requirement 

remote
• 60 ms (includes travel 

latency) 
• (4/10/100) faster than 

CPU-only computations

CLOUD VS EDGE  30

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

and there is a vast amount of research on specialized hardware for machine learning that the
particle physics community can take advantage of

• Often machine learning algorithms are quite parallelizable making them amenable to accelera-
tion on specialized hardware. This is not always true of physics-based algorithms, or perhaps
they would have to be re-written to accommodate new, and often changing, computing hardware

We therefore focus on ML acceleration in our study. Of course, to fully capitalize on the ML-focused
hardware developments, we rely on the continued research and development of ML applications for
particle physics tasks. However, given recent work across many neutrino and LHC experiments []
and initiatives such as the HepTrkX [] and Tracking ML Kaggle Challenge [], machine learning
applications across particle physics is growing rapidly.

The other important aspect is to understand is how to integrate FPGA co-processors into the parti-
cle physics computing model without disrupting the current multi-threaded parallel module processing
paradigm. A natural method for integrating heterogeneous resources is via a network service []. This
client-server model is flexible to be used locally by a single user or within a computing farm where a
single thread communicates with the server via Remote Procedure Calls (RPC) sending information as
protocol bu�ers. In our particular case, the gRPC package [] interfaces with Brainwave system. With
this setup, we now define a communication method between FPGA co-processor resources and our
primary experimental computing CPU-based data centers. This is illustrated in Fig. 4 where a module
running on our experimental compute farm requires fast inference of a particular ML algorithm via
an RPC. At the moment, we test the performance of a single task which makes a request to a single
cloud service. However, scaling up the number of requests is natural for the Brainwave system which
is capable of load balancing of service requests []. In the next section, we study the performance of
this computing stack and compare it to other results in the literature.

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental 

Software

gRPC protocol Heterogeneous  
Cloud Resource

Figure 4: An illustration of FPGA-accelerated machine learning cloud resources integrated into the
experimental physics computing model as a service

One may also consider a case where the FPGA co-processor resources are physically on the
same farm as the CPUs, as a so-called edge compute resource. This is illustrated in Fig. 5. In this
scenario, the same gRPC interface protocols are used to communicate with the FPGA hardware and

– 5 –

the software access for fast inference is unchanged. To benchmark this scenario, we run our particle
physics applications on a virtual machine (VM) on the cloud datacenter. Again, results are presented
in the following section.

CPU
FPGA

Heterogeneous  
“Edge” Resource

gRPC
 protocol

Experimental 
software

Figure 5: An illustration of FPGA-accelerated machine learning edge resources integrated into the
experimental physics computing model as a service

Describe the Resnet-50 deployment. The service is defined in two steps: a featurizer step which
is performed on the FPGA, and the classifer step, which is performed on the CPU.

– 6 –

SONIC �20

!20

‣ Services for Optimized Network 
Inference on Coprocessors 
(SONIC) 
‣ Send jet images from CMSSW 

to Microsoft Brainwave FPGA

arXiv:1904.08986
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•Single FPGA service, multiple CPU requests 
•Each request sends 5000 images 

• Run N simultaneous processes, all sending requests to 1 BrainWave service

• Processes only run JetImageProducer from SONIC → “worst case” scenario

o Standard reconstruction process would have many non-SONIC modules

• FPGA performs inference serially (1 image at a time)

Scaling Tests

27LPC Topic of the Week Kevin Pedro

Brainwave Service

Worker Node
JetImageProducer

Worker Node
JetImageProducer…

Worker Node
JetImageProducer

5000 images

N: simultaneous processes
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Tests:N=1,10,50,100,500 
• Moderate increases in mean, standard deviation, and long tail for latency  
o Fairly stable up to N = 50 

10 Javier Duarte et al.

Fig. 10: Total round trip inference latencies for
ResNet-50 on the Brainwave system both remote and
on-prem. The top plot is linear in time and the bottom
plot is logarithmic in time.

tions which can cause the structures seen in Fig. 10.
Due to the speed of light, there is a hard physical limit
in the transmission time of the signal to the Azure East
2 Datacenter and back to Fermilab, which we estimate
to be around 10 ms. The physical distance between the
experimental computing cluster and the remote data-
center will limit any cloud-based inference speeds.

After comparing the remote versus on-prem latency,
we performed a scaling test to estimate how many co-
processor services would be needed to support large-
scale deployment in a production environment. A given
number of simultaneous processes were run using the
batch system at Fermilab and the round-trip latency
was measured. All jobs connected to a single Brain-
wave service. This test corresponds to a “worst-case”
estimation of the scaling of a single service because each
process only executed the Brainwave test module that
performs inference on jet images. In an actual produc-
tion process, the test module would run alongside many
other modules (see Fig. 1), greatly reducing the prob-
ability of simultaneous requests to the cloud service.
The results of the test are shown in Fig. 11. The mean,
standard deviation, and long tail for the round trip la-

tency all tend to increase with more simultaneous jobs,
but only moderately. It should also be noted that some
calls timed out during the largest-scale test with 500 si-
multaneous processes, leading to a failure rate of 1.8%,
while the other tests had zero or negligible failures.

Fig. 11: Top: Mean round trip inference latencies for
ResNet-50 on the Brainwave system for di↵erent num-
bers of simultaneous processes. The error bars represent
the standard deviation. Bottom: The full distributions
displayed in “violin” style. The vertical bars indicate
the extrema. The horizontal axis scale is arbitrary.

We also measure the throughput based on the total
time for each simultaneous process to complete serial
processing of 5000 jet images. These results are shown
in Fig. 12. Though the round trip latency for a single
request has a large variance, the total time to process
the full series of images is remarkably consistent. This
demonstrates the e�cient load balancing performed by
the Brainwave server.

With the total time measured for all simultane-
ous processes to complete, we can compute the total
throughput of the Brainwave service. Recall from above
that while the cloud service inference round trip latency
is 60 ms, on average, the latency for the featurizer in-
ference on the FPGA itself is approximately 1.8 ms.
When we run multiple simultaneous CPU processes
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Fig. 13: Standalone CPU inference time per image (top)
and images per second (bottom) as a function of batch
size for the TensorFlow o�cial ResNet-50 model com-
pared with the Azure ResNet-50 model. The dashed
line indicates a time of 10 ms, consistent with the on-
prem inference time of the Brainwave system.

rectly to either the remote or on-prem Brainwave per-
formance; however, they provide a useful characteriza-
tion of limiting performance. The purple GPU points
utilize the Brainwave implementation of ResNet-50

where, as with the Brainwave implementation on CPU,
a protobuf file is imported. This is what we would ex-
pect within CMSSW for custom models in the future and
represents the closest direct comparison of a GPU with
the Brainwave FPGA implementation. The other GPU
lines consist of the o�cial ResNet-50 as provided within
TensorFlow. The o�cial ResNet-50 can have better in-
ference times by factors of a few. An optimized version
of ResNet-50 is also available. It gives a 0–20% reduc-
tion in inference with respect to the o�cial ResNet-50.
All of the GPU benchmarks also follow the expected
trend for large image batch sizes, with an improvement
in the aggregate performance. The per-image latency
for a batch of one image is found to be anywhere from

5 to 10 times worse than the ultimate performance on
a GPU.

Fig. 14: Standalone GPU inference time per image (top)
and images per second (bottom) as a function of batch
size for the TensorFlow o�cial ResNet-50 model com-
pared with the Azure ResNet-50 model. The dashed
line indicates a time of 10 ms, consistent with the on-
prem inference time of the Brainwave system.

Within CMSSW, we find that importing the protobuf
model of ResNet-50 can take approximately 5 min-
utes. Once the model is imported, subsequent infer-
ences take, on average, 1.75 seconds per inference. This
benchmark point can most closely be compared with
the standalone single-thread CPU performance that is
shown in Fig. 13, approximately 500 ms. The main dif-
ferences between the standalone performance and the
CMSSW tests are two-fold: the TensorFlow version (1.06
vs. 1.10) and the processor speed (2.6 GHz vs. 3.6 GHz).
It is not uncommon for hardware across the global com-
puting grid of the CMS experiment to vary in per-
formance significantly, which is another consideration
when deploying both on-prem and remote services.

DATA THROUGHOUT COMPARED TO GPUS  22
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Figure 13: Left: mean total time and distribution (in seconds) to process 5000 jet images through
ResNet-5� on the Brainwave system for di�erent numbers of simultaneous processes. The vertical
bars indicate the extrema. The horizontal axis scale is arbitrary. Right: Throughput of the FPGA
service as the number of inferences per second for di�erent numbers of simultaneous processes. The
error bars represent the standard deviation.

performance, we perform two types of tests. First, we do our own standalone python benchmark tests
with the azure-ML implementation of ResNet-5� as well as the TensorFlow implementation of the
ResNet-5� model. Here, we verify our results against the literature. While many more detailed
studies exist, these benchmarks validate our numbers against other similar tests. Second, we import
the ResNet-5�model file provided by Brainwave into CMSSW and perform inference on the local CPU
with the version of TensorFlow currently in the CMSSW release 1.

The standalone python benchmark results for CPUs are presented in Fig. 14. The CPU used in
these tests is an Intel i7 3.6 GHz. For the CPU, we compare the number of cores used for either
the Brainwave implementation of ResNet-5� or the conventional TensorFlow ResNet-5�. The
performance is shown versus the image batch size; as a reminder, particle physics applications can
vary in their batch sizes anywhere from O(1) � O(100) batches. As expected, the performance is
stable versus batch size. For both models, we observe roughly the same inference time, ranging from
roughly 180 ms to 500 ms. Additionally, we observe that the model inference time is close to optimal
when using 4 cores, with small improvements beyond.

Figure 15 shows the inference times on GPUs. It is important to note that the GPU used in
these tests, an NVidia GTX 1080 Ti, is connected directly to the CPU, rather than using RPC over a
network for communication. Therefore, these results cannot be compared directly even to the on-prem
Brainwave performance; however, they provide a useful characterization of limiting performance. The
blue GPU points utilize the Brainwave implementation of ResNet-5� where, as with the Brainwave
implementation on CPU, a protobuf file is imported. This is what we would expect within CMSSW

1It takes significant e�ort to adapt TensorFlow to be compatible with the multithreading pattern used in CMSSW, and
hence the latest version of TensorFlow is usually not available to be used in the experiment’s software.

– 16 –

Single FPGA/ 
Parallel CPU jobs: 

5000 inferences/image

Comparable max data throughout: 600-700 images/

GPUBrainwave cloud service

NVidia GTX 1080, TensorFlow v1.10 
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Edge data box  
Feymann computing center
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• Proof of concept study with Brainwave: 

• Integrate heterogeneous computing in our software framework  

• We are doing studies to benchmark other options (speed and scaling): 

• Intel Open Vino, AWS, Google TPU…   

• Other (top) user’s considerations for a dream Heterogeneous Computing Platform: 

• Flexibility: Model support 

• e.g. Support for Graph Neural Networks 

• Support for ML framework 

• As a service: Cloud and Edge. Cost model. 

• Only works if we can solve our problems with ML! See showcases in the Lightning round 
talks.

M.LIU
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Moore’s Law 
continues 

…but Dennard 
Scaling fails

Single threaded performance not improving 
~2005: “The Era of Multicore” 

PROCESSORS 5
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CPUs 1X Today’s standard, most programmable, 
good for services changing rapidly

Manycore
CPUs 3X

Many simple cores (10s to 100s per chip), useful if 
software can be fine-grain parallel, difficult to maintain.  

GPUs 5-30X Good for data parallelism by merged threads (SIMD), 
High memory bandwidth, power hungry

FPGAs 5-30X
Most radical fully programmable option.  Good for 
streaming/irregular parallelism.  Power efficient but 
currently need to program in H/W languages.

Custom
ASICs > 100X Highest efficiency. Highest NRE costs. Requires high 

volume. Good for functions in very widespread use that 
are stable for many years. 

Structured
ASICS 20-100X Lower-NRE ASICs with lower performance/efficiency.

Includes domain-specific (programmable) accelerators.

Perf/WMore
Flexible

More
Efficient

Conventional 
programming

Alternative
programming

Can’t change
functionality

Electricity bill
Software/Electrical 

 engineer hours
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Deploy MS Brainwave as a service:

• Implemented with CMSSW ExternalWork module

• Fits CMS computing model in a non-disruptive way 


M.LIU

External 
processing

CMSSW 
module

acquire()

FPGA, 
GPU, etc.

produce()

Figure 10: A diagram of the ExternalWork feature in CMSSW, showing the communication between
the software and external processors such as FPGAs.

In this case, the event data provided to the service is a TensorFlow tensor with the appropriate
size (224⇥224⇥3) for inference with ResNet-5�. A list of the classification results are returned back
to the module, which employs ExternalWork. For simplicity, we refer to the full chain of inference
as a service within our experimental software stack as “Services for Optimized Network Inference on
Coprocessors” or SONIC [40].

5 Computing performance and results

5.1 Brainwave performance

We benchmark the performance of the SONIC package within CMSSW, measuring the total end-to-end
latency of an inference request using Brainwave. In a simple toy test, we create an image from a jet
object (described further in Sec. 3) from a simulated CMS dataset. We take particle flow candidates
and combine them as pixels in a two-dimensional grid, which is used as a gray-scale image tensor
input to the ResNet-5� model.

We perform two latency tests: remote and on-premises or on-prem. The remote test communicates
with the Brainwave system as a cloud service, as illustrated in Fig. 8. For this test, we execute our
experimental software, CMSSW, on the local Fermilab CPU cluster (Intel Xeon 2.6 GHz) in Illinois,
US, and communicate via gRPC with the service located at the Azure East 2 Datacenter in Virginia,
US. The on-prem tests are executed at the same datacenter as the Brainwave FPGA coprocessors and
illustrated in Fig. 9. We run a virtual machine in the Azure East 2 Datacenter, deploying CMSSW inside
a docker container, and communicate with the FPGA coprocessors located in the same facility.

We measure the total round-trip latency of the inference request as seen by CMSSW, starting from
the transmission of the image and ending with the receipt of the classification results. The latencies are
shown in Fig. 11 for a linear latency scale (left) and a logarithmic latency scale (right). The on-prem
performance is shown in green, with a mean inference time of 10 ms, and the remote performance
is shown in blue, with a mean inference time of 60 ms. From internal Brainwave timing tests,
the featurizer inference step performed on the FPGA takes 1.8 ms and the classifier inference step
performed on the CPU is similar. The remaining time in the 10 ms is primarily used for network
transmission.

– 13 –
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Neutrino Computing Challenges

5Kevin PedroLPC Topic of the Week

Intensity frontier: DUNE

• Largest liquid argon detector 
ever designed

• ~1M channels, 1 ms integration 
time w/ MHz sampling
→ 30+ petabytes/year

¾ CPU needs for particle physics will increase by
more than an order of magnitude in the next decade
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• Yukawa coupling proportional  
to fermion mass
• Largest coupling to top quarks 
• Very sensitive to new physics!

Coupling to top-quark
ttH production

 23 Giacinto Piacquadio - ICHEP 2018

Example: First 
observation of ttH 

using particle Run 2 
data. 


