
(Fast) Distributed Training

Jean-Roch Vlimant, with many others
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Outline

 Neural network training
 Training workload parallelization
 Hyper-parameters optimization
 Summary and Future work
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Motivations

● Large models on large dataset can take days-week
to converge on single GPU.

● Simpler models can take as long to converge, on
CPU-only hosts.

● Prototyping with model architecture is like testing a
new idea for analysis, you want to have the answer
“fast”

● Dismissing large model, large dataset because of
train time
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Deep Learning Training
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Artificial Neural Network
http://www.asimovinstitute.org/neural-network-zoo

● Large number of parameters
● Efficiently adjusted with stochastic gradient descent
● The more parameters, the more data required
● Training to convergence can take minutes to several days, ... 

http://www.asimovinstitute.org/neural-network-zoo
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Training Artificial Neural
Networks

● ANN and associated loss function have fully analytical
formulation and are differentiable with respect to model
parameters

● Gradient evaluated over batch of data
➢ Too small : very noisy and scattering
➢ Too large : information dilution and slow convergence
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Distributed Training
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Parallelism Overview
➔Data distribution

Compute the gradients on several batches
independently and update the model synchronously or
not. Applicable to large dataset

➔Gradient distribution
Compute the gradient of one batch in parallel and
update the model with the aggregated gradient.
Applicable to large sample ≡ large event

➔Model distribution
Compute the gradient and updates of part of the
model separately in chain. Applicable to large model
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Data
Distribution
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Data Distribution

https://arxiv.org/abs/1712.05878 

● Master node operates as parameter server
● Work nodes compute gradients
● Master handles gradients to update the central model

➔ downpour sgd https://tinyurl.com/ycfpwec5 
➔ Elastic averaging sgd https://arxiv.org/abs/1412.6651  
➔ Gradient energy matching https://arxiv.org/abs/1805.08469 

https://arxiv.org/abs/1712.05878
https://tinyurl.com/ycfpwec5
https://arxiv.org/abs/1412.6651
https://arxiv.org/abs/1805.08469
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Basic Layout

Training master
group 0, subrank 0

Training worker
group 0, subrank 1

Training master
group 0, subrank2

Training master
group 0, subrank N

W
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Performance with ANN

● Speed up in training recurrent neural networks on Piz
Daint CSCS supercomputer

➔ Linear speed up with up to ~20 nodes.
➔ Needs to compensate for staleness of gradients

(see GEM https://arxiv.org/abs/1805.08469) 
➔ Linear scaling on servers with 8 GPUs

 https://arxiv.org/abs/1712.05878 

https://arxiv.org/abs/1805.08469
https://arxiv.org/abs/1712.05878
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Performance with GAN

● Speed up in training generative
adversarial networks on Piz Daint CSCS
and Titan ORNL supercomputers

➔ Using easgd algorithm with rmsprop
➔ Speed up is not fully efficient.

Bottlenecks to be identified

NVIDA K20 at Titan, ORNL

NVIDA P100 on Piz Daint, CSCS
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https://sites.google.com/nvidia.com/ai-hpc 

Cray ML Plugin

Slide S. Vallecorsa

https://sites.google.com/nvidia.com/ai-hpc
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Gradient
Distribution
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TW1
GPU1

TW2
GPU1

TWN
W

GPU1

TW1
GPUN

GPU

TW2
GPUN

GPU

TWN
W

GPUN
GPU

● A logical worker is spawn over multiple processes
● Communicator passed to horovod https://github.com/uber/horovod 
● Nvidia NCCL enabled for fast GPU-GPU communication

Horovod Layout

https://github.com/uber/horovod
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https://sites.google.com/nvidia.com/ai-hpc 
Slide S. Vallecorsa

Intel MKL-DNN

https://sites.google.com/nvidia.com/ai-hpc
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Model
Distribution
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Intra-Node Model Parallelism

See T. Kurth et al. @ https://pasc18.pasc-conference.org for node
to node model parallelism considerations

GPU2GPU1

● Perform part of the forward and backward pass on different devices
● Require good device to device communication
● Utilize native tensorflow multi-device manager
● Aiming for machines with multi-gpu per node topology ( e.g summit)

https://pasc18.pasc-conference.org/
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Hyper-Parameters 
Optimization
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Hyper-Parameters
● Various parameters of the model cannot be learned by gradient

descent
➢ Learning rate, batch size, number of layers, size of kernels, …

● Tuning to the right architecture is an “art”. Can easily spend a lot
of time scanning many directions

● Full parameter scan is resource/time consuming.

➔ Hence looking for a way to reach the optimum hyper-parameter 
set for a provided figure of merit (the loss by default, but any
other fom can work)

➔ Possible optimization engine (https://github.com/vlimant/mpi_opt)
➢ Bayesian optimization with gaussian processes prior
➢ Evolutionary algorithm
➢ ...

https://github.com/vlimant/mpi_opt
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K-Folding Cross Validation

● Estimate the performance of multiple model training over
different validation part of the training dataset

● Allows to take into account variance from multiple source
(choice of validation set, choice of random initialization, ...) 

● Crucial when comparing models performance
● Training on folds can proceed in parallel
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K-Folding Layout
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Summary & Outlook
● Distributed training is not always necessary (short training time?)
● Many aspects to distributed training to consider
● Several x-factor speedup for ANN, efficient at low number of

nodes. Bottleneck on master/node load balance. GEM maintains
convergence over nodes.

● Several inefficient x-factors to be gained for GAN training
● Distributed training over CPU facilities is efficient (but not

necessarily cost effective)
● Cross validation is a must and can be done in parallel
● Hyper-parameter optimization is almost mandatory, but not fully

parallelizable

➢ Interest in the community to have a common software
➢ Imminent publication about distributed training and optimization,

seed to a follow up community-wide project.
➢ In-house dev, or use industry provided software ?
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Extra Slides



 
Fast ML, Distributed Training, J-R Vlimant
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N
G
 : # of concurrent hyper-parameter set tested

N
F
 : # of folds

N
M
 : # of masters

N
W
 : # of workers per master

N
GPU

 : # of nodes per worker (1node=1gpu)

Speed up and optimize models using thousand(s)
of GPUs  

Putting all Features Together
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● Putting workers in several groups
● Aim at spreading communication to the main master
● Need to strike a balance between staleness and

update frequency

Sub-master Layout
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● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

M
 training sub-masters

● N
W
 training workers

Sub-Master Layout
mpi-opt
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● One master running the bayesian optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training worker groups

● N
GPU

 used for each worker group (either nodes or gpu)

all-reduce Layout
mpi-opt



09/11/19
Fast ML, Distributed Training, J-R Vlimant

30

skopt
worker 2

com
master
Rank 0

P
ar

am
et

er
-s

et
 g

ro
up

 0

P
ar

am
et

er
-s

et
 g

ro
up

 1

P
ar

am
et

er
-s

et
 g

ro
up

 N
G

Training master
group 0, subrank 0

Training worker
group 0, subrank 1

Training master
group 0, subrank2

Training master
group 0, subrank N

W

● One master running communication of parameter set
● N
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 workers running the bayesian optimization

● N
G
 groups of nodes training on a parameter-set on simultaneously

● One training master
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mpi-skopt Setup
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● One master process drives the hyper-parameter optimization
● N

G
 groups of nodes training on a parameter-set on simultaneously

● One training master
● N

W
 training workers

Basic Layout
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● One master running the optimization. Receiving the average  figure of
merit over N

F
 folds of the data

➢ N
G
 groups of nodes training on a parameter-set on simultaneously

➢ N
F
 groups of nodes running one fold each

K-folding Layout
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Bayesian Optimization

● Objective function is
approximated as a multivariate
gaussian

● Measurements provided one by
one to improve knowledge of the
objective function

● Next best parameter to test is
determined from the acquisition
function

● Using the python implementation
from 
https://scikit-optimize.github.io 

https://tinyurl.com/yc2phuaj 

https://scikit-optimize.github.io/
https://tinyurl.com/yc2phuaj
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Evolutionary Algorithm
● Chromosomes are represented by the hyper-parameters
● Initial population taken at random in the parameter space
● Population is stepped through generations

● Select the 20% fittest solutions
● Parents of offspring selected by binary tournament based on

fitness function
● Crossover and mutate to breed offspring

●   Alternative to bayesian opt. Indications that it works better for
large number of parameters and non-smooth objective function 
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