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* Neural network training

« Training workload parallelization
* Hyper-parameters optimization

« Summary and Future work
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¢ Motivations

e Large models on large dataset can take days-week
to converge on single GPU.

« Simpler models can take as long to converge, on
CPU-only hosts.

* Prototyping with model architecture is like testing a
new idea for analysis, you want to have the answer
“fast”

» Dismissing large model, large dataset because of
train time
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Deep Learning Training
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¢ Artificial Neural Network

A mostly complete chart of

o= Neural Networks ......... http://www.asimovinstitute.org/neural-network-zoo
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» Large number of parameters
o Efficiently adjusted with stochastic gradient descent

The more parameters, the more data required
* Training to convergence can take minutes to several days, ...

Fast ML, Distributed Training, J-R Vlimant
09/11/19 5


http://www.asimovinstitute.org/neural-network-zoo

@ Training Artificial Neural
= Networks
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 ANN and associated loss function have fully analytical
formulation and are differentiable with respect to model
parameters
» Gradient evaluated over batch of data
> Too small : very noisy and scattering
> Too large : information dilution and slow convergence
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Parallelism Overview

>Data distribution
Compute the gradients on several batches
independently and update the model synchronously or
not. Applicable to large dataset

>Gradient distribution

Compute the gradient of one batch in parallel and
update the model with the aggregated gradient.
Applicable to large sample = large event

>Model distribution

Compute the gradient and updates of part of the
model separately in chain. Applicable to large model
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¢ Data Distribution

1) Compute gradient,
send to Master 2) Update network

E W — W — nVQ(ﬂ;‘j weights

3) Send new weights to Worker

https://arxiv.org/abs/1712.05878

* Master node operates as parameter server
* Work nodes compute gradients
* Master handles gradients to update the central model
> downpour sgd https://tinyurl.com/ycfpwec5
> Elastic averaging sgd https://arxiv.org/abs/1412.6651
> Gradient energy matching https://arxiv.org/abs/1805.08469
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¢ Performance with ANN
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https://arxiv.org/abs/1712.05878

o

e Speed up in training recurrent neural networks on Piz
Daint CSCS supercomputer
> Linear speed up with up to ~20 nodes.
> Needs to compensate for staleness of gradients
(see GEM https://arxiv.org/abs/1805.08469)
> Linear scaling on servers with 8 GPUs
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@ Performance with GAN
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adversarial networks on Piz Daint CSC
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(] Cray ML Plugin
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Horovod Layout
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A logical worker is spawn over multiple processes
« Communicator passed to horovod https://github.com/uber/horovod
* Nvidia NCCL enabled for fast GPU-GPU communication
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¢ Intel MKL-DNN
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convolution support) * Dual socket Intel Xeon 8160
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« inter_op_paralellism_threads/intra_ * Intel® Omni-Path Architecture
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Y Intra-Node Model Parallelism
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» Perform part of the forward and backward pass on different devices
* Require good device to device communication
 Utilize native tensorflow multi-device manager
« Aiming for machines with multi-gpu per node topology ( e.g summit)

See T. Kurth et al. @ https://pasc18.pasc-conference.org for node
to node model parallelism considerations
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09/11/19 19


https://pasc18.pasc-conference.org/

09/11/19

Hyper-Parameters
Optimization

Fast ML, Distributed Training, J-R Vlimant

20



Hyper-Parameters

« Various parameters of the model cannot be learned by gradient
descent
- Learning rate, batch size, number of layers, size of kernels, ...

« Tuning to the right architecture is an “art”. Can easily spend a lot
of time scanning many directions

 Full parameter scan is resource/time consuming.

> Hence looking for a way to reach the optimum hyper-parameter
set for a provided figure of merit (the loss by default, but any
other fom can work)
> Possible optimization engine (https://github.com/vliimant/mpi_opt)
~ Bayesian optimization with gaussian processes prior
~ Evolutionary algorithm

>

Fast ML, Distributed Training, J-R Vlimant
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¥  K-Folding Cross Validation

D Validation Set

. Training Set

Round 1 Round 2 Round 3 Round 10
WE— 90% 91% 95%

Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...)

» Estimate the performance of multiple model training over
different validation part of the training dataset

 Allows to take into account variance from multiple source
(choice of validation set, choice of random initialization, ...)

» Crucial when comparing models performance

* Training on folds can proceed in parallel

Fast ML, Distributed Training, J-R Vlimant
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(] K-Folding Layout

Parameter-set group O
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Summary & Outlook

« Distributed training is not always necessary (short training time?)

 Many aspects to distributed training to consider

« Several x-factor speedup for ANN, efficient at low number of
nodes. Bottleneck on master/node load balance. GEM maintains
convergence over nodes.

» Several inefficient x-factors to be gained for GAN training

* Distributed training over CPU facilities is efficient (but not
necessarily cost effective)

» Cross validation is a must and can be done in parallel

« Hyper-parameter optimization is almost mandatory, but not fully
parallelizable

- Interest in the community to have a common software

> Imminent publication about distributed training and optimization,
seed to a follow up community-wide project.

> In-house dev, or use industry provided software ?

Fast ML, Distributed Training, J-R Vlimant
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Putting all Features Together

N =1+ N, X N_x (N, x N, xN

nodes GPU)

N, : # of concurrent hyper-parameter set tested
N_ : # of folds

N, : # of masters

N, : # of workers per master

N, : # of nodes per worker (1node=1gpu)

Speed up and optimize models using thousand(s)
of GPUs
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Sub-master Layout
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» Putting workers in several groups
« Aim at spreading communication to the main master
* Need to strike a balance between staleness and

update frequency

Fast ML, Distributed Training, J-R Vlimant
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@Sub-Master Layout
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/

Parameter-set group 0

* One master running the bayesian optimization
« N, groups of nodes training on a parameter-set on simultaneously

* One training master
 N,, training sub-masters
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Parameter-set group 0

* One master running the bayesian optimization
« N, groups of nodes training on a parameter-set on simultaneously

* One training master
« N, training worker groups

« N, used for each worker group (either nodes or gpu)

Fast ML, Distributed Training, J-R Vlimant
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Parameter-set group 0

* One master running communication of parameter set
« N, workers running the bayesian optimization

« N, groups of nodes training on a parameter-set on simultaneously

* One training master
ini L, Distributed Training, J-R Vlimant
09/11/19 « N, training workets! g 10



@asic Layout

“ J

Parameter-set group 0

* One master process drives the hyper-parameter optimization
N groups of nodes training on a parameter-set on simultaneously

* One training master

« N, training workers

Fast ML, Distributed Training, J-R Vlimant
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-folding Layout

Parameter-set group 0

* One master running the optimization. Receiving the average figure of
merit over N_ folds of the data

- N, groups of nodes training on a parameter-set on simultaneously

> N_ groups of nodes running one fold each

Fast ML, Distributed Training, J-R Vlimant
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https://tinyurl.com/yc2phuaj

* Objective function is
approximated as a multivariate
gaussian

 Measurements provided one by
one to improve knowledge of the
objective function

* Next best parameter to test is
determined from the acquisition
function

* Using the python implementation
from
https://scikit-optimize.github.io
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(] Evolutionary Algorithm

 Chromosomes are represented by the hyper-parameters
e |nitial population taken at random in the parameter space
* Population is stepped through generations

» Select the 20% fittest solutions

» Parents of offspring selected by binary tournament based on
fitness function

» Crossover and mutate to breed offspring

Alternative to bayesian opt. Indications that it works better for
large number of parameters and non-smooth objective function

* Chromosome crossover:

* LetParent A be more fit than Parent B

@ © A Genetic Diversity

Create Initial
@ Fopulation %
. o
* For each parameterp, generate a random number 7 in (0, 1) to find p,3;;4 ®

Pchita = (T)(pParent A ~ Pprarent B) iy Pparent 4

D. Reproduce

B. Evaluate
Clone & Mutate Next Fitness
Survivors Generation -
0®® mmEmp o5
. ; ; , ® o Bl
* Non-uniform mutation (Michalewicz): e © o @
* In generation g out of a total G generations, for each parameter p in a child
generate random numbers 11,7, € (0, 1) to define a mutation m:

C. Selection
Kill Unfit Metworks
3 @ @
_ (1-5) (Pmax = Penita) 1F 12> 0.5 [& ®o o y
m=\1- T * o
_ (PLow — Penita) IF 1, <05 o
Pchitd = Pchita M
@ network
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