(Fast) Distributed Training

Fast Machine Learning

September 10-13, 2019 at Fermilab

Jean-Roch Vlimant, with many others

09/11/19

Outline

* Neural network training

« Training workload parallelization
* Hyper-parameters optimization

« Summary and Future work

Fast ML, Distributed Training, J-R Vlimant

¢ Motivations

e Large models on large dataset can take days-week
to converge on single GPU.

« Simpler models can take as long to converge, on
CPU-only hosts.

* Prototyping with model architecture is like testing a
new idea for analysis, you want to have the answer
“fast”

» Dismissing large model, large dataset because of
train time

Fast ML, Distributed Training, J-R Vlimant
09/11/19

09/11/19

Deep Learning Training

Fast ML, Distributed Training, J-R Vlimant

¢ Artificial Neural Network

A mostly complete chart of

o= Neural Networks http://www.asimovinstitute.org/neural-network-zoo

\nput Cell ©2016 Fjodor van Veen - asimovinstitute.org
TAYAN

X X
X

A Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

_ AN “« . .
@ Hidden Cell KNP A > N >
e WAV X oy X0 O
© rrobablistic Hidden Cell — o> s OO0]
@ spiking Hidden Cell X o O X 0 2 S
Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU) —1 /O\ _ o~ /O O\ -
@ outputcell -... -.-. -.‘. X \O/O\ X O\O O/O\
NN NN NN W U
@ vecen mpurOuprcl N BB N X ~ol X0~ ~0
Rg Vuglll e 0 a0 ~ ~ ~
SRR TR % s :
@ FRecurrent cell
. Memory Cell Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Different Memory Cell o
NVAATA
Kernel o (y{ ;'(;z(;“ "
QO Convolution or Pool d \"‘\"‘\"‘\"‘\"
Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)
6 Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)
S O
GRS
‘I V. ‘l \. .' V.
@ I 0y, 0 B
(@]
O

» Large number of parameters
o Efficiently adjusted with stochastic gradient descent

The more parameters, the more data required
* Training to convergence can take minutes to several days, ...

Fast ML, Distributed Training, J-R Vlimant
09/11/19 5

http://www.asimovinstitute.org/neural-network-zoo

@ Training Artificial Neural
= Networks

J(w) Initial

 __— Gradient

!
/
1
1

 ANN and associated loss function have fully analytical
formulation and are differentiable with respect to model
parameters
» Gradient evaluated over batch of data
> Too small : very noisy and scattering
> Too large : information dilution and slow convergence

Fast ML, Distributed Training, J-R Vlimant
09/11/19 6

09/11/19

Distributed Training

Fast ML, Distributed Training, J-R Vlimant

Parallelism Overview

>Data distribution
Compute the gradients on several batches
independently and update the model synchronously or
not. Applicable to large dataset

>Gradient distribution

Compute the gradient of one batch in parallel and
update the model with the aggregated gradient.
Applicable to large sample = large event

>Model distribution

Compute the gradient and updates of part of the
model separately in chain. Applicable to large model

Fast ML, Distributed Training, J-R Vlimant
09/11/19 8

09/11/19

Data
Distribution

Fast ML, Distributed Training, J-R Vlimant

¢ Data Distribution

1) Compute gradient,
send to Master 2) Update network

E W — W — nVQ(ﬂ;‘j weights

3) Send new weights to Worker

https://arxiv.org/abs/1712.05878

* Master node operates as parameter server
* Work nodes compute gradients
* Master handles gradients to update the central model
> downpour sgd https://tinyurl.com/ycfpwec5
> Elastic averaging sgd https://arxiv.org/abs/1412.6651
> Gradient energy matching https://arxiv.org/abs/1805.08469

Fast ML, Distributed Training, J-R Vlimant
09/11/19 10

https://arxiv.org/abs/1712.05878
https://tinyurl.com/ycfpwec5
https://arxiv.org/abs/1412.6651
https://arxiv.org/abs/1805.08469

09/11/19

Basic Layout

Fast ML, Distributed Training, J-R Vlimant

11

¢ Performance with ANN

e o val
>
o
E:
=
%

[=1]
o

wu
o
T

0.8

SIEN

[

e

5 0.6
=

o]

@
1 e

lative to 1 worker
w N
(=] (=]
-

Speedup re
[
(=)

=
o
T

L L L L L L 0.0 T T T T T T T T T T T T
10 20 30 40 50 60 1 5 10 15 20 25 30 35 40 45 50 55 60
Number of worker processes Number of worker processes

https://arxiv.org/abs/1712.05878

o

e Speed up in training recurrent neural networks on Piz
Daint CSCS supercomputer
> Linear speed up with up to ~20 nodes.
> Needs to compensate for staleness of gradients
(see GEM https://arxiv.org/abs/1805.08469)
> Linear scaling on servers with 8 GPUs

Fast ML, Distributed Training, J-R Vlimant
09/11/19 12

https://arxiv.org/abs/1805.08469
https://arxiv.org/abs/1712.05878

@ Performance with GAN

2

10
NVIDA K20 at Titan, ORNL
8
15
NVIDA P100 on Piz Daint, CSCS
% 6
E 10
» 4
5
2
0 o
1 3 4 5 10 15 20 Single master 2 4 10 25 40 100

Nodes

» Speed up in training generative
adversarial networks on Piz Daint CSC
and Titan ORNL supercomputers

» Using easgd algorithm with rmsprop ¢
> Speed up is not fully efficient. o | YRETSD i S
Bottlenecks to be identified 390 100 O L O OV O o

|
0
Ep

Fast ML, Distributed Training, J-R Vlimant
09/11/19 13

(] Cray ML Plugin

5120

ol Performance Scalingon GPU |

IO - mincmmmsos simmsimsamenbemmaiasmsnsumss insm o S s e R i i S 1

MPI based. Synchronous SGD. TF1.4 N N, S (il
Optimal scaling through a large number of e R T
nodes | N S A—

SO gd perpmEnesiaggadalian stiew N R
energy 102 Lo tatlal imag/s

Possibly compensate by increasing learning | . | !
ralo j — s, Performance Scalingon CPU_

—— GAN_1GPU
GAN_ 2GPU
GAN_ 4GPU

EcallEp

T
)

18

Work in progress 6

1.4

~ GAN_ BGPU B o b e M e R e i * e L

\ GAN_16GPU
1.2 :

GPU System CPU System it
Bl a2t i AT SR O RSP P
Model XC40/XC50 XC50 4 *'ﬁ::j}fﬂ_Aiﬁﬁszﬁﬂ;igzggﬁqs:;;
Computer nodes Intel Xeon E5- Two Intel Xeon :
2697 v4 @ 2.3GHz Platinum 8160 @ e~ ; i i i ;
(18 cores, 64GB 2.1GHz 06 : P IR oSN NN NS
RAM) and NVIDIA (2 x 24 cores, : 3 H i
Tesla P100 16GB 192GB RAM) 0.4 —
+ avg time/step (s)

Interconnect Aries, Dragonfly Aries, Dragonfly 02 (N TR S s el Kot TEAHETAE
network topology ~ network topology I I F ; i .
D | e | | I 11 | L

i H ;
11 111 | - L1 1| Il 1 1 1111 L1l

50 100 150 200 250 300 350 400 450 500 4 8 16 32 64 12 16

Ep GeV # nodes

Slide S. Vallecorsa

(7| PO SOOI SO - IO S——

[=)

Step Epoch Batch

https://sites.google.com/nvidia.com/ai-hpc

Fast ML, Distributed Training, J-R Vlimant
09/11/19 14

https://sites.google.com/nvidia.com/ai-hpc

09/11/19

Gradient
Distribution

Fast ML, Distributed Training, J-R Vlimant

15

Horovod Layout
Y ™\

Training master
‘group 0, subrank 0

e r” W
GPU1 U2 GPUN_,

- - o -
--_’

~

L 4

—
=
N /
—
=
N

i wt
GPU1 U2 GPUN,,

A logical worker is spawn over multiple processes
« Communicator passed to horovod https://github.com/uber/horovod
* Nvidia NCCL enabled for fast GPU-GPU communication

Fast ML, Distributed Training, J-R Vlimant
09/11/19 16

https://github.com/uber/horovod

¢ Intel MKL-DNN

g

Use keras 2.13 /Tensorflow 1.9 I A& |

(Intel optimised) R e
*« AVX512 —-FMA-XLA support

. Intel® MKL-DNN (with 3D Run on TACC Stampede?2 cluster:
convolution support) * Dual socket Intel Xeon 8160
Optimised multicore utilisation * 2x24 cores per node, 192 GB RAM
« inter_op_paralellism_threads/intra_ * Intel® Omni-Path Architecture
op_paralellism threads Test several MPI scheduling
Horovod 0.13.4 configurations
» Synchronous SGD approach * 2,4, 8 processes per nodes.
« MPI_AllReduce « Best machine efficiency with 4
processes/node
Some performance dEgradation High Energy Physics: 3D GANS Training Scaling Performance
MOStIV in the IOW energy reglons fOI“ Iarge batChSIZe TensarFlow:l};::l:ﬁ-’:)i:’r:l‘i:)o‘::vs::,?n:::e:o/:::&c:!:(ANIF:‘:ri\:lorkers/Node
-0-25 Xeon 8160: Secs/Epoch Speedup ~==|deal “@Scaling Efficiency
Ratio of Ecal and Ep 256 vt s 98% 97% 7% 97% 96% Si% 100%
o 003 y — I
T | Ez 128 e
i e e = S o 80%
r i |+r,hg+? Ly | 70% z
—*-%ﬁm&;ﬂw A S i g _ z
o.oz:ﬁ ¥ *+rﬁ%ﬁmﬁhﬁﬁt&wﬁ%ﬁg&ﬁﬁﬁg}#@ﬁﬁ%ﬂg .§ 32 60% E
. it ¥ e 16 50% =
0015 " & . 40% g
- ata 30% A
oot BatchSize=1000 a
; BatchSize=4000 , =
G BatchSize=10000 10%
c‘!\lr ! 1 2 4 8 16 32 64 128 e
0 50 100 150 200 250 300 350 400 450 Espoo Intel(R) 25 Xeon(R) Nodes

Slide S. Vallecorsa
https://sites.google.com/nvidia.com/ai-hpc

Fast ML, Distributed Training, J-R Vlimant
09/11/19 17

https://sites.google.com/nvidia.com/ai-hpc

09/11/19

Model
Distribution

Fast ML, Distributed Training, J-R Vlimant

18

Y Intra-Node Model Parallelism

gam— @ o gam— @ . o

]litif:'u layer 1 hidden lil._\-'l.']\:r: Ilrlthru layer 3 \

input laver

» Perform part of the forward and backward pass on different devices
* Require good device to device communication
 Utilize native tensorflow multi-device manager
« Aiming for machines with multi-gpu per node topology (e.g summit)

See T. Kurth et al. @ https://pasc18.pasc-conference.org for node
to node model parallelism considerations

Fast ML, Distributed Training, J-R Vlimant
09/11/19 19

https://pasc18.pasc-conference.org/

09/11/19

Hyper-Parameters
Optimization

Fast ML, Distributed Training, J-R Vlimant

20

Hyper-Parameters

« Various parameters of the model cannot be learned by gradient
descent
- Learning rate, batch size, number of layers, size of kernels, ...

« Tuning to the right architecture is an “art”. Can easily spend a lot
of time scanning many directions

 Full parameter scan is resource/time consuming.

> Hence looking for a way to reach the optimum hyper-parameter
set for a provided figure of merit (the loss by default, but any
other fom can work)
> Possible optimization engine (https://github.com/vliimant/mpi_opt)
~ Bayesian optimization with gaussian processes prior
~ Evolutionary algorithm

>

Fast ML, Distributed Training, J-R Vlimant
09/11/19 21

https://github.com/vlimant/mpi_opt

¥ K-Folding Cross Validation

D Validation Set

. Training Set

Round 1 Round 2 Round 3 Round 10
WE— 90% 91% 95%

Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...)

» Estimate the performance of multiple model training over
different validation part of the training dataset

 Allows to take into account variance from multiple source
(choice of validation set, choice of random initialization, ...)

» Crucial when comparing models performance

* Training on folds can proceed in parallel

Fast ML, Distributed Training, J-R Vlimant
09/11/19 22

(] K-Folding Layout

Parameter-set group O

Fast ML, Distributed Training, J-R Vlimant
09/11/19 23

Summary & Outlook

« Distributed training is not always necessary (short training time?)

 Many aspects to distributed training to consider

« Several x-factor speedup for ANN, efficient at low number of
nodes. Bottleneck on master/node load balance. GEM maintains
convergence over nodes.

» Several inefficient x-factors to be gained for GAN training

* Distributed training over CPU facilities is efficient (but not
necessarily cost effective)

» Cross validation is a must and can be done in parallel

« Hyper-parameter optimization is almost mandatory, but not fully
parallelizable

- Interest in the community to have a common software

> Imminent publication about distributed training and optimization,
seed to a follow up community-wide project.

> In-house dev, or use industry provided software ?

Fast ML, Distributed Training, J-R Vlimant
09/11/19 24

09/11/19

Extra Slides

Fast ML, Distributed Training, J-R Vlimant

25

Putting all Features Together

N =1+ N, X N_x (N, x N, xN

nodes GPU)

N, : # of concurrent hyper-parameter set tested
N_ : # of folds

N, : # of masters

N, : # of workers per master

N, : # of nodes per worker (1node=1gpu)

Speed up and optimize models using thousand(s)
of GPUs

Fast ML, Distributed Training, J-R Vlimant

Sub-master Layout

Y N

Training master
~group 0, subrank Oy
o
> TMA TMN,,
)
=
3 TWO TWO
c W W
© . | | |
a ==
TWN,, TWN,,

» Putting workers in several groups
« Aim at spreading communication to the main master
* Need to strike a balance between staleness and

update frequency

Fast ML, Distributed Training, J-R Vlimant
09/11/19 27

@Sub-Master Layout

09/11/19

/

Parameter-set group 0

* One master running the bayesian optimization
« N, groups of nodes training on a parameter-set on simultaneously

* One training master
 N,, training sub-masters

. NW trai ning RardMde fRistributed Training, J-R Vlimant -

Parameter-set group 0

* One master running the bayesian optimization
« N, groups of nodes training on a parameter-set on simultaneously

* One training master
« N, training worker groups

« N, used for each worker group (either nodes or gpu)

Fast ML, Distributed Training, J-R Vlimant
09/11/19 29

“ J

Parameter-set group 0

* One master running communication of parameter set
« N, workers running the bayesian optimization

« N, groups of nodes training on a parameter-set on simultaneously

* One training master
ini L, Distributed Training, J-R Vlimant
09/11/19 « N, training workets! g 10

@asic Layout

“ J

Parameter-set group 0

* One master process drives the hyper-parameter optimization
N groups of nodes training on a parameter-set on simultaneously

* One training master

« N, training workers

Fast ML, Distributed Training, J-R Vlimant
09/11/19 31

-folding Layout

Parameter-set group 0

* One master running the optimization. Receiving the average figure of
merit over N_ folds of the data

- N, groups of nodes training on a parameter-set on simultaneously

> N_ groups of nodes running one fold each

Fast ML, Distributed Training, J-R Vlimant
09/11/19 32

observation (x)

\ acquisition function (u(-))

________ =" objective fn (f(.)

V¥ acquisition max

==
=~
S~
~

t=3

~
-

new observation (x,)

posterior uncertainty
(p()£a(4))

posterior mean (u(-))

T~ N

v

https://tinyurl.com/yc2phuaj

* Objective function is
approximated as a multivariate
gaussian

 Measurements provided one by
one to improve knowledge of the
objective function

* Next best parameter to test is
determined from the acquisition
function

* Using the python implementation
from
https://scikit-optimize.github.io

Fast ML, Distributed Training, J-R Vlimant

09/11/19

33

https://scikit-optimize.github.io/
https://tinyurl.com/yc2phuaj

(] Evolutionary Algorithm

 Chromosomes are represented by the hyper-parameters
e |nitial population taken at random in the parameter space
* Population is stepped through generations

» Select the 20% fittest solutions

» Parents of offspring selected by binary tournament based on
fitness function

» Crossover and mutate to breed offspring

Alternative to bayesian opt. Indications that it works better for
large number of parameters and non-smooth objective function

* Chromosome crossover:

* LetParent A be more fit than Parent B

@ © A Genetic Diversity

Create Initial
@ Fopulation %
. o
* For each parameterp, generate a random number 7 in (0, 1) to find p,3;;4 ®

Pchita = (T)(pParent A ~ Pprarent B) iy Pparent 4

D. Reproduce

B. Evaluate
Clone & Mutate Next Fitness
Survivors Generation -
0®® mmEmp o5
. ; ; , ® o Bl
* Non-uniform mutation (Michalewicz): e © o @
* In generation g out of a total G generations, for each parameter p in a child
generate random numbers 11,7, € (0, 1) to define a mutation m:

C. Selection
Kill Unfit Metworks
3 @ @
_ (1-5) (Pmax = Penita) 1F 12> 0.5 [& ®o o y
m=\1- T * o
_ (PLow — Penita) IF 1, <05 o
Pchitd = Pchita M
@ network
Fast ML, Distributed Training, J-R Vlimant
09/11/19

O unfit Network @ Cloned Network

34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

