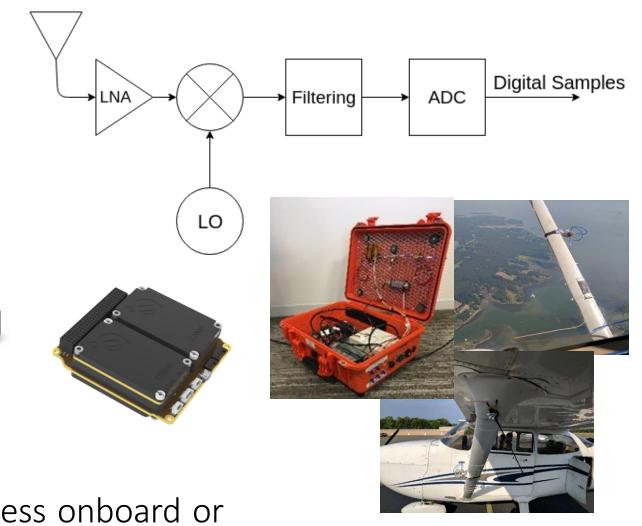
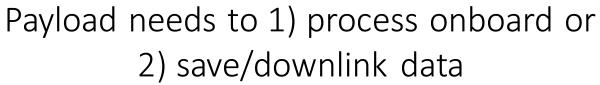
Real Time RF Processing for Space-Based Analytics

EJ Kreinar Senior Processing Engineer, Hawkeye 360

Hawkeye 360 Overview


- Venture-backed startup in Herndon, VA
- Technical Mission:
 - Launch a cluster of small satellites in Fall 2018
 - 3 satellites per cluster, flying in formation
 - Satellites in LEO (low earth orbit) in a polar orbit
 - Satellites share a common ground footprint and provide geometric diversity
 - Passively receive RF signals
 - Independently geolocate emitters from 100 MHz to 15 GHz ("DC to Daylight") using TDOA and FDOA measurements


Provide a new commercial data source for precise, global mapping of RF emissions

Software Defined Radio System

- Antenna(s) & frontend signal conditioning
- Analog to Digital Converter
- Baseband RF Processing: FPGA, Software
 - PC
 - Cloud
 - Spacecraft Payload!

HawkEye³⁶⁰

RF Processing Technical Challenges

Applications

Communications systems

- Transmit and receive data through an RF channel
- Measuring systems
 - GPS: Position/velocity/time estimation
 - Radar (pulsed, modulated)
- Signal detection and characterization
 - Modulation recognition

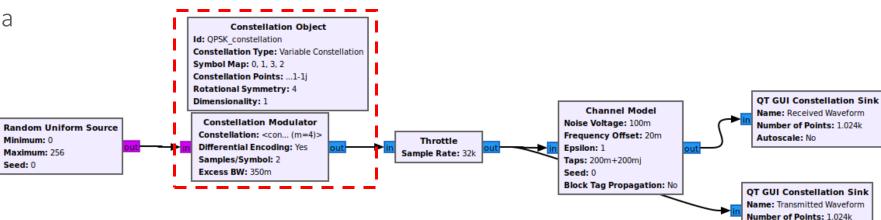
Limitations

Hardware

- Size, weight and power (SWAP)
- Limited storage and downlink capability
- RF Tuning
 - When in time?
 - Where over the earth?
 - What frequency (100 MHz to 15 GHz)?

Communications Systems

Received Waveform


-2 -1.5 -1 -0.5 0 0.5 1 1.5

In-phase

Autoscale: No

Data 0

- ► **Goal**: Transmit and receive data through an **RF** channel
- Expert Solution:
 - Modulate onto the RF carrier
 - Remove channel effects
 - Perfectly reconstruct original dataset
- Learned Solutions:

-2 -1.5 -1 -0.5 0 0.5

In-phase

1 1.5 2

😑 🗉 channel_sim

1.5 -

1 -

0 -

-1 -

-1.5 -

-2

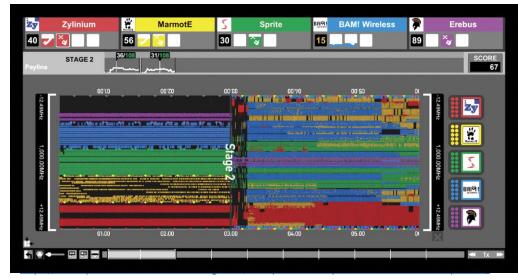
Onadrature 0 -0.5 -

Transmitted Waveform

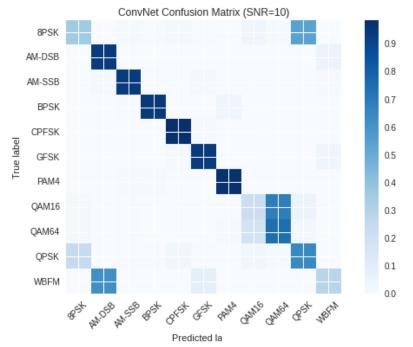
Data 0

1.5

0.5 - 0.5 - 0 0 -0.5


-1

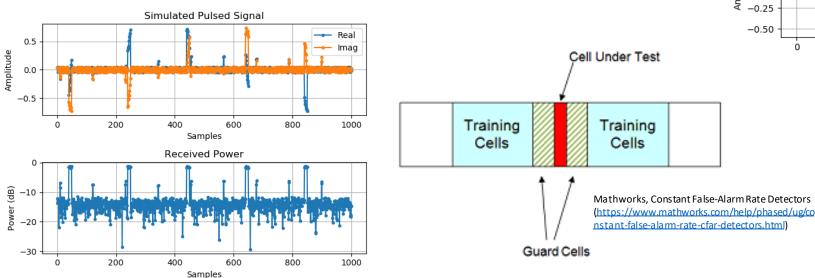
-1.5 -

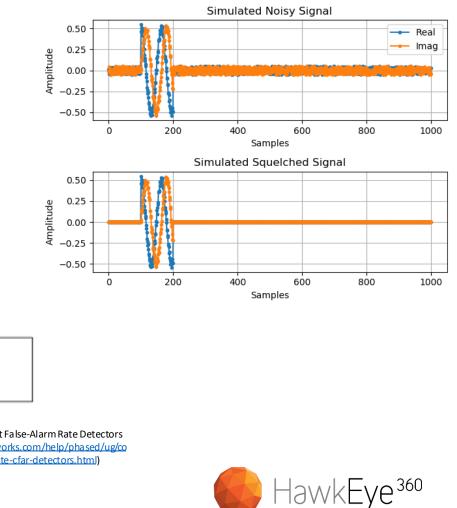

-2

Active research area

- Goal: Detect and characterize received waveforms and modulation schemes
 - Amplitude Modulation, Frequency Modulation
 - Phase Shift Keying (PSK)
 - Orthogonal Frequency Division Multiplexing (OFDM)
 - LTE, or other standards

- Learned Solutions:
 - Classification problem
 - (Legacy) Use expert derived features
 - (More recently) Input raw data or spectrogram




https://github.com/ejk43/examples/blob/master/modulation_recognition/RML2016.10a_VTCNN2_example.ipynb

[1] O'Shea, TimothyJ and Corgan, Johnathan and Clancy, T. Charles, "Convolutional Radio Modulation Recognition Networks", arXiv preprint arXiv:1602.04105, 2016 [2] O'Shea, TimothyJ and West, Nathan, "Radio Machine Learning Dataset Generation with GNU Radio", Proceedings of the 6th GNU Radio Conference, 2016

Energy / Pulse Detection

- Goal: Trigger and extract "relevant" RF data out of wideband digital captures
- Expert Solutions:
 - Squelch filters
 - Constant false alarm rate (CFAR) filters
- Learned Solutions:
 - Unknown! -- potentially a new area of research

- Legacy, "expert" algorithms are commonly deployed onto FPGA fabric and embedded processors for realtime processing
- We see many potential improvements in both quality and efficiency by training and deploying machine learning solutions in future work

Happy to collaborate on solutions that can impact both problem-sets!

Thank You!

