BLUE WATERS SUSTAINED PETASCALE COMPUTING

Distributed Training on HPC

Presented By: Aaron D. Saxton, PhD

- Simple $y = m \cdot x + b$ regression
 - Least Squares to find m,b
 - With data set $\{(x_i, y_i)\}_{i=1,\dots,n}$
 - Let the error be
 - $R = \sum_{i=1}^{n} [(y_i (m \cdot x_i + b))]^2$
 - Minimize *R* with respect to *m* and *b*.
 - Simultaneously Solve
 - $R_m(m,b) = 0$
 - $R_b(m,b) = 0$
 - Linear System
- We will consider more general y = f(x)
 - $R_m(m,b) = 0$ and $R_b(m,b) = 0$ may not be linear

Statistics Review

- Regressions with parameterized sets of functions. e.g.
 - $y = ax^2 + bx + c$ (quadratic)
 - $y = \sum a_i x^i$ (polynomial)
 - $y = Ne^{rx}$ (exponential)

•
$$y = \frac{1}{1+e^{-(a+bx)}}$$
 (logistic)

Gradient Decent

- Searching for minimum
- $\nabla R = \langle R_{\theta_0}, R_{\theta_2}, \dots, R_{\theta_n} \rangle$
- $R(\vec{\theta}_{t+1}) = R(\vec{\theta}_t + \gamma \nabla R)$
- γ: Learning Rate
- Recall, Loss depends on data Expand notation,
 - $R(\vec{\theta}_t; \{(x_i, y_i)\}_n)$
 - Recall R and ∇R is a sum over i
- Want *R* with ALL DATA ?
 - $(R = \sum_{i=1}^{n} [(y_i f_{\theta_t}(x_i)]^2)$

Fictitious Loss Surface With Gradient Field

Gradient Decent

Stochastic Gradient Decent

• Recall *R* is a sum over *i* $(R = \sum_{i=1}^{n} [(y_i - f_{\theta_t}(x_i)]^2)]$

- Single training example, (x_i, y_i) , Sum over only one training example
- $\nabla R_{(x_i,y_i)} = \langle R_{\theta_0}, R_{\theta_2}, \dots, R_{\theta_n} \rangle_{(x_i,y_i)}$
- $R_{(x_i,y_i)}(\vec{\theta}_{t+1}) = R_{(x_i,y_i)}(\vec{\theta}_t + \gamma \nabla R_{(x_i,y_i)})$
- γ: Learning Rate
- Choose next (x_{i+1}, y_{i+1}) , (Shuffled training set)
- SGD with mini batches
- Many training example, (x_i, y_i) , Sum over many training example
 - Batch Size or Mini Batch Size (This gets ambiguous with distributed training)
- SGD often outperforms traditional GD, want small batches.
 - <u>https://arxiv.org/abs/1609.04836</u>, On Large-Batch Training ... Sharp Minima
 - <u>https://arxiv.org/abs/1711.04325</u>, Extremely Large ... in 15 Minutes
- Optimization Methods for Large-Scale Machine Learning
 - <u>https://epubs.siam.org/doi/pdf/10.1137/16M1080173</u>

Neural Networks

Activation functions
 Logistic

ReLU (Rectified Linear Unit)

Softmax

 $\sigma(x) =$

•
$$g_k(x_1, x_2, ..., x_N) = \frac{e^{x_k}}{\sum e^{x_k}}$$

- Parameterized function
 - $Z_M = \sigma(\alpha_{0m} + \alpha_m X)$
 - $T_K = \beta_{0k} + \beta_k Z$
 - $f_K(X) = g_k(T)$
- Linear Transformations with bias (Affine?) and pointwise evaluation of nonlinear function, σ
- $\beta_{0i}, \beta_i, \alpha_{0m}, \alpha_m$
 - Weights to be optimized

Faux Model Example

Distributed Training, data distributed

NCSA

GREAT LAKES CONSORTIUM

FOR PETASCALE COMPUTATION

CRAY

GREAT LAKES CONSORTIUM

FOR PETASCALE COMPUTATION

CRA

GREAT LAKES CONSORTIUM

Practical Implementations

- Native Tensorflow
- Native PyTorch
- Horovod
- Cray ML Plugin

Practical Implementations: Native Tensorflow

Parameter Servers-Workers

Build Data, Model, and Training Somewhere Here

with tf.train.MonitoredTrainingSession(master=server.target

is_chief=(tf_index == 0), checkpoint_dir=FLAGS.checkpoint_dir,

```
#save_summaries_secs=1800,
```

save_summaries_steps=PRINT_SUMMERY_EVERY,

```
config=config,
```

hooks=hooks) as mon_sess:

```
print("worker %s: In MonitoredTrainingSession() context" % tf_index)
```

```
tf.train.start_queue_runners(sess=mon_sess)
```


Native MPI tensor serialization!

```
import torch.distributed as dist
```

```
dist.init_process_group('mpi')
num_workers = dist.get_world_size()
rank = dist.get_rank()
```

```
for param in model.parameters():
    if param is not None:
        dist.all_reduce(param.data)
for param in model.parameters():
    if param is not None:
        param /= float(num_workers)
```

Build Data, Model, and Training Somewhere Here

Practical Implementations: Horovod

MPI Wrapper Around Tensorflow

https://github.com/horovod/horovod

import tensorflow as tf
import horovod.tensorflow as hvd

Initialize Horovod
hvd.init()

Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

Build model...
loss = ...
opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

Add hook to broadcast variables from rank 0 to all other processes dur # initialization. hooks = [hvd.BroadcastGlobalVariablesHook(0)]

Make training operation
train_op = opt.minimize(loss)

Save checkpoints only on worker 0 to prevent other workers from corrup checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None

The MonitoredTrainingSession takes care of session initialization, # restoring from a checkpoint, saving to a checkpoint, and closing when # or an error occurs.

with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

config=config, hooks=hooks) as mon_sess:

REAT LAKES CONSURTION

while not mon_sess.should_stop():
 # Perform synchronous training.
 mon_sess.run(train_op)

- Cray Optimized MPI Tensor serilization
 - Runs concurrently with standard Tesnorflow

```
Model, and
import ml_comm as mc
                                                                                                                                        Training
tot_model_size = sum([reduce(lambda x, y : x*y, v.get_shape().as_list()) for v in tf.trainable_variables()])
                                                                                                                                        Somewhere
mc.init(1, 1, tot_model_size, "tensorflow")
                                                                                                                                        Here
mc.config_team(0,0,100, FLAGS.num_steps, 2, 1)
class BcastTensors(tf.train.SessionRunHook):
  def __init__(self):
    self.bcast = None
  def begin(self):
    new_vars = mc.broadcast(tf.trainable_variables(), 0)
    self.bcast = tf.group(*[tf.assign(v, new_vars[k]) for k, v in enumerate(tf.trainable_variables())])
grads_and_vars = optimizer.compute_gradients(total_loss)
grads = mc.gradients([gv[0] for gv in grads_and_vars], 0)
gs_and_vs = [(q,v) for (_,v), q in zip(grads_and_vars, grads)]
                                                                                                         with tf.train.MonitoredTrainingSession(checkpoint_dir=FLAGS.checkpoint_dir
                                                                                                                                    save_summaries_steps=20,
                                                                                                                                    save checkpoint secs=120,
train_op = optimizer.apply_gradients(gs_and_vs, global_step=global_step)
                                                                                                                                    config=config,
                                                                                                                                    hooks=hooks) as mon_sess:
hooks = [tf.train.StopAtStepHook(last step=FLAGS.num steps), BcastTensors()]
                                                                                                          print("worker %s: In MonitoredTrainingSession() context" % rank)
                                                                                                          tf.train.start_queue_runners(sess=mon_sess)
```

Build Data.

Autoregression

$$X_t = c + \sum_{i=1}^p \phi_i B^i X_t + \epsilon_t$$

- Back Shift Operatior: Bⁱ
 Autocorrelation
 - $R_{XX}(t_1, t_2) = E[X_{t_1}\overline{X_{t_2}}]$
- Other tasks
 - Semantic Labeling

- Few projects use pure RNNs, this example is only for pedagogy
- RNN is a model that is as "deep" as the modeled sequence is long
- LSTM's, Gated recurrent unit
- No Model Parallel distributed training on the market (June 2019)
- Attention and Multi Headed
 Transformers
 - Still have problem staying small and finding long term relationships

