Study of Run2 electron beam injection

Livio Verra

24.05.2019

MPP Group Meeting

Beam parameters

Protons:

- 400 GeV/c
- ~ 3E+11 particles per bunch
- $\epsilon_{\rm N} = 2\mu rad, \sigma_{\rm r} = 200 \ \mu m$
- Modulated

Electrons:

- 165 MeV/c
- 100 pC
- Matched with plasma ($n_e = 2*10^{14} \text{ cm}^{-3}$) at the injection: $\beta \sim 9.5 \text{ mm}$, $\epsilon_N \sim 20 \mu \text{rad}$
- \rightarrow Incoming beam characteristics depend on the foils

Plasma parameters

Rubidium vapor

- T = (180 230) °C
- $n_e = (1 7)*10^{14} \text{ cm}^{-3}$

Beam optics recap

Ellipses is rotated towards the waist

→ Beta function not only defines the size (with ε), but also the envelope evolution:

$$\sigma = \sqrt{\sigma_0^2 + \frac{z^2 \varepsilon}{\beta}} \xrightarrow{z = \beta} \sigma = \sqrt{2} \sigma_0$$

ightarrow The waist moves closer to the foil

→ set incoming beam characteristics and propagate them after the foil

Working backward

Set:

- desired beta function at the waist (9.5 mm)
- desired emittance (20 mm mrad)
- distance waist laser beam dump

Return, as a function of foil thickness:

- beta function at the waist
- incoming emittance
- new waist position

Reiterate for the vacuum window

- 100 µm thick LBDP
- Al window

As the pressure differential is small, we could use a very thin Silicon membrane (down to 200 nm) → almost transparent for the beam

ightarrow we could afford a thicker LBDP

To set the waist 100 μm downstream LBDP, we have to focus further downstream

Do we need to consider energy deposited in the LBDP by the proton bunch?

ightarrow simulated proton bunch through 150 μm Al foil

