Introducing the Helicity-Flow Method

Andrew Lifson

In collaboration with Christian Reuschle & Malin Sjödahl

Work in Progress

Lund University

September 5th 2019

Outline

- Calculating an Amplitude
- 2 Building a Helicity-Flow Picture
- 3 (Massless) QED Helicity Flow + Examples
- (Massless) QCD Helicity Flow + Example
- 5 Summary & Outlook

How to Calculate a (Massless) Scattering Amplitude

• QCD often factorise colour, use helicity basis for kinematics

$$\mathcal{M}_h\left(1^{h_1},\ldots,n^{h_n}\right)=\sum_i C_i A_i\left(p_1^{h_1},\ldots,p_n^{h_n}\right)$$

- $C_i \equiv \text{colour factor}$
 - QED: *C_i* = 1
- $A_i \equiv$ kinematic amplitude
 - Cross incoming particles to outgoing
 - Each particle j is given a specific helicity h_j
 - Since massless, helicity \sim chirality

• Standard Feynman diagrams have matrix structure

- Takes much effort to simplify traces of γ^{μ}

• Spinor-helicity diagram is a complex number

- Easy to square
- Lorentz algebra $so(3,1) \cong su(2) \otimes su(2)$

Dirac spinors reducible into two irreps of diff chirality
Weyl rep of Dirac algebra naturally separates the two irreps

- Standard Feynman diagrams have matrix structure
 - Takes much effort to simplify traces of γ^{μ}
- Spinor-helicity diagram is a complex number
 - Easy to square
- Lorentz algebra $so(3,1) \cong su(2) \otimes su(2)$

Dirac spinors reducible into two irreps of diff chirality
Weyl rep of Dirac algebra naturally separates the two irreps

- Standard Feynman diagrams have matrix structure
 - Takes much effort to simplify traces of γ^{μ}
- Spinor-helicity diagram is a complex number
 - Easy to square
- Lorentz algebra $so(3,1) \cong su(2) \otimes su(2)$
- Dirac spinors reducible into two irreps of diff chirality
 Weyl rep of Dirac algebra naturally separates the two irreps

- Standard Feynman diagrams have matrix structure
 - Takes much effort to simplify traces of γ^{μ}
- Spinor-helicity diagram is a complex number
 - Easy to square
- Lorentz algebra $so(3,1) \cong su(2) \otimes su(2)$
- Dirac spinors reducible into two irreps of diff chirality
 - Weyl rep of Dirac algebra naturally separates the two irreps

• Lorentz algebra $so(3,1) \cong su(2) \otimes su(2)$

•
$$\gamma^{\mu} = \begin{pmatrix} 0 & \sqrt{2}\tau^{\mu,\dot{\alpha}\beta} \\ \sqrt{2}\bar{\tau}^{\mu}_{\alpha\dot{\beta}} & 0 \end{pmatrix}$$
, $\sqrt{2}\tau^{\mu,\dot{\alpha}\beta} = \sigma^{\mu,\dot{\alpha}\beta}$
• $v(p) = \begin{pmatrix} \tilde{\lambda}^{\dot{\alpha}}_{p} \\ \lambda_{p,\alpha} \end{pmatrix}$, $\bar{u}(p) = \begin{pmatrix} \tilde{\lambda}_{p,\dot{\alpha}} & \lambda^{\alpha}_{p} \end{pmatrix}$
• $\varepsilon^{\mu}_{+}(p,r) = \frac{\tilde{\lambda}_{p,\dot{\alpha}}\tau^{\mu,\dot{\alpha}\beta}\lambda_{r,\beta}}{(rp)}$, $\varepsilon^{\mu}_{-}(p,r) = \frac{\lambda^{\alpha}_{p}\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tilde{\lambda}^{\dot{\beta}}_{r}}{[pr]}$

• Final result in terms of inner products:

•
$$\lambda_i^{\alpha} \lambda_{j\alpha} \equiv \langle ij \rangle$$
, $\tilde{\lambda}_{i,\dot{\beta}} \tilde{\lambda}_j^{\dot{\beta}} \equiv [ij]$, $\langle ij \rangle$, $[ij] \sim \sqrt{s_{ij}}$

• e.g.

• Lorentz algebra $so(3,1) \cong su(2) \otimes su(2)$

•
$$\gamma^{\mu} = \begin{pmatrix} 0 & \sqrt{2}\tau^{\mu,\dot{\alpha}\beta} \\ \sqrt{2}\bar{\tau}^{\mu}_{\alpha\dot{\beta}} & 0 \end{pmatrix}$$
, $\sqrt{2}\tau^{\mu,\dot{\alpha}\beta} = \sigma^{\mu,\dot{\alpha}\beta}$
• $v(p) = \begin{pmatrix} \tilde{\lambda}^{\dot{\alpha}}_{p} \\ \lambda_{p,\alpha} \end{pmatrix}$, $\bar{u}(p) = \begin{pmatrix} \tilde{\lambda}_{p,\dot{\alpha}} & \lambda^{\alpha}_{p} \end{pmatrix}$
• $\varepsilon^{\mu}_{+}(p,r) = \frac{\tilde{\lambda}_{p,\dot{\alpha}}\tau^{\mu,\dot{\alpha}\beta}\lambda_{r,\beta}}{\langle rp \rangle}$, $\varepsilon^{\mu}_{-}(p,r) = \frac{\lambda^{\alpha}_{p}\bar{\tau}^{\mu}_{\alpha\beta}\tilde{\lambda}^{\dot{\beta}}_{r}}{[pr]}$

• Final result in terms of inner products:

• $\lambda_{i}^{\alpha}\lambda_{j\alpha} \equiv \langle ij \rangle$, $\tilde{\lambda}_{i,\dot{\beta}}\tilde{\lambda}_{j}^{\dot{\beta}} \equiv [ij]$, $\langle ij \rangle$, $[ij] \sim \sqrt{s_{ij}}$ • e.g. e^{-}_{+} • e.g. e^{+}_{+} • e^{+}_{+} • e^{-}_{+} •

• Can we still improve on this?

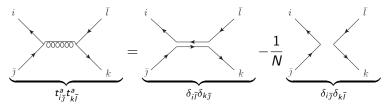
- Deriving spinor inner products $\langle ij \rangle$, [kl] requires at least 2 steps
 - Re-write every object as spinors
 - Use Fierz identity $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
- Not intuitive which inner products we obtain
- In SU(N) use graphical reps for calculations, e.g. Fierz id.

- Can we still improve on this?
 - Deriving spinor inner products $\langle ij \rangle$, [kl] requires at least 2 steps
 - Re-write every object as spinors
 - Use Fierz identity $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
 - Not intuitive which inner products we obtain
- In SU(N) use graphical reps for calculations, e.g. Fierz id.

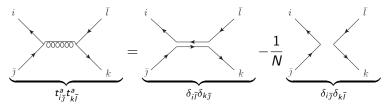
- Can we still improve on this?
 - Deriving spinor inner products $\langle ij \rangle$, [kl] requires at least 2 steps
 - Re-write every object as spinors
 - Use Fierz identity $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
 - Not intuitive which inner products we obtain

• In SU(N) use graphical reps for calculations, e.g. Fierz id.

- Can we still improve on this?
 - Deriving spinor inner products $\langle ij \rangle$, [kl] requires at least 2 steps
 - Re-write every object as spinors
 - Use Fierz identity $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
 - Not intuitive which inner products we obtain
- In SU(N) use graphical reps for calculations, e.g. Fierz id.



- Can we still improve on this?
 - Deriving spinor inner products $\langle ij \rangle$, [kl] requires at least 2 steps
 - Re-write every object as spinors
 - Use Fierz identity $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\dot{\beta}}$
 - Not intuitive which inner products we obtain
- In SU(N) use graphical reps for calculations, e.g. Fierz id.



- Spinor-helicity $\equiv su(2) \otimes su(2)$
 - Can we do the same?

- Key difference:
 - Colour \equiv single SU(N): generators $t^a \rightarrow \delta$'s
 - Spinor-hel $\equiv su(2) \otimes su(2)$: $\tau^{\mu}, \overline{\tau}^{\mu}, \lambda, \tilde{\lambda}, \varepsilon^{\mu}_{\pm}, \rightarrow \langle ij \rangle, [kl]$

• First step: Spinors and their inner products

•
$$\lambda_i^{\alpha} \lambda_{j,\alpha} = \langle ij \rangle = -\langle ji \rangle =$$

• $\tilde{\lambda}_{i,\dot{\beta}} \tilde{\lambda}_j^{\dot{\beta}} = [ij] = -[ji] =$
• $\lambda_{j,\alpha} =$, $\lambda_i^{\alpha} =$, $\delta_{\alpha}^{\beta} =$
• $\tilde{\lambda}_{i,\dot{\alpha}} =$, $\tilde{\lambda}_j^{\dot{\alpha}} =$, $\delta_{\dot{\alpha}}^{\dot{\beta}} =$

• Second step: Fermion propagators

•
$$p = \sqrt{2}p^{\mu}\tau_{\mu}^{\dot{\alpha}\beta} \stackrel{p^2=0}{=} \tilde{\lambda}_{p}^{\dot{\alpha}}\lambda_{p}^{\beta} =$$

- Key difference:
 - Colour \equiv single SU(N): generators $t^a \rightarrow \delta$'s
 - Spinor-hel $\equiv su(2) \otimes su(2)$: $\tau^{\mu}, \overline{\tau}^{\mu}, \lambda, \tilde{\lambda}, \varepsilon^{\mu}_{\pm}, \rightarrow \langle ij \rangle, [kl]$

• First step: Spinors and their inner products

•
$$\lambda_i^{\alpha} \lambda_{j,\alpha} = \langle ij \rangle = -\langle ji \rangle = i$$
 j
• $\tilde{\lambda}_{i,\dot{\beta}} \tilde{\lambda}_j^{\dot{\beta}} = [ij] = -[ji] = i$ j
• $\lambda_{j,\alpha} = \bigcirc j$, $\lambda_i^{\alpha} = \bigcirc i$, $\delta_{\alpha}^{\beta} = \frac{\alpha}{\beta}$
• $\tilde{\lambda}_{i,\dot{\alpha}} = \bigcirc i$, $\tilde{\lambda}_j^{\dot{\alpha}} = \bigcirc j$, $\delta_{\dot{\alpha}}^{\dot{\beta}} = \frac{\dot{\beta}}{\beta}$

• Second step: Fermion propagators

•
$$p = \sqrt{2}p^{\mu}\tau_{\mu}^{\dot{\alpha}\beta} \stackrel{p^2=0}{=} \tilde{\lambda}_{p}^{\dot{\alpha}}\lambda_{p}^{\beta} =$$

- Key difference:
 - Colour \equiv single SU(N): generators $t^a \rightarrow \delta$'s
 - Spinor-hel $\equiv su(2) \otimes su(2)$: $\tau^{\mu}, \overline{\tau}^{\mu}, \lambda, \tilde{\lambda}, \varepsilon^{\mu}_{\pm}, \rightarrow \langle ij \rangle, [kl]$

• First step: Spinors and their inner products

• $\lambda_i^{\alpha} \lambda_{j,\alpha} = \langle ij \rangle = -\langle ji \rangle = i$ • $\tilde{\lambda}_{i,\dot{\beta}} \tilde{\lambda}_j^{\dot{\beta}} = [ij] = -[ji] = i$ • $\lambda_{j,\alpha} = \bigcirc j , \quad \lambda_i^{\alpha} = \bigcirc i , \quad \delta_{\alpha}^{\ \beta} = \frac{\alpha}{\beta}$ • $\tilde{\lambda}_{i,\dot{\alpha}} = \bigcirc i , \quad \tilde{\lambda}_j^{\dot{\alpha}} = \bigcirc j , \quad \delta_{\dot{\alpha}}^{\dot{\beta}} = \frac{\dot{\beta}}{\beta}$

Second step: Fermion propagators

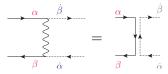
•
$$p = \sqrt{2} p^{\mu} \tau_{\mu}^{\dot{\alpha}\beta} \stackrel{p^2=0}{=} \tilde{\lambda}_{p}^{\dot{\alpha}} \lambda_{p}^{\beta} = \dots$$

- Third step: Vertices and vector propagators
 - vertices $rac{\gamma^\mu}{\sqrt{2}} o au^\mu, ar{ au}^\mu$ contracted with vector propagator $g_{\mu
 u}$
 - Fierz identity with indices: $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
 - Fierz identity with flow:

•
$$\Rightarrow \tau^{\mu,\dot{\alpha}\beta} = , \quad \bar{\tau}^{\mu}_{\alpha\dot{\beta}} =$$

- $ullet \, \Rightarrow g_{\mu
 u} = \,$, or
- Fierz identity already utilised in flow rule

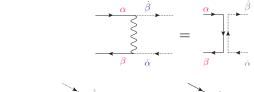
- Third step: Vertices and vector propagators
 - vertices $rac{\gamma^\mu}{\sqrt{2}} o au^\mu, ar{ au}^\mu$ contracted with vector propagator $g_{\mu
 u}$
 - Fierz identity with indices: $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
 - Fierz identity with flow:



•
$$\Rightarrow \tau^{\mu,\dot{\alpha}\beta} =$$
, $\bar{\tau}^{\mu}_{\alpha\dot{\beta}} =$

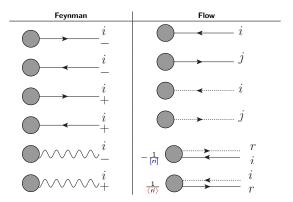
- $ullet \, \Rightarrow g_{\mu
 u} = \,$, or
- Fierz identity already utilised in flow rule

- Third step: Vertices and vector propagators
 - vertices $rac{\gamma^\mu}{\sqrt{2}} o au^\mu, ar{ au}^\mu$ contracted with vector propagator $g_{\mu
 u}$
 - Fierz identity with indices: $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\ \beta}_{\alpha}\delta^{\dot{\alpha}}_{\ \dot{\beta}}$
 - Fierz identity with flow:



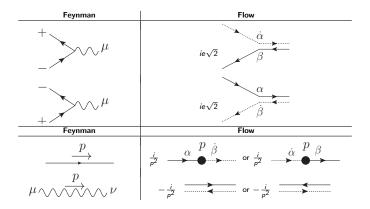
- \Rightarrow $g_{\mu
 u}$ = _______, or ______
- Fierz identity already utilised in flow rule

The QED Flow Rules: External Particles



Everything already Fierzed, in terms of spinors

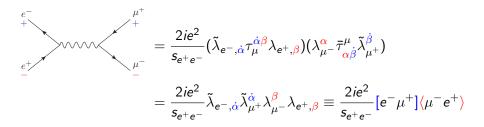
The QED Flow Rules: Vertices and Propagators



Everything already Fierzed, in terms of spinors

Simplest QED Example

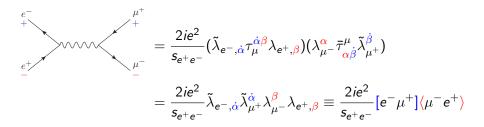
• Regular spinor-helicity \equiv easy



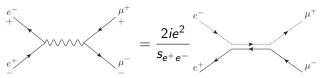
• Helicity flow \equiv super easy and intuitive

Simplest QED Example

• Regular spinor-helicity \equiv easy



• Helicity flow \equiv super easy and intuitive



Next Simplest QED Example

• Regular spinor-helicity \equiv easy

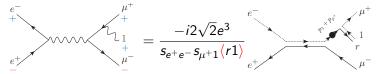
Correct Answer

$$\frac{-i2\sqrt{2}e^{3}}{s_{e^{+}e^{-}}s_{\mu^{+}1}\langle r1\rangle} \left([e^{-}1]\langle 1r\rangle + [e^{-}\mu^{+}]\langle \mu^{+}r\rangle \right) [1\mu^{+}]\langle \mu^{-}e^{+}\rangle$$

Andrew Lifson (Lund)

Next Simplest QED Example

 \bullet Helicity flow \equiv super easy and intuitive



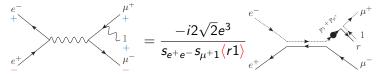
• Immediately read off inner products

Correct Answer

$$\frac{-i2\sqrt{2}e^3}{s_{e^+e^-}s_{\mu^+1}\langle r1\rangle} \Big([e^-1]\langle 1r\rangle + [e^-\mu^+]\langle \mu^+r\rangle \Big) [1\mu^+]\langle \mu^-e^+\rangle$$

Next Simplest QED Example

• Helicity flow \equiv super easy and intuitive

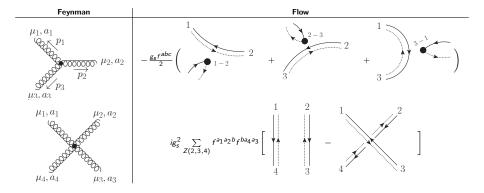


Immediately read off inner products

Correct Answer

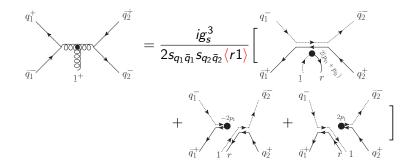
$$\frac{-i2\sqrt{2}e^{3}}{s_{e^{+}e^{-}}s_{\mu^{+}1}\langle r1\rangle}\Big([e^{-}1]\langle 1r\rangle + [e^{-}\mu^{+}]\langle \mu^{+}r\rangle\Big)[1\mu^{+}]\langle \mu^{-}e^{+}\rangle$$

The Massless QCD Flow Rules



QCD Example: $q_1 ar q_1 o q_2 ar q_2 g$

Triple-gluon vertex provides new structures



Summary

- Helicity flow allows for single-line calculation of Feynman diagram
- Also gives transparent/intuitive picture of inner products
- In contrast, spinor-hel method:
 - Requires multiple steps
 - Final result intransparent/unintuitive
- Massless QED and QCD tree-level done
- Useful for any generator using diagrams to avoid dealing with Lorentz algebra

Outlook

- Initial paper coming soon
- Complete the SM at tree level
- Loop calculations
- Applications within generator(s)
- Amplitude-level calculations

Backup Slides

Calculating A_i: the Spinor-Helicity Method

- Lorentz algebra $so(3,1)\cong su(2)\otimes su(2)$
- Weyl representation of Dirac algebra naturally separates the two reps

•
$$\gamma^{\mu} = \begin{pmatrix} 0 & \sqrt{2}\tau^{\mu,\dot{\alpha}\beta} \\ \sqrt{2}\bar{\tau}^{\mu}_{\alpha\dot{\beta}} & 0 \end{pmatrix}$$
, $\sqrt{2}\tau^{\mu} = (1,\vec{\sigma})$, $\sqrt{2}\bar{\tau}^{\mu} = (1,-\vec{\sigma})$
• $\operatorname{Tr}(\tau^{\mu}\bar{\tau}^{\mu}) = g^{\mu\nu}$, $\gamma^{5} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $P_{\pm} = \frac{1}{2}(1\pm\gamma^{5})$
• $u(p) = \begin{pmatrix} u_{-}(p) \\ u_{+}(p) \end{pmatrix} = \begin{pmatrix} v_{+}(p) \\ v_{-}(p) \end{pmatrix} = \begin{pmatrix} \tilde{\lambda}^{\dot{\alpha}}_{p} \\ \lambda_{p,\alpha} \end{pmatrix}$, $\bar{u}(p) = (\tilde{\lambda}_{p,\dot{\alpha}} \quad \lambda^{\alpha}_{p})$

• Final result in terms of inner products:

- $\lambda_{i}^{\alpha}\lambda_{j\alpha} \equiv \langle ij \rangle$, $\tilde{\lambda}_{i,\dot{\beta}}\tilde{\lambda}_{j}^{\dot{\beta}} \equiv [ij]$, $\langle ij \rangle$, $[ij] \sim \sqrt{s_{ij}}$ • $\varepsilon_{+}^{\mu}(p,r) = \frac{\tilde{\lambda}_{p,\dot{\alpha}}\tau^{\mu,\dot{\alpha}\beta}\lambda_{r,\beta}}{\langle rp \rangle}$, $\varepsilon_{-}^{\mu}(p,r) = \frac{\lambda_{p}^{\alpha}\bar{\tau}_{\alpha\dot{\beta}}^{\mu}\tilde{\lambda}_{r}^{\dot{\beta}}}{[pr]}$
- No complicated traces of γ matrices, rather simple identities like:
 (λ̃_{i,ἀ}τ^{ἀβ}_μλ_{i,β})(λ^γ_kτ^µ_{-i} λ^δ_l) = λ^β_i λ_{kβ} λ̃_{l,ἀ} λ^ϕ_i = ⟨ik⟩[lj]

Fun with Arrows and the Fierz Identity

- Sometimes have to contract $au^{\mu} au_{\mu}$ or $ar{ au}^{\mu}ar{ au}_{\mu}$
- This would lead to arrows pointing towards each other, e.g.

• To fix, use charge conservation of a current:

•
$$\lambda_i^{\alpha} \bar{\tau}^{\mu}_{\alpha\dot{\beta}} \tilde{\lambda}_j^{\dot{\beta}} = \tilde{\lambda}_{j,\dot{\alpha}} \tau^{\mu,\dot{\alpha}\beta} \lambda_{i,\beta}$$

• Or in pictures:

•
$$\mu \longrightarrow i$$
 = $\mu \longrightarrow i$