Soft Photon Resummation in SHERPA

Alan Price

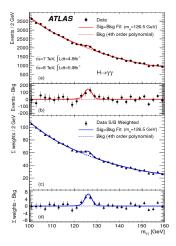
alan.c.price@durham.ac.uk

September 5, 2019

Image: A matrix and a matrix

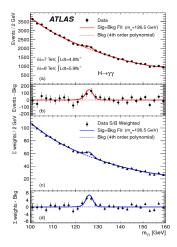
æ

Motivation



- For precision physics a lepton-lepton collider is desirable
- The discovery of Higgs Boson tells us at what energy to run

Motivation



- For precision physics a lepton-lepton collider is desirable
- The discovery of Higgs Boson tells us at what energy to run

At the FCC-ee there will be,

- 5×10^{12} Z
- 10⁸ WW
- 10^{6} HZ + 25k WW \rightarrow H
- Each Higgs will only cost ≈ €255

We must not forget that an e^+e^- will precisely measure EW observables

Observable	Where from	Present (LEP)	FCC stat.	FCC syst	Now FCC	Challenge
M_Z [MeV]	Z linesh.	$91187.5 \pm 2.1\{0.3\}$	0.005	0.1	3	QED Corrections
Γ _Z [MeV]	Z linesh.	$2495.2\pm2.1\{0.2\}$	0.008	0.1	2	QED Corrections
$R_I^Z = \Gamma_h / \Gamma_I$	$\sigma(M_Z)$	$20.767 \pm 0.025 \{0.012\}$	$6 \cdot 10^{-5}$	$1 \cdot 10^{-3}$	12	QED Corrections
N_{ν}	$\sigma(M_Z)$	$2.984 \pm 0.008 \{0.006\}$	$5 \cdot 10^{-6}$	$1 \cdot 10^{-3}$	6	Bhabha scattering (QED)
M_W [MeV]	ADLO	$80376 \pm 33\{6\}$	0.5	0.3	12	QED Corrections
$A_{FB,\mu}^{M_Z\pm 3.5 { m GeV}}$	$\frac{d\sigma}{d\cos\theta}$	$\pm 0.020\{0.001\}$	$1.0 \cdot 10^{-5}$	$0.3\cdot 10^{-5}$	100	

Table: Adapted from Arxiv:1903.09895

${\sf Precision} \ {\sf Machine} \implies {\sf Precise} \ {\sf Calculations}$

Precision Machine \implies Precise Calculations

- Initial state radiation can be calculated la Yennie-Frautschi-Suura
- \bullet YFS for FSR already in SHERPA and accurate to $\rm NNLO$ QCD and $\rm NLO$ EW

YFS Exponentiation

• Lets first consider virtual photon corrections in the soft limit

$$\mathcal{M}_{0}^{0} = \mathcal{M}_{0}^{0}$$
$$\mathcal{M}_{0}^{1} = \alpha B \mathcal{M}_{0}^{0} + \mathcal{M}_{0}^{1}$$
$$\mathcal{M}_{0}^{1} = \frac{(\alpha B)^{2}}{2} \mathcal{M}_{0}^{0} + \alpha B \mathcal{M}_{0}^{1} + \mathcal{M}_{0}^{2}$$
...

$$\mathcal{M}_0^{n_V} = \sum_{r=0}^{n_V} \mathcal{M}_0^{n_V} \frac{(\alpha B)^r}{r!}$$

where B is the virtual infrared factor.

$$B = 2\alpha \Re \int \frac{d^4k}{k^2} \frac{i}{(2\pi)^2} \left(\frac{2p_1 - k}{2kp_1 - k^2} - \frac{2p_2 - k}{2kp_2 - k^2}\right)^2$$

Summing to infinity yields,

$$\sum_{n_V=0}^{\infty} \mathcal{M}_0^{n_V} = e^{\alpha B} \sum_{n_V=0}^{\infty} \mathcal{M}_0^{n_V}$$

This can be generalised to n_R real photons such that,

$$\sum_{n_V=0}^{\infty} \left| \mathcal{M}_{n_R}^{n_V + \frac{1}{2}n_R} \right|^2 = e^{2\alpha B} \sum_{n_V=0}^{\infty} \left| \mathcal{M}_{n_R}^{n_V + \frac{1}{2}n_R eal} \right|^2$$

For a single photon emission we have,

$$\frac{1}{2(2\pi)^3} \sum_{n_V=0}^{\infty} \left| M_1^{n_V + \frac{1}{2}} \right|^2 = \tilde{S}(k) \left| M_0^{n_V + \frac{1}{2}} \right|^2 + \sum_{n_V=0}^{\infty} \tilde{\beta}_1^{n_V + 1}(k)$$

- Factorisation of real emissions occurs at the amplitude squared level
- Eikonal term $\tilde{S}(k) = -\frac{\alpha}{4\pi^2} \left(\frac{p_1}{p_1 k} \frac{p_2}{p_2 k}\right)^2$
- $\tilde{\beta}_{n_R}^{n_V+n_R}$ complete IR finite squared matrix element for born process plus n_V virtual and n_R photons

YFS: Real Emissions

For n_R photons summed over all virtuals,

$$\begin{pmatrix} \frac{1}{2(2\pi)^{3}} \end{pmatrix}^{n_{R}} \left| \sum_{n_{V}=0}^{\infty} M_{n_{R}}^{n_{V}+\frac{1}{2}n_{R}} \right|^{2} \\ = \tilde{\beta}_{0} \prod_{i=1}^{n_{R}} \left[\tilde{S}(k_{i}) \right] + \sum_{i=1}^{n_{R}} \left[\frac{\tilde{\beta}_{1}(k_{i})}{\tilde{S}(k_{i})} \right] \prod_{j=1}^{n_{R}} \left[\tilde{S}(k_{j}) \right] \\ + \sum_{\substack{i,j=1\\i\neq j}}^{n_{R}} \left[\frac{\tilde{\beta}_{2}(k_{i},k_{j})}{\tilde{S}(k_{i})\tilde{S}(k_{j})} \right] \prod_{l=1}^{n_{R}} \left[\tilde{S}(k_{l}) \right] + \dots \\ + \sum_{i=1}^{n_{R}} \left[\tilde{\beta}_{n_{R}-1}(k_{1},\dots,k_{i-1},k_{i+1},\dots,k_{n_{R}}) \tilde{S}(k_{i}) \right] + \tilde{\beta}_{n_{R}}(k_{1},\dots,k_{n_{R}})$$

Master Equation

This gives us our cross section

$$\sigma = \sum_{n=0}^{\infty} \frac{1}{n!} \int d\Phi_q \ e^{2\alpha B + 2\alpha \tilde{B}} \prod_{j=1}^n \tilde{S}(k_j) \,\theta(\Omega; k_j) \left[\tilde{\beta}_0(p_1, p_2; q_1, \cdots, q_{n'}) + \sum_{j=1}^n \frac{\tilde{\beta}_1(p_1, p_2; q_1, \cdots, q_{n'}; k_j)}{S(k_j)} + \sum_{\substack{j,l=1\\j \neq l}}^n \frac{\tilde{\beta}_2(p_1, p_2; q_1, \cdots, q_{n'}; k_j, k_l)}{S(k_j)S(k_l)} + \cdots \right]$$

The exponentiation of real emissions gives a factor

$$\tilde{B} = -\frac{1}{8\pi^2} \int \frac{d^3k}{k^0} \Theta(\Omega, k) \left(\frac{p_1}{p_1k} - \frac{p_2}{p_2k}\right)^2$$

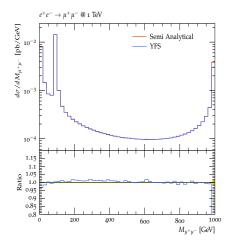
10 / 19

- The infrared singularities in the Eikonal's $\tilde{S}\left(k\right)$ are excluded by a cut-off $k^0>\epsilon\frac{\sqrt{s}}{2}$
- $\tilde{\beta}$ are infrared finite and are calculated perturbatively order by order
 - Non trivial for other methods e.g Structure function
- Photons are explicitly created
 - Allows us to calculate properties of soft photons
 - Algorithm is very MC friendly- computation is quite fast

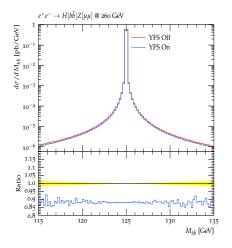
- First the phasespace is rearrange by a change of variable $v = 1 \frac{s'}{s}$
- v is then generated by standard Monte-Carlo Methods e.g Importance Sampling
- Solution If v < € no photons are generate. For v ≥ € the multiplicity is generated according to a Poissonian distribution with average $\mu = \frac{2\alpha}{\pi} \log(\frac{s}{m_e^2}) \log(\frac{v}{\epsilon})$
- The *n* photon momenta are distributed according to the Eikonal S and then rescaled to ensure 4-momentum conservation
- The perturbative parts can be calculated separately using ME generator
- **o** Give everything to the master equation to calculate the cross section

- There is a known issue with the integration limits. Cause a notable deviation. Will be fixed soon
- It can interface with other SHERPA modules e.g ME Generator, PS, Hadronization, UFO...
- On the perturbative side there is a small numerical stability issue from the loop providers (due to small lepton masses)
- However some higher order corrections have been hard coded for $e^+e^- \to f \bar{f}$

Validation

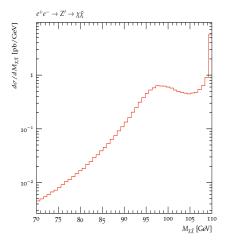


- There is a Analytical formula for $e^+e^- \rightarrow f\bar{f}$ Known to $\mathcal{O}(\alpha^2)$
- Comparison is done at $\mathcal{O}(\alpha)$



- This is very preliminary
- Fixed order calculation just to test YFS
- Deviation is to be expected, nothing too impressive. The higher order corrections are more important

UFO Interface



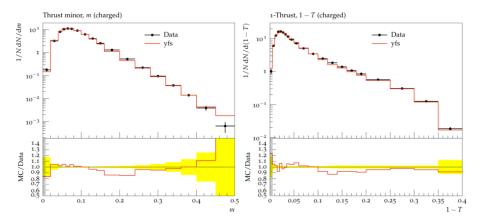
- Exaggerated Z' model! Just to test interface
- If you have a realistic UFO for e⁺e⁻ I would to test it

- A very good description of higher order QED effects is needed for precision physics
- **②** YFS is fully compatible with SHERPA other tools, in particular ME
- Oevation and Loop problem needs to be solved- deviation wont be too tricky
- For linear collider beam polarisation will be needed. Interface to existing software will not be difficult

Back up slides

3

Comparison to Data



< A