Measurement of Inclusive 4I (llvv) + 2-jet Cross Section and Observation of EW Component in 13 TeV Proton-Proton Collisions with the ATLAS Detector

ATLAS Conference note: <u>ATLAS-CONF-2019-033</u>

Heling Zhu On behalf of the ATLAS Collaboration University of Sci. and Tech. of China / Brookhaven National Lab Sep. 2nd, 2019 @ Corfu

- scattering
- violates unitarity
- electroweak symmetry breaking.

	Overvie	w of VBS in LHC @	measurements 13TeV	
• Status	s of August 2019			
	Observed (expected) significance			
Channel	ATLAS	CMS	Experimental Challenges	
ssWW	<u>6.5 (4.9)</u> σ	<u>5.5 (5.7)</u> σ	"Golden channel": first observation of VBS in thi channel, very good EW/QCD ratio	
WZ	<u>5.3 (3.2)</u> σ	<u>1.9 (2.7)</u> σ	Similar cross section as ssWW, but larger QCD backgrounds	
ZZ	<u>5.5 (4.3)σ</u> First 139 fb ⁻¹ analysis	<u>2.7 (1.6)</u> σ IIIIjj channel only	Very clean 4I channel, low background but smal cross section	
Zγ	<u>4.1 (3.8)</u> σ	<u>3.9 (5.2)σ</u> +8TeV: 4.7 (5.5)σ	Higher statistics due to photon, but no sensitivit to BSM EWSB	

Introduction

- This analysis measures the inclusive cross-section of ZZjj processes and searches for **EW ZZjj production** with 4l and llvv final states
 - 41: very clean experimental signature, high signal-tobackground ratio
 - Ilvv: larger branching ratio

- The EW ZZjj production was searched for by the CMS collaboration using 36.1 fb⁻¹ of 13 TeV pp collision data, but no evidence was found
- This analysis presents the first VBS ZZjj observation with 139 fb⁻¹ full run-2 datasets

Time for rare processes → benchmark SM measurements!

Analysis Strategy

- Working on ATLAS full run-2 data with 139 fb⁻¹
- Experimental signature: 4 leptons, or 2 leptons with E_T^{miss} + two forward jets
- First step: inclusive cross-section measurements with cut-based analysis
- MVA (BDTG)-based analysis is then used to extract the EW VBS ZZ signal from background for
 - Observation of electroweak production of ZZ+2j
 - Observed signal strength of the EW processes
- The analysis is performed independently in $ZZ \rightarrow 4I$ and $ZZ \rightarrow IIvv$ final states, then combine together.
- Interference between EW and QCD processes is treated as systematic on the EW VBS ZZ production measurement

MC simulation

EWK ZZjj	MadGraph5
QCD ZZjj	Sherpa222
QCD ggZZjj	4l:Sherpa222; llvv:gg
$WZ \rightarrow llvv$	Sherpa222
ttbar, singleTop	Powheg
ttbarV	MG5_aMC@NLO
Zjets	Sherpa221
Triboson	Sherpa222
WW, WZ semileptonic	Powheg

	$\ell\ell\ell\ell jj$		
Electrons	$p_{\rm T}>7~{\rm GeV}, \eta <2.$ $ d_0/\sigma_{d_0} <5~{\rm and}~ z_0\times\sin\theta $		
Muons	$p_{\rm T} > 7 \ {\rm GeV}, \ \eta < 2.7 \\ d_0/\sigma_{d_0} < 3 \ {\rm and} \ z_0 \times \sin \theta $		
Jets	$p_{\rm T} > 30 \ (40) \ {\rm GeV} \ {\rm for} \ \eta < 2.4 \ (2.4 < \eta < 4.5)$		
ZZ selection	$p_{\rm T}>20,20,10~{\rm GeV}$ for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\ell^{'+}\ell^{'-}} - m_Z $ $m_{\ell^+\ell^-}>10~{\rm GeV}$ for lepton pairs $\Delta R(\ell,\ell')>0.2$ $66 < m_{\ell^+\ell^-}<116~{\rm GeV}$		
Dijet selection	Two most energetic jets with y $m_{jj}>300~{\rm GeV}$ and $\Delta y(jj)>2$		

contribution in forward region.

4

- QCD CR to constrain QCD strength:
 - Mjj < 300GeV or dYjj < 2

Event selection

 $\ell\ell\nu\nu jj$

47

< 0.5 mm

 $p_{\rm T} > 7 \,\,{\rm GeV}, \, |\eta| < 2.5$

< 0.5 mm

 $p_{\rm T} > 60 \ (40)$ GeV for the leading (sub-leading) jet

 $p_{\rm T} > 30$ (20) GeV for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons

> $80 < m_{\rho^+ \rho^-} < 100 \text{ GeV}$ No b-tagged jets $E_{\rm T}^{\rm miss}$ significance > 12

Generally tighter selections in llvv channel due to more backgrounds

 $y_{j_1} \times y_{j_2} < 0$

 $m_{ij} > 400 \text{ GeV} \text{ and } \Delta y(jj) > 2$

The optimizations of Jet selection have been studied to enhance the EW VBS

llvv

- 3rd lepton veto to reduce $ZZ \rightarrow 4I$, $WZ \rightarrow 3I + v$
- **MET-significance** has high suppression for Zjets

• ZZ irreducible, $qq \rightarrow ZZ$ and $gg \rightarrow ZZ$

- Yield constraint by dedicated QCD CR
- Additional systematics included for the shape modeling
 - Difference between MG and sherpa

Fake background: Zjets, t⁻t

- Fake factor method used, derived from dedicated CRs.
- Systematics:
 - Variations on bad lepton definitions
 - Data MC difference: due to the very limited statistics even in fake control region, a very conservative approach is used here
 - Statistical uncertainty on fake factor

ZZ→4I: Background

• ZZ irreducible:

Estimated from simulations, systematics are same as 41

• WZjj background:

• Yield from dedicated 3I-CR, the EW WZjj is scaled by 1.77^{+0.51}-0.45 (the µ_{EW} measured from latest <u>ATLAS VBS WZjj paper</u>)

• Non-resonant-II (top, WW, Wt, $Z\tau\tau$) Background

- Estimated with events in dedicated eµ-CR
- e/µ reconstruction and selection efficiency difference is taken care of by the epsilon factor $\varepsilon^2 = N_{ee}/N_{\mu\mu}$

• Zjets background:

- Zjets background is largely reduced by the MET-significance requirement
- Shape from MC, yield is estimated from data-driven in low METsignificance region

ZZ→IIvv: Background

Bii

Inclusive Cross-section Measurements

- Cross sections are measured for the inclusive individual 4I and Ilvv channels in fiducial volu
- Fiducial regions are defined closely following level selections, except
 - 4l channel, Z window loose to [60, 120] G GeV for detector-level).
 - Ilvv channel, truth MET > 130 GeV instead significance
- Measured cross-Section: $\sigma^{F.V} = \frac{N_{data} N_{bkg}}{C \times Lumi}$, while the C-factor is $C = \frac{N_{Reco}}{N_{F.V-truth}}$

Measured fiducial σ

 $1.27 \pm 0.12 (\text{stat}) \pm 0.02 (\text{theo}) \pm 0.07 (\text{exp})$ $\ell\ell\ell\ell jj$

 $1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp})$ $\ell\ell\nu\nu jj$

e processes, in	pre-fit event yields		
ume.	Process	$\ell\ell\ell\ell jj$	<i>ℓℓνν</i> j
a the detector	${ m EW}~ZZjj$	20.6 ± 2.5	12.3 ± 0
g the detector-	$QCD \ ZZjj$	77.4 ± 25.0	17.2 ± 3
	$\operatorname{QCD}ggZZjj$	13.1 ± 4.4	3.5 ± 1
\//· [// 44/]	Non-resonant- $\ell\ell$	-	21.4 ± 4
eV (IS [66, 116]	WZ	_	22.8 ± 1
	Others	3.2 ± 2.1	1.2 ± 0
	Total	114.3 ± 25.6	78.4 ± 6
d of MET-	Data	$1\overline{27}$	82

r [fb]	Predicted fiducial σ [fb]
$) \pm 0.01 (bkg) \pm 0.03 (lumi)$	$1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo})$
$) \pm 0.16(bkg) \pm 0.03(lumi)$	$1.07 \pm 0.01 (\text{stat}) \pm 0.12 (\text{theo})$

Statistical Fit for EW Processes

- Use Gradient Boost Decision Tree (BDTG) for both 4I and Ilvv channels
 - Trained with leptons and jets kinematics after SR selection
- Fit 3 regions simultaneously: 41 SR, 41 QCD CR, Ilvv SR
- μ_{EW} as parameter of interest; μ_{QCD} (for 4I) is constrained by QCD CR.
- The full set of systematic uncertainties are included
 - Experimental systematic uncertainties are fully correlated.
 - Theoretical systematics are uncorrelated due to different fiducial definitions.

	$\mu_{ m EW}$	$\mu_{\rm QCD}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.54 ± 0.42	0.95 ± 0.22	5.48 (3.90) σ
$\ell\ell u ujj$	0.73 ± 0.65	_	$1.15~(1.80)~\sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	5.52 (4.30) σ

Observation!

Rank	41	llvv
1	Mjj	Δη(II)
2	leading p⊤j	m _{ll}
3	2nd p⊤j	ΔΦ(II)
4	p⊤(ZZjj)/H⊤(ZZjj)	Mjj
5	Y(j1)×Y(j2)	MET-sig
6	ΔY(jj)	ΔY(jj)
7	Y* _{Z2}	Y(j1)×Y(j
8	Y* _{Z1}	HT
9	p _T zz	ΔR(II)
10	m _{zz}	2nd p⊤j
11	p _T Z1	MET
12	рт ^{I3}	2nd p _T I
13	-	leading p

Post-fit distributions

- Mjj/MZZ: predictions have been scaled with $\mu_{\text{EW}}{=}1.35$ and $\mu_{\text{QCD}}{=}0.96$
- BDT distributions are after statistical fit.
- The data distributions are well reproduced by the predicted contributions.

cal fit. produced by the

BDT Output

BDT Output

Physics Briefing

New milestone reached in the study of electroweak symmetry breaking

The new ATLAS result provides a firm observation of the electroweak production of two jets in association with ZZ, with a statistical significance of 5.5 standard deviations.

- The observation of VBS (VV->V'V') process in ZZ channel, with full Run 2 data of ATLAS is presented. With more data collected in LHC, it's time for rare processes! • Observed (expected) significance of $5.5 (4.3)\sigma$.

 - Inclusive cross section in 4I and IIvv channels has been measured individually. Compatible with SM prediction and still dominant by data statistical uncertainty.
- This result completes the observation of weak boson scattering for massive bosons, and sparks new ways to test EWSB.

Conclusion

Backup

WZ scattering

- Three leptons final states
- OCD production of WZjj is the dominant background.
- Analysis strategies:
 - CMS, conservative approach: use features of EW vs. QCD processes that are well-understood and robust against limitations of theoretical predictions
 - ATLAS, aggressive approach: train BDT for EW vs QCD discrimination on 15 variables (selected from 33 studied); background normalization factor were constrained by CRs.

35.9 fb⁻¹ (13 TeV)

ZZ→4I: QCD ZZjj bkg, Additional systematics

- Modeling of the QCD ZZjj
 - The shape differences between different generators can not be covered by the standard QCD up/down systematics
 - Additional shape systematic derived by comparing Sherpa with MG samples at truth level
- Pile-up modeling
 - Compare shape difference using low/high mu QCD MC events to cover the possible bias due to pile-up effect

ZZ→4I: background, Fake

- Fake-factor measured in jet-enriched samples: Z+jets CR and ttbar CR
 - Poor electrons are defined by reverting isolation or eleID cuts
 - Poor muons are defined by reverting isolation or d0 significance cut (but still pass |d0significance|<10)
- 4l fake CR : SR with 1 or 2 leptons passing poor lepton definition
- Fake contribution in signal region:
 - F = N("Good Lepton")/N("Poor Lepton")
 - $N_{fake} = (N_{gggp} N^{ZZ}_{gggp}) \times F (N_{ggpp} N^{ZZ}_{ggpp}) \times F^2$
 - ZZ contribution is subtracted
 - The second term is due to double counting of N_{gggp} and N_{ggpp}
- 177

- Fake factor vs flavor and pT/η dependent
- Fake lepton background nominal estimation:
 2.306±1.016

ZZ→IIvv: Background Systematics

- WZjj background:
 - Systematics from: data statistic in 3I CR (dominant one, 5%);
 - Theoretical and experimental uncertainty;
 - Uncertainty from the quoted VBS WZjj paper on the 1.77 factor

Non-resonant-II (WW, top, Zττ) Background:

- Systematics include the data statistical uncertainty (dominant one, 20%);
- The experimental and theoretical uncertainties;
- The shape difference between MC and data-driven in SR
- Zjets background:
 - Systematics include the MC and data-driven difference (dominant), • Different fitting functions, and different fitting range

Interference

- Additional uncertainty due to the interference between EW and QCD processes
 - Checked with private MG sample. 7(2)% in 4l (llvv) channel, w.r.t the EW component. Difference mostly due to different m_{JJ} cut between two channels
 - In the 4l channel this is developed vs. $m_{\rm JJ}$ and then translated to BDT at truth level
 - In llvv channel a global factor is used due to difficulty in rebuilding the BDT at truth level (mostly due to no MET- significance variable in truth level)

Decouple the systematics in 41 channel

- The most conservative approach is chosen (i.e, decouple both)

Table1	Expected	Observed	Table2	Expected	Observed
μ_{EWK}	0.995 <u>+</u> 0.347	1.575 ± 0.416	μ_{EWK}	0.940 ± 0.351	1.509 ± 0.420
μ_{QCD}	0.932 ± 0.269	0.894 ± 0.254	μ_{QCD}	0.976 ± 0.233	0.934 ± 0.22
Significance	4.119	5.949	Significance	3.866	5.490
Table3	Expected	Observed	Table4	Expected	Observed
μ_{EWK}	1.020 ± 0.346	1.611 ± 0.413	μ_{EWK}	0.961 ± 0.351	1.540 ± 0.418
μ_{QCD}	0.940 ± 0.272	0.904 ± 0.257	μ_{QCD}	0.980 ± 0.233	0.946 ± 0.224
Significance	4.144	5.993	Significance	3.897	5.480

• For the QCD modeling, 4 different configurations have been tested (2x2 of, decouple 41 SR and 41 CR or no, decouple 41 low BDT and high BDT or no).

- Table1: no decouple
- Table2: decouple QCD scale in 4I SR and 41 CR
- Table3: decouple QCD shape in low BDT region and high BDT region
- Table4: table 2+3

