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Neutron stars: laboratories for dense matter
Formed in gravitational core-collapse supernova explosions, neutron
stars are the most compact stars in the Universe. They are initially
very hot (∼ 1012 K) but cool down rapidly by releasing neutrinos.

Their dense matter is thus expected to undergo various phase
transitions, as observed in terrestrial materials at low-temperatures.



Outline

1 Superfluidity and superconductivity in the laboratory
Basic phenomenology and historical context
Theoretical understanding of these phenomena

2 Superfluidity and superconductivity in neutron stars
Dynamics at the nuclear scale
Global hydrodynamic models
Astrophysical manifestations (pulsar frequency glitches)

Disclaimer: these lectures are not intended to be an extensive review
of superfluidity and superconductivity, but aim at providing a basic
understanding of these phenomena in neutron stars.



Part 1: Superfluidity and
superconductivity in the laboratory



"Suprageleider"

Heike Kamerlingh Onnes and his collaborators were the first to
liquefy helium in 1908.

On April 8th, 1911, H. K. Onnes and Gilles Holst
discovered that the electric resistance of
mercury dropped to almost zero at Tc ' 4.2 K

Onnes was awarded the Nobel Prize in 1913.

The year later, tin and lead were found to be also superconducting.



Persistent electric currents

In 1914, Heike Kamerlingh Onnes designed
an experiment to measure the decay time of
a magnetically induced electric current in a
superconducting lead ring.

He noted “During an hour, the current was
observed not to decrease perceptibly”.

In superconducting rings, the decay time of induced electric currents
is not less than 100 000 years !
J. File and R. G. Mills, PRL 10, 93 (1963)



Order of the phase transition

In 1932, Keesom and Kok found that the heat capacity of tin exhibits
a discontinuity at Tc thus showing that the superconducting transition
is of second order.

Keesom and Kok, Proc. Roy. Acad. Amsterdam 35, 743 (1932).



Energy gap

At temperatures T < Tc the electron heat capacity is exponentially
suppressed suggesting the existence of a gap in the electron
energy spectrum.

Kittel, Introduction to Solid State Physics



Intermission: magnetostatics in a magnetic material
In a magnetic material, the set of microscopic magnetic
dipole moments µµµ give rise to a magnetization current
jjjm = c∇∇∇×MMM (cgs), where the magnetization MMM is the
macroscopic density of magnetic moments.

Introducing the auxiliary magnetic field HHH ≡ BBB − 4πMMM (to avoid
confusion BBB is usually referred to as the magnetic induction),
Maxwell-Ampere’s equation can be expressed as

∇∇∇×HHH =
4π
c

jjj free

with jjj free = jjj − jjjm is the electric current of "free" charged particles
associated with the applied field.

But HHH is not uniquely determined by jjj free since

∇∇∇ ·HHH = −4π∇∇∇ ·MMM

However, HHH approximately coincides with the field applied along the
symmetry axis of a thin long sample.



Intermission: magnetic susceptibility

In order to completely determine the magnetic field in the material,
additional constitutive equations must be provided.

Let us consider that the following relation for isotropic materials

4πMMM = χHHH

where χ is the magnetic susceptibility of the material. In such case,
we have

BBB = HHH + 4πMMM = (1 + χ)HHH

A material is
paramagnetic if χ > 0 under an applied field,
diamagnetic if χ < 0 under an applied field.

Typically |χdiamagnetic| � χparamagnetic.

Some (e.g. ferromagnetic) materials may have a permanent
magnetization even in the absence of an applied field.



Meissner-Ochsenfeld effect
When placed in a weak magnetic field, a superconductor acts as a
perfect diamagnet: χ = −1 therefore B = (1 + χ)H = 0.

In 1933, Walther Meissner and Robert
Ochsenfeld discovered that when a
material initially placed in a magnetic field
is cooled below the critical temperature,
the magnetic flux is expulsed.

This phenomenon showed that a superconductor is not just a perfect
conductor but correspond to a new thermodynamic state of matter.

Indeed, Ohm’s law jjj = σEEE implies EEE = 0 if σ → +∞. From Maxwell

Faraday equation,
∂BBB
∂t

= −c∇∇∇×EEE = 0: BBB should not change.



Magnetic levitation

As a spectacular consequence of the Meissner-Ochsenfeld effect, a
magnet can be levitated over a superconducting material.

http://www.mn.uio.no/fysikk/english/research/groups/amks/

superconductivity/levitation/

http://www.mn.uio.no/fysikk/english/research/groups/amks/superconductivity/levitation/
http://www.mn.uio.no/fysikk/english/research/groups/amks/superconductivity/levitation/


Magnetic levitation



Magnetic levitation



Critical magnetic field

Kamerlingh Onnes also discovered that superconductivity is
destroyed if the magnetic field H exceeds some critical value Hc .

Experimentally, it is found that

Hc(T ) = H0

[
1−

(
T
Tc

)2]
Kittel, Introduction to Solid State Physics

The critical magnetic field implies
the existence of a critical electric
current.

The existence of a critical magnetic field is a consequence of the
Meissner-Ochsenfeld effect: expulsing the flux requires some energy
however the energy gain of the phase transition is finite.



Thermodynamics of a superconductor
The thermodynamic state of a superconductor at a given temperature
T and magnetic intensity H is determined by the generalized free
energy

F (T ,H) = U − TS − 1
4π

HHH ·BBB.

Using the laws of thermodynamics and assuming the material is

incompressible, we find dF = −SdT − 1
4π

BBB · dHHH.

in the normal phase: M ∼ 0 therefore B ≈ H

FN(T ,H)− FN(T ,0) = − 1
4π

∫ H

0
BBB · dHdHdH = −H2

8π
in the superconducting phase: B = 0 (H < Hc)
FS(T ,H)− FS(T ,0) = 0

Moreover, we have FS(T ,Hc(T )) = FN(T ,Hc(T )).

FS(T ,H)− FN(T ,H) =
1

8π
(
H2 − Hc(T )2) ≤ 0 since H ≤ Hc(T )



Thermodynamics of a superconductor
Noting that S = −∂F

∂T

∣∣∣∣
H

, we obtain for the latent heat of the transition

L = T (SN − SS) = − 1
4π

T
dHc

dT

This shows that the transition is first order for H < Hc (L 6= 0) and
second order for H = Hc (L = 0).

The heat capacity is given by C = T
∂S
∂T

∣∣∣∣
H

.

Assuming CN ≈ γT (normal metal at low temperatures), we find

CS ≈
(
γ −

H2
0

4πT 2
c

)
T +

3H2
0

4πT 4
c

T 3

Experimentally, CS is exponentially suppressed therefore γ =
H2

0

4πT 2
c

CS

CN

∣∣∣∣
T=Tc

= 3



London theory
In 1934, Gorter and Casimir introduced a
two-component model for superconductors:

“superconducting” electrons with density ns

“normal” electrons with density nn.

In 1935, Fritz and Heinz London proposed the

constitutive equation: ∇∇∇× jjj = −nse2

m
BBB

Using the curl of Maxwell-Ampere’s equation∇∇∇×BBB =
4π
c

jjj and noting

that∇∇∇×∇∇∇×BBB =∇∇∇(∇∇∇ ·BBB)−∇2BBB = −∇2BBB lead to

λL∇2BBB = BBB with λL =

√
mc2

4πnse2 .



Application: semi-infinite superconductor
Let us consider a semi-infinite superconducting material occupying
the space with x ≥ 0. A magnetic field is applied along the z axis.
The solution of London’s equation in the superconductor is given by

λL
d2B
dx2 = B ⇒ B(x) = B(0) exp(−x/λL).

The magnetic field penetrates inside the superconductor only within
distances of the order of λL, called the London penetration length.

The electron current is mainly located in the surface since

jy (x) = − c
4π

dB
dx

=
cB(0)

4πλL
exp(−x/λL), and jx = jz = 0.

Note that in thin films with thickness d � λL, the
Meissner-Ochsenfeld effect is not complete therefore the
thermodynamic approach breaks down. The critical field Hc parallel
to the film is very high.



Pippard theory

London’s equation can be alternatively written as jjj(rrr) = −nse2

m
AAA(rrr).

Brian Pippard introduced the coherence length ξ to
allow for non-local effects:

jjj(rrr) = − 3nse2

4πmξ0

∫
d3r ′

RRR(RRR ·AAA(r ′r ′r ′))

R4 exp

(
−R
ξ

)
where RRR = rrr − r ′r ′r ′.

London’s theory corresponds to the limit ξ → 0:

ji (rrr) ≈ − 3nse2

4πmξ0
Aj (rrr)

∫
d3r ′

RiRj

R4 exp

(
−R
ξ0

)
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m
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Brian Pippard introduced the coherence length ξ to
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jjj(rrr) = − 3nse2

4πmξ0
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d3r ′
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(
−R
ξ
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London’s theory corresponds to the limit ξ → 0:

ji (rrr) ≈ − 3nse2

4πmξ0
Aj (rrr)

∫
d3R

1
3
δij

exp (−R/ξ0)

R2



Pippard theory

London’s equation can be alternatively written as jjj(rrr) = −nse2

m
AAA(rrr).

Brian Pippard introduced the coherence length ξ to
allow for non-local effects:

jjj(rrr) = − 3nse2

4πmξ0

∫
d3r ′

RRR(RRR ·AAA(r ′r ′r ′))

R4 exp

(
−R
ξ
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jjj(rrr) ≈ − nq2

mξ0
AAA(rrr)

∫ +∞

0
dR exp

(
−R
ξ0

)
→ −nse2

m
AAA(rrr)



Pippard theory

London’s equation can be alternatively written as jjj(rrr) = −nse2

m
AAA(rrr).

Brian Pippard introduced the coherence length ξ to
allow for non-local effects:

jjj(rrr) = − 3nse2

4πmξ0

∫
d3r ′

RRR(RRR ·AAA(r ′r ′r ′))

R4 exp

(
−R
ξ

)
where RRR = rrr − r ′r ′r ′.

London’s theory corresponds to the limit ξ → 0:

London-Pippard’s theory explains the electrodynamics of
superconductors.



"Soft" vs "hard" superconductors
In 1935, Lev Vasilievich Shubnikov at the Kharkov
Institute of Science and Technology in Ukraine
discovered that some so called "hard" or type II
superconductors (as opposed to "soft" or type I
superconductors) exhibit two critical fields.

Superconducting magnetization curves of annealed polycrystalline lead and
lead-indium alloys at 4.2 K. (A) lead; (B) lead-2.08 wt. % indium; (C) lead-8.23 wt. %
indium; (D) lead-20.4 wt.% indium. From Kittel, Introduction to Solid State Physics.



"Soft" vs "hard" superconductors

Kittel, Introduction to Solid State Physics

The Meissner effect is incomplete between Hc1 and Hc2 (B 6= 0).

Hc2 is generally much higher than Hc in "soft" superconductors,
Tc is also higher. "Hard" superconductors are thus used to
generate strong magnetic fields.
Hc2 is limited by spin paramagnetism of conduction electrons,
see Clogston, PRL 9, 266 (1962).

Except for vanadium, technetium and niobium, "hard"
superconductors consist of metallic compounds and alloys.



Hydrodynamic approach

A superconductor can be treated as a mixture of two fluids:
a viscous fluid of “normal” electrons (and ions),
an irrotational ideal fluid of charged particles: ∇∇∇× πsπsπs = 000
where πsπsπs = mvvv +

q
c

AAA is the generalized momentum per particle.

The fluid remains irrotational at any time since

∂

∂t
∇∇∇× πsπsπs =∇∇∇× (vvv ×∇∇∇× πsπsπs) = 000

Using jjj = nsqvvv leads to London’s equation∇∇∇× jjj = −nsq2

m
BBB

The condition∇∇∇× πsπsπs = 000 is more fundamental: it explains the

induction of a uniform magnetic field BBB = −2m
q
ωωω inside a

superconductor rotating at the angular velocity ωωω.



Discovery of superfluidity

During the 1930s, it was found by several groups that below
Tλ = 2.17 K, helium does not behave like an ordinary liquid.

“by analogy with superconductors, the
helium below the λ-point enters a special
state which might be called superfluid.”
Kapitza, Nature 141, 74 (1938).

Kapitza received the Nobel Prize in 1978.

“the observed type of flow most certainly cannot
be treated as laminar or even as ordinary
turbulent flow.”
Allen and Misener, Nature 141, 75 (1938).

About the history of superfluidity:
Balibar in “History of Artificial Cold, Scientific, Technological and Cultural Issues”,
Boston Studies in the Philosophy and History of Science 299 (Springer, 2014),
pp.93-114; Balibar, J. Low Temp. Phys. 146, 441 (2007).



Lambda point
The specific heat of helium exhibits a sudden change at Tλ = 2.17 K:

Keesom and Clusius, Proc. Roy. Acad. Amsterdam 35, 307 (1932).

Singularities in the specific heat are generally associated with
order-disorder transitions (e.g. ferromagnetic transition).



Heat transport in He II
Contrary to ordinary liquids,

He II does not follow Fourier’s law for the heat current
JJJ = −λ∇∇∇T , except in extremely fine slits or capillaries. Actually,
the ratio J /|∇T | diverges as |∇T | → 0 !
He II does not boil:

T > Tλ T < Tλ
http://www.lps.ens.fr/~balibar/Allen-boiling.mpg

"super heat conductivity", Keesom.
Heat in He II is not transported according to classical laws.

http://www.lps.ens.fr/~balibar/Allen-boiling.mpg


Onnes and Dana observations about liquid helium

Incidentally, Kamerlingh Onnes and his
collaborators also discovered superfluidity
without realizing it the same day they discovered
superconductivity in April 1911!

Onnes noted about liquid helium:
“Just before the lowest temperature [about 1.8 K]
was reached, the boiling suddenly stops...”

Leo Dana, a visiting student at Onnes’ lab
measured the lambda transition in the specific
heat in 1922 but no one paid attention!

About the history of superconductivity:
van Delft&,Kes, Phys. Today, 63, 9, 38 (2010)



Intermission: viscous flow

z

y

2R

L

v

In ordinary liquids, the mass flow Q of liquid through a pipe of length
L� R is given by Hagen-Poiseuille law

Q = ρ
πR4|∆P|

8ηL

where ρ is the mass density, |∆P| is the pressure drop and η the
shear viscosity.



"Superfluidity"

"superleak": He II can flow without resistance through very
narrow slits and capillaries, almost independently of the pressure
drop.
"superflow": persistent flow of He II (note the similarity with
persistent currents in superconductors)
Reppy and Depatie, PRL 12, 187 (1964)

"superfluidity" disappears beyond some critical velocity (note
the similarity with critical currents in superconductors)
on the other hand, He II exhibits similar viscosity as He I in
experiments with oscillating disks.

http://www.lps.ens.fr/~balibar/Allen-superflow.mpg

He II does not follow the classical laws of hydrodynamics.

http://www.lps.ens.fr/~balibar/Allen-superflow.mpg


Fountain effect

Allen and Jones, Nature 141, 243 (1938)
http://www.lps.ens.fr/~balibar/Allen-fountain.mpg

The superfluid flows from the cooler to the hotter region. From the
second law of thermodynamics, we thus conclude that the superfluid
carries no heat (no entropy).

http://www.lps.ens.fr/~balibar/Allen-fountain.mpg


Hess-Fairbank effect

Fritz London predicted in 1954 the analog of the Meissner effect for
superfluid helium, which was experimentally observed by Hess and
Fairbank in 1967.
Hess and Fairbank, PRL 19, 216 (1967)

Initially at rest, He II remains at rest if the container is set into (slow)
rotation as for a perfect fluid with no viscosity.

Now, liquid helium is initially set into rotation with angular frequency
ω < ωc .

at T > Tλ the liquid rotates classically with angular momentum
L0 = I0 ω where I0 is the moment of inertia
at T < Tλ the superfluid rotates with a reduced angular
momentum L(T ) = I(T )ω with I(T ) < I0 and I(0) = 0.

This phenomenon shows that a superfluid is not just a perfect fluid
but corresponds to a new thermodynamic state of matter.



Superfluidity and Bose-Einstein condensation

Satyendra Nath Bose and Albert Einstein
predicted in 1925 that at low enough
temperatures an ideal gas of bosons
condense into a macroscopic quantum
state. But this prediction was largely
ignored or considered as incorrect.

Einstein himself was skeptical: “The theory is pretty, but is there
anything true in it?”

The connection with superfluidity was first advanced by
Fritz London in 1938:

“a model which is so far from reality that it simplifies
liquid helium to an ideal gas [...] [but] it seems difficult
not to imagine a connection with the condensation
phenomenon of Bose–Einstein statistics.”
London, Nature 141, 643 (1938)



Illustration of BEC from MIT group



Ideal Bose gas
Let us consider an ideal Bose gas of N noninteracting particles. At
T = 0, all particles lie in the lowest single-particle energy state ε = 0.
The occupancy of this state still remains macroscopic at temperature

T < Tc =
2π~2

mζ(3/2)2/3 n2/3 ≈ 3 K for helium

At T > 0, the occupancy of the state ε0 = 0 is given by the

Bose-Einstein distribution N0 =
1

exp[β(ε0 − µ)]− 1
, where

β = 1/(kBT ) and the chemical potential µ ∼ −kBT
N
→ 0 as T → 0.

The occupancy of excited states ε > ε0 is given by∫ +∞

0
dε

N (ε)

exp(βε)− 1
≈ N

(
T
Tc

)3/2

with N (ε) the density of states.

At T = Tc , N0 = 0, while at T = 0, N0 = N. In liquid helium,
N0/N ≈ 6− 8% at T = 0 due to interactions between atoms.



Two-fluid model
Following the suggestion of Fritz London that
superfluidity is related to Bose-Einstein condensation,
Laszlo Tisza postulated that He II contains two
disctinct components:

a superfluid that carries no entropy (condensate)
a normal viscous fluid.

This model explained all the observed phenomena and
predicted thermomechanical effects like “temperature
waves”. Tisza, Nature 141, 913 (1938).

Although Landau did not believe that superfluidity is
related to BEC (he never cited F. London!), he
developed the two-fluid model based on
“quasiparticle” excitations in quantum fluids.
Landau, Phys. Rev. 60, 356 (1941)

About the history: Balibar, C. R. Physique 18, 586 (2017)



Landau vs Tisza and London
Although the two-fluid models of Tisza and Landau were very similar,
they led to different predictions for the speed u2 of temperature
waves (which Landau called “second sound”) at low temperatures.

Tisza

Landau

Measurements by Vasilii Peshkov in
1960 showed that Landau was right.
Peshkov, Sov. Phys. JETP 11, 580 (1960).
Donnely, Physics Today 62, 34 (2009).

But London and Tisza original ideas
that superfluidity is related to BEC
later proved to be correct.

Tisza considered that the normal fluid was made of non-condensed
atoms while for Landau it was made of “quasiparticles”. The density
of non-condensed atoms is a property of the liquid at rest (ground
state) while the density of “quasiparticles” is a property of the
superflow (excited state).



Landau’s theory of He II

Although helium atoms are strongly interacting, Landau assumed that
at low temperatures He II can be described in terms of
weakly-interacting “quasiparticles”, which do not correspond to
material particles but to complex many-body motions (excitations).

Let us consider a macroscopic body of mass M0 flowing through the
superfluid. At low T , its velocity VVV can be changed if a quasiparticle
of energy E(p) and momentum ppp is created.

energy conservation
1
2

M0V 2 >
1
2

M0V ′ 2 + E(p)

momentum conservation M0VVV = M0V ′V ′V ′ + ppp

⇒ E(p) < VVV · ppp − p2

2M0
≈ VVV · ppp since M0 is macroscopic.

The flow is resistanceless if V < Vc = min
{

E(p)

p

}
.



Landau’s theory of He II
For a gas of noninteracting particles, the “quasiparticle” excitations

have energies E(p) =
p2

2m
therefore Vc = 0: the ideal Bose gas is not

superfluid.

For He II, Landau assumed two
different kinds of “quasiparticles”:

phonons at low p
E(p) ≈ csp (sound waves)
rotons at high p

E(p) ≈ ∆ +
(p − p0)2

2m0

The critical velocity is given by Vc =
∆

p0
≈ 60 m s−1. This value was

confirmed by ion propagation experiments.
Ellis & McClintock, Philos. Trans. R. Soc. London, Ser. A, 315, 259 (1985).



Phonons and rotons
In 1947, Bogoliubov calculated the energy of quasiparticles in a
weakly interacting dilute Bose gas using many-body techniques:

E(p) =

√(
p2

2m

)2

+ p2c2
s ≈ csp at low p

J. Phys.(USSR) 11, 23 (1947)

This shows that a BEC of interacting particles is superfluid.

Landau thought that rotons are related to
vortices. Feynman argued that rotons are
atomic size “smoke rings”.

Rotons have also been interpreted as a
characteristic feature of density fluctuations
marking the onset of crystallization (“ghosts of
Bragg spots”, Nozières).
J. Low Temp. Phys. 137, 45 (2004).



Bose-Einstein condensation in dilute atomic gases
On June 5, 1995, the first dilute
BEC was produced by Eric Cornell
and Carl Wieman at the University
of Colorado at Boulder NIST-JILA,
with ∼ 2000 rubidium 87Ru atoms
cooled to 170 nK.

Shortly thereafter, Wolfgang Ketterle’s team at MIT obtained a BEC of
∼ 5× 105 sodium 23Na atoms cooled to 2 µK.

For their achievements,
Cornell, Ketterle and
Wieman were awarded the
2001 Nobel Prize in
Physics.

BEC have been produced by other groups using various kinds of
atoms and their superfluid properties have been demonstrated.



Flow quantization and vortices
Onsager-Feynman quantization of the superflow:∮

vsvsvs · d `̀̀ =
Nh
m

with N = 0,1, etc.

where vsvsvs is the “superfluid velocity” introduced by Landau.

A superfluid rotating at angular frequency
ω in a bucket of radius R is threaded by

N =
2mπR2ω

h
quantized vortex lines,

each carrying an angular momentum ~.

In between vortices, the flow is
“irrotational”∇∇∇× vsvsvs = 0.

Yarmchuk et al., PRL43, 214 (1979)

vsvsvs = πsπsπs/m is actually a momentum: the Onsager-Feynman condition

is nothing but the Bohr-Sommerfeld quantization
∮
πsπsπs · d `̀̀ = Nh.

Carter & Khalatnikov,Phys.Rev.D45,4536(1992)



Abrikosov state
In 1957, Alekseï Alekseïevitch Abrikosov predicted that
a "hard" superconductor is threaded by a regular array
of magnetic flux tubes for Hc1 < H < Hc2. He was
awarded the Nobel Prize in Physics in 2003.

Abrikosov, Soviet Physics JETP 5, 1174 (1957)

Kittel, Introduction to Solid State Physics

Below Hc1, the magnetic flux is expelled inside the
superconductor.
At H = Hc1, the first magnetic flux tubes penetrate the
superconductor.
For Hc1 < H < Hc2, flux tubes arrange themselves on a regular
array with the lattice spacing determined by H (Shubnikov state) .
At H = Hc2, the core of magnetic flux tubes overlap and
superconductivity disappears.



Abrikosov state

Kittel, Introduction to Solid State Physics

Below Hc1, the magnetic flux is expelled inside the
superconductor.
At H = Hc1, the first magnetic flux tubes penetrate the
superconductor.
For Hc1 < H < Hc2, flux tubes arrange themselves on a regular
array with the lattice spacing determined by H (Shubnikov state) .
At H = Hc2, the core of magnetic flux tubes overlap and
superconductivity disappears.



Abrikosov vortex state

Pb-4at%In

Essmann & Trauble, Phys. Lett. 24A, 526
(1967)

NbSe2

Hess et al., PRL 62, 214 (1989)



Magnetic flux quantization

F. London predicted in 1948 that the magnetic flux inside a
superconducting loop must be quantized.

This was experimentally confirmed in 1961 by Bascom Deaver (PhD)
under the supervision of William Fairbank at Stanford University, and
independently by Robert Doll and Martin Näbauer at the Low
Temperature institute in Hersching (Bavaria).
Deaver & Fairbank, PRL 7, 43 (1961); Doll & Näbauer, PRL 7, 51 (1961)

See also 100 Years of Superconductivity, published by Horst Rogalla, Peter H. Kes,
CRC Press, Taylor & Francis group, 2012, p.161



Magnetic flux quantization
Let us consider the Bohr-Sommerfeld quantization rule:∮

πsπsπs · d`d`d` = Nh with N = 0,1, etc.

With jjj = nqvvv and πsπsπs = mvvv +
q
c

AAA,∮ (
mvvv +

q
c

AAA
)
· d`d`d` =

m
nq

∫
∇∇∇× jjj · dSdSdS +

q
c

∫
BBB · dSdSdS,

However, BBB = 0 therefore∇∇∇× jjj = 0 (Meissner effect).

⇒ Φ =

∫
BBB · dSdSdS = NΦ0 with Φ0 = hc/q.

Remarks:
Φ0 is called a "fluxoid" or "fluxon".
Φ = Φext + Φs. Since Φext is not quantized, Φs must adjust itself
accordingly !
Experimentally Φ0 = hc/(2e) therefore the superconducting
particles carry a charge q = 2eq = 2eq = 2e.
The superconducting current will persist unless the flux changes.



Superconducting elements

Credit: Osaka University

Copper, silver and gold, three of the best metallic conductors, are not
superconducting ! The microscopic explanation had to wait for the
Bardeen-Cooper-Schrieffer (BCS) theory in 1957.



Timeline of superconductor discoveries
High-Tc cuprate superconductors were discovered in 1986 by IBM
researchers G. Bednorz and K.A. Müller (Nobel Prize in 1987).

credit: Osaka University

Very recently LaH10 has been found to be superconducting (under
high pressures) at almost room temperature (Tc = 260 K)!
Somayazulu et al., PRL 122, 027001 (2019)



Towards a microscopic theory of superconductivity

In 1950, Landau and Ginzburg developed
a phenomenological theory of
superconductivity.

Landau received the Nobel Prize in 1962.
Ginzburg shared the 2003 Nobel Prize in
Physics with Abrikosov.

A microscopic theory was
proposed in 1957 by Bardeen,
Cooper and Schrieffer.

In 1959, Gorkov showed that the
Ginzburg-Landau equations can
be derived from the BCS theory.

BCS shared the 1972 Nobel Prize
in Physics.



Ginzburg-Landau theory of superconductivity
Second-order phase transitions are associated with spontaneous
symmetry breaking, and can be characterized by an order
parameter η, such that η(T ≥ Tc) = 0 and η(T < Tc) 6= 0.

Examples:
liquid-gas phase transition at the critical point η = vliq − vgas

ferromagnetic-paramagnetic transition η = M

Ginzburg and Landau postulated:
η has the nature of a wave function Ψ,
|Ψ|2 = ns, where ns is the density of superconducting particles,



Ginzburg-Landau theory of superconductivity

For T close to Tc , the free energy can be expanded in a Taylor series:

FS = FN + α|Ψ|2 +
β

2
|Ψ|4 +

1
2m

∣∣∣∣~i∇∇∇Ψ− qAAAΨ

∣∣∣∣2 +
B2

8π
+ . . .

Note that
1

2m

∣∣∣∣~i∇∇∇Ψ− qAAAΨ

∣∣∣∣2 is the lowest order gradient term that is

gauge invariant.

Minimizing with respect to Ψ and AAA yields

1
2m

[
~
i
∇∇∇− qAAA

]2

Ψ + αΨ + β|Ψ|2Ψ = 0

jjj =
q

2m
~
i

[
Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗

]
− q2

m
|Ψ|2AAA



Fluctuations of the order parameter
Let AAA = 0 and jjj = 0.

jjj =
q

2m
~
i

[
Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗

]
= 0 therefore Ψ is real.

− ~2

2m
∇2Ψ + αΨ + βΨ3 = 0, or equivalently setting ϕ ≡

√
β

|α|
Ψ

ξ2∇2ϕ+ ϕ(1− ϕ2) = 0 with ξ ≡

√
~2

2m|α|

For a semi-infinite superconductor in x ≥ 0, ϕ(x) = tanh

(
x√
2ξ

)
.

Therefore ϕ(0) = 0 at the boundary between the normal and
superconducting phases, while deep inside the superconductor
ϕ(x → +∞) = 1 so that Ψ(x → +∞) =

√
ns =

√
|α|/β.

The coherence length ξ is the characteristic distance over which
Ψ(rrr) fluctuates (different from Pippard’s coherence length).



London penetration length

Let us now assume Ψ(rrr) =
√

ns =
√
|α|/β (no spatial fluctuations) in

a weak magnetic field B � Hc .

The second Ginzburg-Landau’s equation reduces to London’s
equation :

jjj =
q

2m
~
i

[
Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗

]
− q2

m
|Ψ|2AAA = −nsq2

m
AAA

⇒ λL∇2BBB = BBB with λL =

√
mc2

4πnsq2 =

√
mc2β

4π|α|q2

The London penetration length λL is the characteristic distance
over which BBB penetrates the superconductor.



Two characteristic length scales
The Ginzburg-Landau theory predicts that both λL and ξ scale like
|α|−1/2 ∝ (Tc − T )−1/2 but their ratio is constant

κ ≡ λL

ξ
=

mc
q~

√
β

2π

One can show that

if κ < 1/
√

2, the superconductor is "soft",

if κ > 1/
√

2, the superconductor is "hard".

Roughly speaking, at Hc1 the first fluxoid nucleates. It carries a
quantum flux Φ0: the magnetic field inside is ∼ Hc1 and extends over
a distance ∼ λL. At Hc2, fluxoids are the most densely packed with a
spacing ∼ ξ and the magnetic field penetrates almost uniformly the
superconductor.

Therefore Hc1 ∼
Φ0

πλ2
L

and Hc2 ∼
Φ0

πξ2 . Note that
Hc2

Hc1
∼ λL

ξ
.

If ξ & λL, fluxoids cannot form.



BCS theory of superconductivity
The discovery of the isotope effect, Tc ∝ M−α, suggested that
crystal lattice dynamics play a role in superconductivity.

In a superconductor, the dynamical
distorsions of the crystal lattice (phonons)
can induce an attractive effective
interaction between electrons of
opposite spins.

Electrons form pairs which behave like bosons and can thus
condense below a certain critical temperature. A superconductor
can thus be viewed as a charged superfluid.

This suggested that fermionic atoms could also be superfluid.
Osheroff found in 1971 that 3He is superfluid below 2.5 mK.



Effective electron-electron interaction
Two electrons in vacuum repel each other due to the instantaneous

Coulomb interaction V (r1r1r1, t1, r2r2r2, t2) =
e2

r
δ(t) with r = |r1r1r1 − r2r2r2| and

t = t1 − t2.

Ṽ (qqq, ω) =
1
Ω

∫
dt
∫

d3r V (rrr)e−i(qqq·rrr+ωt) =
4πe2

Ωq2 .

Two conduction electrons in a solid interact with other electrons and
with ions. Their "bare" interaction is thus "dressed" by the medium.

Typical scales in a solid:
conduction electrons of density n (Fermi gas)

Fermi energy εF =
1
2

mv2
F where vF =

~kF

m
is the Fermi velocity

and kF = (3π2n)1/3

low-energy longitudinal lattice vibrations (phonons)

ion plasma frequency ωp =

√
4πZ 2e2nI

M



Bardeen-Pines interaction
Approximating a solid by a "jelium", the effective interaction
between electrons is approximately given by (q � kF , ω � cskF ,
cs � vF )

Veff(qqq, ω) =
4πe2

q2 + q2
TF︸ ︷︷ ︸

screening

+
4πe2

q2 + q2
TF

ω(qqq)2

ω2 − ω(qqq)2︸ ︷︷ ︸
polarization

where ω(qqq) ≈ csq, cs = ωp/qTF is the sound speed, and

qTF =

√
4πe2 ∂n

∂µ
is the Thomas-Fermi wave vector.

Charge screening makes the Coulomb interaction much less

repulsive at large distances V (r) =
e2

r
→ Veff(r) =

e2

r
e−qTFr

Polarization of the ion lattice leads to retarded interaction: the
distortion of the lattice induced by the first electron is felt at a
later time by the second electron.

The effective electron-electron interaction induced by the polarization
of the ion lattice is attractive for ω < ω(qqq) and repulsive otherwise.



Cooper pairing and BCS gap equations
In conventional superconductors, electron with opposite spins form
independent pairs with no momentum (1S0 pairing)

Each electron has a momentum ~kkk and an energy ε(kkk) =
~2k2

2m
− εF .

The binding energy of a pair (kkk ↑,−kkk ↓) is determined by the highly
non-linear BCS gap equations

∆(kkk) = −
∑
k ′k ′k ′

Ṽeff(k ′k ′k ′ − kkk)
∆(k ′k ′k ′)
2E(k ′k ′k ′)

tanh

[
E(k ′k ′k ′)
2kBT

]
,

Ṽeff(k ′k ′k ′ − kkk) is the pairing interaction and E(kkk) ≡
√
ε(kkk)2 + ∆(kkk)2

The solution of the BCS gap equations is highly nonlinear:

With Cooper interaction Ṽeff(|ε| < ~ωD) = −V0/Ω, where ωD = qDcs is
the Debye frequency and qD = (6π2nI)

1/3, one finds

∆(T = 0) ≈ 2~ωD exp

(
− 1
N (0)V0

)
where N (0) is the density of states on the Fermi surface.



Beyond BCS
The BCS theory has been very successful in describing so called
conventional superconductors with low Tc (weak coupling).

Universal relations

Tc

∆(0)
=

exp(γ)

π

CS

CN
≈ 1 +

3
2
δ exp(−2γ) ≈ 2.5

(Euler-Mascheroni constant
γ ≈ 0.577).

Kittel, Introduction to Solid State Physics

The BCS theory is a mean-field approach. It was later reformulated
and extended using quantum field theory.



Theory of inhomogeneous superconductors

The extension of the BCS theory to inhomogeneous superconductors
leads to the Bogoliubov-de Gennes equations:

(
h0(rrr) + U(rrr) ∆(rrr)

∆(rrr)∗ −h0(rrr)∗ − U(rrr)∗

)(
ϕ1k (rrr)
ϕ2k (rrr)

)
= Ek

(
ϕ1k (rrr)
ϕ2k (rrr)

)

h0(rrr) ≡ − ~2

2m

(
∇∇∇− iq

~c
AAA
)2

− εF is the kinetic operator

U(rrr) = U[n(rrr)] and ∆(rrr) = ∆[ñ(rrr)] are the mean-field potentials

n(rrr) =
∑

k

{
fk |ϕ1k (rrr)|2 + (1− fk )|ϕ2k (rrr)|2

}
is the “normal” density

ñ(rrr) =
∑

k

(2fk − 1)ϕ2k (rrr)ϕ1k (rrr)∗ is the “abnormal” density

fk =
1

1 + exp(Ek/kBT )
is the Fermi occupation factor



Fermionic condensates: from BEC to BCS

On December 16, 2003, the first
dilute fermionic condensate was
produced by Deborah Jin at JILA
with 500 000 potassium 40K atoms
cooled to 50 nK.

By varying the pairing interaction with a magnetic field, it is possible
to study the crossover from a BEC to a BCS state.
Leggett&Zhang in “The BCS-BEC Crossover and the Unitary Fermi Gas”, Lecture
Notes in Physics 836 (Springer, 2012), pp. 33-47

Quantized vortices in: (a) a BEC of bosonic sodium atoms, a
fermionic condensate of 6Li atoms in the BEC (b) and BCS (c) states.
Zwierlein et al, Nature 435, 1047 (2005)



Part 1: Summary

Superfluids and superconductors (charged superfluids) cannot be
explained by classical hydrodynamics/electromagnetism.

Superconductivity and superfluidity are intimately related
macroscopic quantum phenomena:

absence of electric resistance/viscosity,
persistent current/flow in rings,
Meissner-Ochsenfeld effect (BBB = 0)/Hess-Fairbank effect (LLL = 0),
critical current/velocity,

quantized fluxoids/vortices
∮
πsπsπs · d`d`d` = Nh

Superfluidity and superconductivity are associated with
Bose-Einstein condensation. In the case of fermions, the
condensation proceeds through the formation of pairs.


