Thermal evolution of neutron stars and the role of their superfluidity

Review of Part I

• Energy loss is mainly due to neutrino emission from the core

o dUrca, mUrca, bremsstrahlung, Cooper pair formation and breaking

- neutron pairing in the crust $({}^{1}S_{0})$, neutron $({}^{3}P_{2})$ and proton $({}^{1}S_{0})$ pairing in the core, hyperonic $({}^{1}S_{0}$ and ${}^{3}P_{2})$ pairing in the core
- NS's thermal evolution is intimately related to the core composition **Part II:**
- Cooling relevant effects of pairing
- Hypernuclear compact stars: EoS, constraints, properties
- Cooling Simulations
- What do we learn from data?

• • = • • = • = •

Thermal evolution

According to [Thorne, Astrophys. J. 212, 825 (1977)] thermal evolution is governed by two equations: **Thermal balance:**

$$\frac{1}{4\pi r^2 e^{2\Phi}} \sqrt{1 - \frac{2Gm}{c^2 r}} \frac{\partial}{\partial r} \left(e^{2\Phi} L_r \right) = -Q_\nu - \frac{C_\nu}{e^{\Phi}} \frac{\partial T}{\partial t}; \quad Q_\nu = \sum_i Q_{\nu,i}, \quad C_V = \sum_j C_{V,j},$$

 $i = dUrca, mUrca, brem, PBF, j = n, p, \Lambda, \Xi^{-}, \Xi^{0}, \Sigma^{-}, etc.$

Heat transport:

$$\frac{L_{r}}{4\pi kr^{2}} = -\sqrt{1 - \frac{2Gm}{c^{2}r}}e^{-\Phi}\frac{\partial}{\partial r}\left(Te^{\Phi}\right)$$

For isothermal cores, i.e. $(Te^{\Phi}) = \text{ct.}, C_{\nu} \partial Te^{-\Phi} / \partial t = -Q_{\nu}$ EoS dependence via $Q_{\nu}, C_{\nu}, k, \Phi$

イロト イポト イラト イラト

Thermal evolution from superfluid cores

- C_V is modified, see talk by N. Chamel
 C_V → 0 for T ≪ T_c enhances cooling in the γ-cooling era
 maximum effect comes from neutrons, which are the dominant component
- 2 gaps reduce the phase space,

 \circ neutrino emissivities of \underline{all} processes which involve paired particles are reduced,

 \circ though dependent on T, Δ , type of pairing, number of paired species, $Q_{\nu} \rightarrow 0$ for $T \ll T_c$ [Yakovlev et al., Phys. Rep. 354 (2001)],

 \circ SF slows down the cooling; the consequences are most visible in the $\nu\text{-}\mathrm{cooling}$ era,

 $\circ\,$ pairing turns dUrca into an intermediate cooling process

- Opens up, for *T* < *T_c*, a new *ν*-emission process, the formation and breaking of Cooper pairs *B* + *B* → [*BB*] + *ν* + *ν̃* and [*BB*] → *B* + *B* + *ν* + *ν̃*,
 - \circ maximum emissivity at $T/T_c \approx$ 0.5;
 - \circ SF speeds up the cooling,
 - \circ the consequences are most visible in the $\nu\text{-cooling}$ era.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

Suppression of Q_{ν} and C_{V} by pairing

a pairing gap in the s.p. excitation spectrum results in a Boltzmann-like $\approx \exp\left(-\Delta/k_BT\right)$ suppression of C_V and Q_{ν}

- specific heat [Levenfish & Yakovlev (1994)] • for $T \leq T_C$, $C_V > C_{V,0}$, due to increased correlation length around T_C ; \circ for $T \ll T_C$. $C_V \rightarrow 0$
- emissivity of mUrca, $Q_{\mu}^{mD} = Q_{\mu 0}^{mD} \alpha \exp(-\beta T_c/T);$ similar qualitative behavior for dUrca, bremsstrahlung, etc.
- emissivity of PBF, maximum efficiency around $T_C/2$

3 🕨 🖌 3 🕨

Cooling of neutron stars

• purely nucleonic stars

[Kaminker+, A&A373 (2001); Page+, ApJSS (2004); Yakovlev & Pethick, Ann. Rev. Astron. Astrophys. (2004); Page+, ApJ (2009); Fortin+, MNRAS (2017)]

nucleonic stars with hyperonic admixtures
 [Haensel & Gnedin (1994); Schaab+, ApJ (1998); Tsuruta+, ApJ (2009);
 Raduta+, MNRAS (2018); MNRAS (2019); Grigorian+, NPA (2018);
 Negreiros+, ApJ (2018)]

• neutron stars with π and *K*-condensates [Schaab+, NPA605 (1996); Yakovlev & Pethick, Ann. Rev. Astron. Astrophys. (2004)]

• quark stars

[Blaschke+, A&A (2001); Schaab+, NPA605 (1996); Page+, PRL85 (2000); Page & Usov, PRL89 (2002); Alford+, PRD71 (2005); Hess & Sedrakian, PRD84 (2011); Negreiros+, PRC85 (2012); de Carvalho+, PRC92 (2015); Sedrakian, EPJA52 (2016)]

• NS built upon <u>phenomenological EoS</u>, mainly meant to constrain the dUrca threshold and/or neutron and proton SF gaps [Beznogov & Yakovlev, MNRAS (2015); Beloin+, PRC97 (2018)]

Cooling of hypernuclear compact stars

• "History": due to activation of hyperonic dUrca, hypernuclear compact stars were considered [Haensel & Gnedin (1994); Schaab+, ApJ (1998); Tsuruta+, ApJ (2009)] incompatible with thermal data, even if hyperonic pairing was accounted for

• Context: Measurements of several $\approx 2 M_\odot$ pulsars motivated research on hyperonic d.o.f. in NS core

• **Recent results:** [Raduta+, MNRAS (2018, 2019); Grigorian+, NPA (2018); Negreiros+, ApJ (2018)] shown that hypernuclear stars are not incompatible with present data

• **Status:** results are much dependent on EoS, including the nucleonic sector, nucleonic and hyperonic pairing, ν -emission channels even in the simplified hypotheses that no heating source is present

• Today: thermal evolution of NS built upon various EoS, accounting for Λ and $\Xi\text{-pairing}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Equation of State: the astrophysics perspective

 \bullet structure and composition of NS depend on the EoS, $P(\epsilon)$

 \circ the simplest case: static, spherically symmetric NS built by solving TOV eqs.

- $P(\epsilon)$ depends on <u>effective interactions</u> over a wide range of dens. • radii of canonical mass NS, $M \approx 1.4 M_{\odot}$, depend on EoS at interm. dens., in particular on the <u>symmetry energy</u>, expr. in terms of E_{sym} , L_{sym} , K_{sym} <u>recent measurements</u>: millisecond pulsar PSR J0030+0451 (NICER): $M = 1.34^{+0.15}_{-0.16} M_{\odot}$, $R_e = 12.71^{+1.14}_{-1.19}$ km (Riley+, 2019) and $M = 1.44^{+0.15}_{-0.14} M_{\odot}$, $R_e = 13.02^{+1.24}_{-1.06}$ km (Miller+, 2019)
 - tidal deform. constrain both intermediate and high dens.;
 GW170817(Abbott+, 2017) rules out stiff EoS(Most+; Paschalidis+, 2018)
 moment of inertia depend on EoS
- $P(\epsilon)$ depends on particle degrees of freedom

 \circ hyperons soften $P(\epsilon)$, which diminishes M_{\max}

- \circ Δ soften/stiffen $P(\epsilon)$ for intermediate/high densities, which diminishes the radii of NS with $1 M_{\odot} \lesssim M \lesssim M_{\rm max}$
- $P(\epsilon)$ does not provide info on composition
- (some) info on composition can be extracted from thermal data

Adriana Raduta (IFIN-HH)

Thermal evolution of neutron stars

Equation of State: the nuclear physics perspective

- ϵ and P are derived quantities, under phys. cond. relevant for NS, i.e. β -equil.
- a more general description would require particle densities, $P(\{n_i\})$, $\epsilon(\{n_i\})$

Simplest case:

nuclear matter = charge neutral, homogeneous, infinitely large system made of neutrons and protons

Energy per nucleon:

expressed as a Taylor expansion around $(n_s, 0)$, in terms of departure from saturation $\chi = (n - n_0)/3n_0$ and isospin symmetry $\delta = (n_n - n_p)/n$

$$E(n,\delta) = E_0 + \frac{K_0}{2!}\chi^2 + \left[J_{sym} + L_{sym}\chi + \frac{K_{sym}}{2!}\chi^2\right]\delta^2$$

• all parameters have physical meaning (saturation density n_s , en. per nucleon at saturation E_0 , compression modulus K_0 , symmetry energy E_{sym} , etc.) • can be expressed analytically in terms of forces parameters

• their values are constrained by nuclear experiments (binding energies, charge rms radii, neutron skin thickness, charge radii of mirror nuclei, energy of giant monopole/dipole/quadrupole resonances, dipole polarizability; etc.;), z = 1

Adriana Raduta (IFIN-HH)

Equation of State: State of art

$$E(n,\delta) = E_0 + \frac{K_0}{2!}\chi^2 + \left[J_{sym} + L_{sym}\chi + \frac{K_{sym}}{2!}\chi^2\right]\delta^2$$

from the analyses of 55 Skyrme and relativistics mean-filed models, whose parameters have been tuned on different properties of atomic nuclei [Margueron+, PRC97 (2018)] it comes out that:

- good constraints on: $n_s = 0.1543 \pm 0.0054 \text{ fm}^{-3}$, $E_0 = -16.03 \pm 0.20 \text{ MeV}$, $J_{sym} = 33.30 \pm 2.65 \text{ MeV}$
- loose constraints on: $K_0 = 251 \pm 29$ MeV, $L_{sym} = 76.6 \pm 29.2$ MeV
- no constraints on $K_{sym} = -3 \pm 132$ MeV [Margueron+, PRC97 (2018)] and param. of high order terms

reason? nuclei are close to saturation and isospin symmetry

Extra constraints on neutron rich matter:

- ab initio calculations of pure neutron matter (L_{sym}),
- NS measurements (*L_{sym}*, *K_{sym}*)

・ 「 ・ モ ・ ・ 日 ・ ・ 日 ・

Lab constraints on $J_{sym} - L_{sym}$ and MR diagram

Tsang et al., PRC86, 015803 (2012) Lattimer & Lim, ApJ771, 51 (2013) Lattimer & Steiner, EPJA50, 40 (2014)

for most interactions J_{sym} , L_{sym} fall outside the intersection of constraints originationg from various type of experiments

$E_{sym}(n)$ and NS properties

Recent constraints on K_{sym} from NICER and LIGO/Virgo

- until recently, no constraint on K_{sym} example: based on 50 Skyrme and RMF models, $K_{sym} = -3 \pm 132 \text{ MeV}$ [Margueron+, PRC97 (2018)]
- based on correlation between K_{sym} R_{1.4M_☉} and Λ R_{1.4M_☉} NICER radius measurements and LIGO/Virgo GW170817 measurements were exploited to constrain K_{sym} = -102⁺⁷¹₋₇₂ MeV [Zimmerman+, arXiv:2002.03210]

FIG. 4. Comparison of probability distributions for $K_{\text{sym},0}$ with various observations: PSR J0030+0451 with NICER using the 3-spot model, GW170817 with LIGO/Virgo, and NICER + LIGO/Virgo combined.

<ロト < 同ト < ヨト < ヨト

NS with admixture of hyperons

• exotic degrees of freedom are expected to nucleate at supra-saturation densities based on energetic arguments (hyperons, Δ resonances, condensates, quarks)

▷ the first candidates are the hyperons=baryons with one or two strange quarks

Baryon	В	Q	S	Ι	J ^Π	rest mass		mean life	
						(MeV)		(s)	
Λ	1	0	-1	0	$1/2^{+}$	1115.683	uds	$2.60 \cdot 10^{-10}$	
Σ^+	1	1	-1	1	$1/2^{+}$	1189.37	uus	$8.02 \cdot 10^{-11}$	
Σ^0	1	0	-1	1	$1/2^{+}$	1192.642	uds	$7.4 \cdot 10^{-20}$	
Σ^{-}	1	-1	-1	1	$1/2^{+}$	1197.449	dds	$1.48 \cdot 10^{-10}$	
Ξ^0	1	0	-2	1/2	$1/2^+$	1314.83	uss	$2.90 \cdot 10^{-10}$	
Ξ-	1	-1	-2	1/2	$1/2^{+}$	1321.31	dss	$1.64 \cdot 10^{-10}$	

NS with admixture of hyperons

• heavy baryons are expected to be populated at supra-saturation densities based on energetic arguments

- onset density depends on NY and YY interactions
- no scattering data

• experimental data on the binding energy of hyperons in single- Λ hypernuclei in s, p, d, f, g shells, with $7 \le A \le 208$, double- Λ hypernuclei [Gal+, RMP (2016)] and two Ξ^- hypernuclei ($^{12}_{\Xi^-}$ Be [Khaustov+, PRC61 (2000)], $^{15}_{\Xi^-}$ C [Nakazawa+, PTEP (2015)])

• ΛN and ΞN interactions are tuned such as to reproduce experimental data [van Dalen & Sedrakian, PLB (2013); Sun+, PRC(2016); Fortin+, PRC(2017); Fortin+, PRD (2020)]

- values are converted in $U_Y^{(N)}(n_s)$, with $U_{\Lambda}^{(N)}(n_s) \approx -28$ MeV, $U_{\Xi}^{(N)}(n_s) \approx -18$ MeV, $U_{\Sigma}^{(N)}(n_s)$ [Gal+, RMP (2016)]
- $U_{\Lambda}^{(\Lambda)}(n_s) \approx -1 \text{ MeV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

How to "build" a NS?

- I. Nuclear physics job:
 - assume particle degrees of freedom (eg. (n, p, e), (n, p, e, μ) , (n, p, e, μ, Λ) , $(n, p, e, \mu, \Lambda, \Xi^-, \Xi^0, \Sigma^-, \Sigma^0, \Sigma^+)$, etc.)
 - nuclear equation of state model, governed by interactions among particles
 - solve the equilibrium equations
 - ▶ net charge neutrality: $\sum_{\alpha \in \textit{baryons}} n_{\alpha} + \sum_{\beta \in \textit{leptons}} n_{\beta} = 0$,
 - ► chemical equilibrium: $\mu_{\alpha} = Q_{B}\mu_{B} + Q_{Q}\mu_{Q} + Q_{S}\mu_{s}$, $\mu_{\beta} = Q_{Q}\mu_{Q} + Q_{L}\mu_{L}$
 - particles with non-vanishing densities, $\mu_i > m_i c^2$
 - result: equations of state $P(n_b)$, $e(n_b)$, typically at T = 0, $\mu_{Lepton} = 0$ (cold catalized matter)
 - rule out EoS with violate causality,

maximum mass, $2M_{\odot}$ (since 2010), tidal deformability, $\lambda < 800$ (since 2017)

Relativistic mean field model

• covariant Lagrangian density:

$$\mathcal{L} = \mathcal{L}_N + \mathcal{L}_Y + \mathcal{L}_M$$
, N =nucleons, Y =hyperons, M =mesons
 $\mathcal{L}_B = \bar{\Psi} [\gamma_\mu D_B^\mu - M_B^*] \Psi$, with $D_B^\mu = i\partial^\mu - g_{\omega B}\omega^\mu - g_{\rho B}\tau_B\rho^\mu$, $M_B^* = M_B - g_{\sigma B}\sigma$

• interactions among nucleons are mediated by the exchange of scalar-isoscalar (σ), vector-isoscalar (ω), vector-isovector (ρ) mesons

• the meson-nucleon coupling constants are determined from properties of atomic nuclei; for a review, see [Dutra+, PRC90 (2014)]

 \bullet interactions between hyperons and nucleons are mediated by the same mesonic fields

• the σ -hyperon coupling constants are determined from values of $U_Y^{(N)}(n_s)$

• the couplings of the hyperons with the vector fields are expressed in terms of nucleonic couplings and determined based on flavor symmetry arguments

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Key nuclear properties of some relativistic DF models

Model	ns	Es	K	J	L	$K_{ m sym}$	$n_{ m DU}$	$M_{\rm DU}$
	(fm^{-3})	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(fm^{-3})	(M_{\odot})
NL3	0.149	-16.2	271.6	37.4	118.9	101.6	0.20	0.84
GM1A	0.154	-16.3	300.7	32.5	94.4	18.1	0.28	1.10
DDME2	0.152	-16.1	250.9	32.3	51.2	-87.1	-	-
DD2	0.149	-16.0	242.7	31.7	55.0	-93.2	-	-
FSU2H	0.150	-16.3	238.0	30.5	44.5	n.a.	0.53	1.86
NL3 ωho	0.148	-16.2	271.6	31.5	55.0	-7.6	0.53	2.22
SWL	0.150	-16.0	260.0	31.0	55.0	n.a.	0.90	2.00

NL3 [Lalazissis et al., PRC55 (1997); GM1A [Glendenning et al., PRL67 (1991); DDME2 [Lalazissis et al., PRC71 (2005); DD2 [Typel et al., PRC81 (2010)]; FSU2H [Tolos et al., PASA (2017); Negreiros et al., ApJ863 (2018)]; NL3 $\omega\rho$ [Horowitz+, PRL86 (2001); Pais+, PRC94 (2016)] SWL [Spinella, PhD Thesis, Univ. San Diego (2017)]

Constraints: $40 \lesssim L \lesssim 62$ MeV [Lattimer & Lim, ApJ771 (2013)] or $30 \lesssim L \lesssim 86$ MeV [Oertel+, RMP89 (2017)] $K_{svm} = -102 \pm 71$ MeV [Zimmerman+ (2020)]

• • = • • = • = •

Key astrophysical charact. of some relativistic DF models

Model	$n_{\rm max}$	$M_{\rm max}^{\rm Y}$	Y_1	$n_{\rm Y_1}$	$M_{\rm Y_1}$	Y_2	$n_{\rm Y_2}$	$M_{\rm Y_2}$	Y_3	$n_{\rm Y_3}$	$M_{\rm Y_3}$
	(fm^{-3})	(M_{\odot})		(fm^{-3})	(M_{\odot})		(fm^{-3})	(M_{\odot})		(fm^{-3})	(M_{\odot})
NL3	0.77	2.07	Λ	0.28	1.47	Ξ-	0.33	1.73	Ξ0	0.57	2.02
GM1A	0.92	1.994	Λ	0.35	1.49	Ξ-	0.41	1.67	-	-	-
DDME2	0.93	2.12	Λ	0.34	1.39	Ξ^{-}	0.37	1.54	Σ^{-}	0.39	1.60
DD2	1.00	2.00	Λ	0.34	1.29	Σ^{-}	0.37	1.45	Ξ^{-}	0.37	1.46
FSU2H	0.90	1.99	Λ	0.33	1.41	Σ^{-}	0.43	1.71	Ξ^{-}	0.49	1.81
NL3 ωho	0.76	2.31	Λ	0.32	1.68	Ξ^{-}	0.36	1.89	Σ^{-}	0.42	2.05
SWL	0.97	2.00	٨	0.41	1.51	Ξ-	0.45	1.65	Ξ^0	0.90	2.00

all models provide $M_{\text{max}} \approx 2M_{\odot}$, in agreement with PSR J1614 - 2230, $M = 1.908 \pm 0.016M_{\odot}$ [Demorest+, Nature (2010); Arzoumanian+, ApJS235 (2018)], PSR J0348 + 0432, $M = 2.01 \pm 0.04M_{\odot}$ [Antoniadis+, Science340 (2013)], MSP J0740+6620, $M = 2.14^{+0.10}_{-0.09}M_{\odot}$ [Cromartie+, (2019)]

NL3 [Miyatsu et al. PRC 88 (2013)]; GM1A [Gusakov et al., MNRAS439 (2014)]; DDME2 [Fortin et al., PRC94 (2016)]; DD2, FSU2H, NL3 $\omega\rho$ [Fortin+, PRD (2020)]; SWL [Spinella, PhD Thesis, Univ. San Diego (2017)]

NS EoS and NS properties (I)

P(e)

dot-dashed curves=limits of the domain extracted by [Raaijmakers+, (2019)] from NICER and LIGO/Virgo data on

PSR J0030+0451 and GW170817

[Antoniadis+, Nature (2013)].

NS EoS and NS properties (II)

data: the experimental constraints on mass-radius relation based on NICER measurements of the millisecond pulsar PSR J0030+0451 [Miller+, Riley+, (2019)]

GW170817 data [Abbott+, 2017]

Thermal evolution by NSCool* by D. Page

Physical situations:

Cooling of isolated NSHeating of accreting NS

ν -emission processes:

 \circ crust: bremsstrahlung, Cooper pair formation & breaking, plasmon decay, pair annihilation, $\gamma-\nu$ processes

core: dUrca, mUrca, bremsstrahlung,
 Cooper pair formation & breaking

Atmosphere model: Fe or H

Crust model:

 \circ outer crust [Negele&Vautherin 1973], \circ inner crust [Haensel+ (1989)]

Extra heating: none

Input

 \circ EoS

 NS mass and radial profiles of particle densities

• SF gaps in various channels

- $\circ~\nu\text{-emission}$ processes (crust/core)
- \circ atmosphere model
- initial temperature profile
- \circ accretion rate, for XRT

Output

 radial temp. profiles at different moments

 $\begin{vmatrix} \circ \text{ luminosity of all } \nu \text{ and } \gamma \text{-processes} \\ \circ T_s^{\infty} = T_s \sqrt{1 - 2GM/c^2R} \\ m \text{ paytrones /NSCool} / + upgrading \end{vmatrix}$

* available at: http://www.astroscu.unam.mx/neutrones/NSCool/ + upgrading

Cooling of INS

Phenomenology

• born hot in SN explosions, $T \approx 50 \text{ MeV} \approx 5 \cdot 10^{11} \text{ K}$

• $t \lesssim 10-100$ yr: the core cools down by $\nu\text{-emission};$ the crust stays hot; the crust and the core are thermally decoupled; if measured, T_s would reflect crust's state

• $t \approx 10 - 100$ yr: NS is isothermal

• $10^2 \lesssim t \lesssim 10^5$ yr: u-emission from the core; u-cooling era; dominated by $Q_{
u}$

• $t\gtrsim 10^5$ yr: the cooling wave moves toward the surface; γ -cooling era; dominated by C_V

Setup & Strategy

• **fix:** crust EoS, atmosphere model (mostly Fe), neutron ¹S₀ pairing in the crust

• explore:

 \circ core EoS (DDME2, SWL, GM1A),

$$\circ$$
 NS mass ($1 \leq M/M_{\odot} \leq M_{
m max}$),

proton ¹S₀ pairing in the core:
 i) BCLL [Baldo+, NPA536 (1992)]
 ii) CCDK [Chen+, NPA555 (1993)]

$$\circ$$
 neutron ${}^{3}PF_{2}$ in the core:

$$\circ \Lambda^{1}S_{0}$$
 from BCS

$$\circ \equiv {}^{1}S_{0}$$
 from BCS

 \circ p and Λ high dens. pairing

Pairing gaps - Overview

NS Composition and pairing: DDME2

Adriana Raduta (IFIN-HH)

Thermal evolution of neutron stars Karpacz (Poland), February, 25th, 2020

NS Composition and pairing: GM1A

INS Cooling by DDME2

INS Cooling by GM1A

[AR, Sedrakian & Weber, MNRAS (2018)]

GM1A: $M_{dU} = 1.10 M_{\odot}$ $M_{\Lambda} = 1.49 M_{\odot}; M_{\Xi^-} = 1.67 M_{\odot};$

data: Beznogov & Yakovlev, MNRAS (2015)

cooling curves: $M=1.4, 1.5, 1.6, 1.7, 1.8, 1.9 M_{\odot}$

p(CCDK) & no Y-SF: $M\gtrsim 1.5M_{\odot}$ too cold

p(CCDK) & Y-SF: OK up to $1.8M_{\odot}$

INS Cooling by DDME2

cooling curves:

M=1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.85, 1.9, $2M_{\odot}$

What do we learn from data?

• had the criterium to decide the agreement with data been that CC of hypernuclear INS pass through **some** data, the agreement would be good

• had it been that **all** data have to be passed through, the agreement would be bad

 \circ oldest and coolest INSs' T_{eff} are not described; reason? the neutron 3P_2 pairing which makes $C_v \to 0$

 \rightarrow (common practice) suppress neutron 3P_2 pairing, though there is no much theoretical support

Thermal evolution of neutron stars Karpacz (Poland), February, 25th, 2020

INS Cooling - effect of neutron ${}^{3}P_{2} - {}^{3}F_{2}$

Observation: All data are reproduced

Conclusion: INS with hyperonic admixtures are compatible with thermal data

Comment: This is not a proof in favor of hyperons in the core, as other EoS (e.g. purely nucleonic EoS) do as well

[AR, Li, Sedrakian & Weber, MNRAS (2019)]

High density proton and Λ pairing

[AR, Li, Sedrakian & Weber, MNRAS (2019)]

A weak coupling estimation:

$$\Delta_{p} = \epsilon_{F,p} \left(\frac{\Delta_{n}}{\epsilon_{F,n}}\right)^{\alpha_{p}}, \quad \alpha_{p} = \frac{m_{n}^{*}}{m_{p}^{*}},$$

$$\Delta_{\Lambda} = \epsilon_{F,\Lambda} \left(\frac{\Delta_n}{\epsilon_{F,n}} \right)^{\alpha_{\Lambda}}, \quad \alpha_{\Lambda} = \frac{3}{2} \frac{m_n^*}{m_{\Lambda}^*}.$$

Result: As are paired **also** in the inner core, $T_{c,3P2} \ll T_{c,1S0}$, $\Delta_{3P2} \approx 0.1 - 0.2$ MeV

Expectation: cooling by $\Lambda \rightarrow p + e + \tilde{\nu}_e$ is much reduced

INS Cooling - effect of high density Λ pairing

[AR, Li, Sedrakian & Weber, MNRAS (2019)]

$$\Delta_{\Lambda}^{3P2} pprox 0.1 - 0.2 \,\, {\sf MeV}$$

though small, high density pairing is efficient in slowing down the cooling

strongest effect: $2M_{\odot}$, where $\Lambda \rightarrow p + e + \tilde{\nu}_e$ is supressed **also** in the inner core

Heating of transiently accreting quasi-stationary NS in low mass X-binaries (XRT)

• old ($t \gtrsim 10^8 - 10^9$ yr) NS which accrete matter from time to time (in the active states of XRT) from the low mass companion,

• the accreted matter is compressed by the weight of new material and sinks in the deeper layers of the crust,

• nuclear reactions (capture of electrons, neutron capture and emission, pressure-induced fusion) heat up the deep crust; deposited energy $\approx 1-2$ MeV/nucleon [Haensel & Zdunik, AA (1990); *ibid.* (2008)],

• the accretion episodes last months-weeks; the accretion rate is weak enough to not destroy the thermal equilibrium with the core; it is strong enough to keep NS warm and produce obs. thermal emission during quiescence

• mean heating rate is determined by the average mass accretion rate $\langle \dot{M} \rangle$; the average is performed over characteristic cooling times of these stars, $\gtrsim 10^3$ yr

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Heating of transiently accreting quasi-stationary NS in low mass X-binaries (XRT)

Steady state approximation [Yakovlev, Levenfish & Haensel (2003)]

Starting from an arbitrary initial thermal state, the accreting NS reaches a stationary state supported by the deep crustal heating. This state is reached when $L_{tot}^{\infty} = L_{\nu}^{\infty} + L_{\gamma}^{\infty}$ is balanced by L_{dh}^{∞} :

$$L_{\rm dh}^{\infty}\left(\dot{M}\right) = L_{\nu}^{\infty}\left(T_{i}\right) + L_{\gamma}^{\infty}\left(T_{s}\right)$$

 $\underline{\gamma}$ emission regime: the energy deposited in the deep crust is transported to the surface, and then radiated away; T_S depends on the accretion rate and does not depend on the internal structure

 ν emission regime: the energy is spread all over the volume; T_S depends on the internal structure (ν -emission reactions, SF)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Heating of transiently accreting quasi-stationary NS in low mass X-binaries (XRT)

[Yakovlev+, AA407 (2003)]

 \bullet low L_{γ} require small acc. rate and/or fast ν emission

 \bullet high L_{γ} require high acc. rate and low ν emission

• XRT heating is equivalent to INS cooling, **except** that XRT do not depend on heat capacity and thermal conductivity of the isothermal interior

• as INS, XRTs' T_S depends on the composition of the atmosphere (light elements lead to higher T_S); most probably, the atmosphere is stratified (H/He/C....Fe) [Beznogov+, MNRAS (2016)]

EoS constraints from thermal data

Recent works:

• purely nucleonic EoS, allowing or not dUrca; neutron ${}^{3}P2$ and proton ${}^{1}S_{0}$ gaps determined, via a Bayesian analyses, from thermal data [Beloin+, PRC97 (2018); Beznogov & Yakovlev, MNRAS (2015)]

• phenomenological EoS, nucleonic matter, dUrca threshold and SF gaps determined, via a Bayesian analyses, from thermal data [Beloin+, PRC100 (2019)]

 \bullet compatibility of thermal data with π and K condensates [Beznogov & Yakovlev, MNRAS (2015)]

Conclusion: agreement with data is obtained by construction; many simplifying hypotheses are done, including on a composition

Alternative perspective: take EoS which agree with all availabled data, vary the SF gaps between limits provided by theoretical calculations; try to identify the EoS and SF gaps which offer the best agreement; try to predict the most probable composition, at least in some cases; do INS and XRT give the same answer? [Fortin+, in prep.]

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ● ● ●

INS Cooling versus XRT Heating

FSU2H effective interaction [Tolos+, 2016]

Thermal evolution of neutron stars and the role of their superfluidity

Overview

Part I:

- Why?
- Observational data
- Heat loss processes
- NS composition and Equation of State
- Pairing in neutron stars (NS)

Part II:

- Simulations: Cooling of isolated NS and heating of accreting NS
- What do we learn from data?