# Investigating resonant shattering flares by modelling the vibrational modes within neutron stars

DUNCAN NEILL, UNIVERSITY OF BATH

#### Neutron star structure

 The crust is solid and has composition discontinuities (different nuclei)

The core has a smooth change in composition

A star with higher central density has a smaller crust

Deeper in the star, less is known about its structure



#### Neutron star structure

- •At the densities in neutron stars (10<sup>15</sup> g/cm<sup>3</sup>) the equation of state is purely theoretical
- •There are many different equations of state that can be used to describe matter at high densities
- The equation of state is constrained by experimental data
- •Is the core a fluid? Superfluid? Baryonic matter? Hyperonic matter? Quark-gluon plasma?
- We need to use several equations of state and compare the results





## Vibrational modes

- Tidal forces cause the matter in stars to oscillate
- Boundary conditions in the core and at the surface constrain the oscillations of the star to specific vibrational modes
- Each vibrational mode displaces the matter in the star in different ways
- The modes are grouped based on the restoring force
- We are mainly interested in the interface modes (i-modes)

# Resonant shattering flares

Resonance can occur between the orbit of binary neutron stars and their

vibrational modes

Energy is deposited at the base of the crust

- Eventually the crust shatters, releasing a flare
- •How long does this occur before the neutron stars merge?



# Resonant shattering flares

The overlap integral between the tidal field and the i-mode is given by:

$$Q = \frac{1}{MR^2} \int d^3x \, \rho \xi^* \cdot \nabla [r^2 Y_{2\pm 2}(\theta, \varphi)]$$

We estimate the energy deposited in the crust using:

$$E_{max} \propto f^{\frac{1}{3}} Q^2 M^{-\frac{2}{3}} R^2 q \left(\frac{2}{1+q}\right)^{\frac{5}{3}}$$

The energy required to shatter the crust is:

$$E_b \approx \left(\frac{0.1}{\epsilon_b}\right)^2 (2\pi f)^2 \int d^3x \, \rho \xi_b^* \cdot \xi_b$$

Only i-modes give  $E_b \ll E_{max}$  at low frequency. t-modes have too low Q values, g-modes do not penetrate the crust, and the f-mode has too high a frequency for the flare to be distinguished from the merger.

### Fluid stars

- •In a purely fluid star the shear modulus is zero
- •This removes transverse traction and makes the radial traction dependant on the radial and transverse displacement
- •This simplifies the equations, so there is only one input parameter

$$(1+\tilde{V})\frac{dy_1}{dx} = \left(\frac{\tilde{V}}{\Gamma_1} - 3\right)y_1 + \left[\frac{l(l+1)}{c_1\Omega^2} - \frac{\tilde{V}}{\Gamma_1}\right]y_2$$

$$(1+\tilde{V})\frac{dy_2}{dx} = (c_1\Omega^2 + Ar)y_1 + (1-\tilde{U} - Ar)y_2$$
(McDermott, 1988)

- •These equations must be solved for the entire radius of the star
- •The aim is to find an  $\Omega$  value for which  $y_1$  and  $y_2$  are continuous and satisfy the boundary equations

At r=0: 
$$\frac{c_1\Omega^2}{l}y_1 - y_2 = 0$$
, at r=R\*:  $(\tilde{V} - c_1\Omega^2 - 4 + \tilde{U})y_1 + \left[\frac{l(l+1)}{c_1\Omega^2} - \tilde{V}\right]y_2 = 0$ 

## Fluid stars

- •The input parameter  $\Omega$  is the dimensionless angular frequency
- Scale is arbitrary
- Modes are found when the error is zero



## Fluid stars

For a star with 0.503 solar masses, using the BPS equation of state:



•There is no i-mode for a fluid star

# Adding the crust

- An i-mode appears at the crust core boundary
- Need to calculate the shear modulus of the crust
- The crust is solid, so traction must now be considered
- •There are now 2 input parameters, frequency and the transverse displacement at the surface of the star  $(1+\tilde{V})\frac{dz_1}{dx} = -\left(1+2\frac{\alpha_2}{\alpha_2}\right)z_1 + \frac{1}{\alpha_2}z_2 + l(l+1)\frac{\alpha_2}{\alpha_2}z_3$
- •In the crust we use:

At R<sub>cc</sub>: 
$$z_1 = y_1$$

$$z_2 = \tilde{V}(y_1 - y_2)$$

$$z_4 = 0$$

$$(1 + \tilde{V}) \frac{dz_2}{dx} = \left( -c_1 \tilde{V} \Omega^2 - 4 \tilde{V} + \tilde{U} \tilde{V} + 12 \Gamma_1 \frac{\alpha_1}{\alpha_3} \right) z_1 + \left( \tilde{V} - 4 \frac{\alpha_1}{\alpha_3} \right) z_2 + l(l+1) \left( \tilde{V} - 6 \Gamma_1 \frac{\alpha_1}{\alpha_3} \right) z_3 + l(l+1) z_4$$
 
$$(1 + \tilde{V}) \frac{dz_3}{dx} = -z_1 + \frac{1}{\alpha_1} z_4$$
 
$$(1 + \tilde{V}) \frac{dz_4}{dx} = \left( \tilde{V} - 6 \Gamma_1 \frac{\alpha_1}{\alpha_3} \right) z_1 - \frac{\alpha_2}{\alpha_3} z_2 + \left[ -c_1 \tilde{V} \Omega^2 + \frac{2}{\alpha_3} ([2l(l+1) - 1] \alpha_1 \alpha_2 + 2[l(l+1) - 1] \alpha_1^2) \right] z_3$$
 (McDermott, 1988)

# Adding the crust

- There are 2 values being minimised
- •A mode is found when the minima coincide



# Adding the crust

For a neutron star with 1.4 solar masses, using the sly4 equation of state the 2i mode is:



$$(V(r) = \frac{r}{c_1 \Omega^2} y_2 = z_3 r)$$

 $(U(r) = y_1 r = z_1 r)$ 

•The displacement is largest at the crust-core boundary

#### Further work

- Modify to core equations to use superfluidity
- •Find the i-mode for different equations of state
- Use the range of frequencies to calculate the energy transferred into the mode by resonance
- Investigate the flare emitted by the shattering of the crust
- What is the composition of the inner crust (nuclear pastas)
- •How often do resonant shattering flares occur?