Structure Properties of Strange Quark Star in the presence of Strong Magnetic Fields

> Fatemeh Kayanikhoo PhD student *University of Coimbra, Portugal, **University of Shiraz, Iran, ***University of Birjand, Iran

56 Karpacz Winter School in Theoretical Physics 2020

Why the strange quark stars?

2

Contents

- A brief story about strange quark stars
- The strong magnetic fields
- **Formalism of calculations**
- Results
- A brief introduction of the current work
- Future ideas

A brief story about strange quark stars

- Hybrid Stars: Compact stars with a quark core
- Pure strange quark stars (SQS):
 - > They are created after the second explosion in the end of the life of super
 - massive stars (The super luminous explosion is called Quark-Nova)
 - > They are completely made up of quarks with a small fraction of electrons.

http://www.quarknova.ca/

Why strong magnetic fields?

- Compact Objects like neutron stars and strange quark stars have strong magnetic fields.
- Neutron stars with very strong magnetic fields are called magnetars.
- Strong magnetic fields may originate from magnetic flux.
- Using observational data and applying virial theorem, the maximum magnetic field for this objects is $B_{max} \sim 2 \times 10^{18} G$ (Observational data RX J1856.5-3754: $M = 1.7M_{sun}$ and R = 8 km)

Prakash, et al., 2003

$$B_{max} = B_{sun} (\frac{M}{M_{sun}}) (\frac{K_{sun}}{R})^2$$

• Surface magnetic field is in $O(\sim 10^{15})$. It is predicted the interior magnetic field is in $O(\sim 10^{18})$.

Lai, Shapiro, 1991

Our system: Magnetized SQM

► SQM with spin-up (+) and spin-down (−) quarks (u, d, and s) in a uniform magnetic

field

6

- MIT bag model (with two cases of the bag constant)
- The spin polarization parameter: $\xi = \frac{\rho^{(+)} \rho^{(-)}}{\rho^{(+)} + \rho^{(-)}}$
- The density of spin-up quarks: $\rho^{(+)}$ and the density of spin-down quarks: $\rho^{(-)}$

F. Kayanikhoo, K. Naficy, G. H. Bordbar, Eur. Phys. J. A, 56:2 (2020)

Formalism of calculations

Energy density of single particle:

7

$$E^{i} = [p_{i}^{2}c^{2} + m_{i}^{2}c^{4}(1 + 2JB_{D})]^{1/2}$$
$$B_{D} = B/B_{c} \qquad B_{c} = \frac{m_{i}^{2}c^{3}}{q_{i}\hbar}$$

Number density of particles:

$$\rho = \sum_{\mathbf{J}=0}^{J_{max}} \frac{2qB}{h^2 c} g_{\mathbf{J}} p_{F} (\mathbf{J})$$

Upper limit of Landau level

$$J_{max} = \frac{\varepsilon_F^2 - 1}{2B_D} \qquad \qquad \varepsilon_F = \frac{E_F}{mc^2}$$

Formalism of calculations

Total energy density of System:

$$\varepsilon_{tot} = \varepsilon_i^+ + \varepsilon_i^- + B_{bag}$$

Kinetic energy density of each particle (i):

$$\varepsilon_i^{\pm} = \frac{2B_D}{(2\pi)^2 \lambda^3} m_i c^2 \sum_J g_{\vartheta} (1 + 2 J B_D) \eta (\frac{x_F^{\pm}}{(1 + 2 J B_D)^{1/2}})$$

$$\eta(\mathbf{x}) = \frac{1}{2} \left[\mathbf{x} \sqrt{1 + \mathbf{x}^2} + \ln \left(\mathbf{x} \sqrt{1 + \mathbf{x}^2} \right) \right] \qquad \qquad \mathbf{x}_F = \frac{p_F}{m_q c} = (\varepsilon_F^2 - 1 - 2 \, \mathbf{J} B_D)^{1/2}$$

The equation of state of SQM (EOS):

$$\mathbf{P}(\boldsymbol{\rho}) = \boldsymbol{\rho}\left(\frac{\partial \boldsymbol{\varepsilon}_{tot}}{\partial \boldsymbol{\rho}}\right) - \boldsymbol{\varepsilon}_{tot}$$

Formalism of calculations Magnetic field energy density and pressure

The contribution of the electromagnetic field is directly added to the EoS and energy density to give the total energy density and pressure:

$$\varepsilon_B = P_B = \frac{B^2}{8\pi}$$

Structure of SQS

- To investigate the structure of compact objects we use hydrostatic equilibrium equations (HEE).
- The first attempt for obtaining Einsteinian HEE for stars was done by Tolmann-Oppenhimer-Volkoff.
- TOV equations are used for the case of spherical symmetric compact objects.

$$\frac{dp}{dr} = -\frac{G[\varepsilon(r) + \frac{P(r)}{c^2}][m(r) + \frac{4\pi r^3 P(r)}{c^2}]}{r^2 [1 - \frac{2Gm(r)}{rc^2}]}$$

$$\frac{dm}{dr} = 4\pi r^2 \varepsilon(r)$$

Mass radius relation

11

Results

 The mass radius relation follows M ∝ R^α, α~3.5
 Increasing the magnetic field leads to the smaller mass and radius for SQS

12

13

Results

- The mass radius relation follows $M \propto R^{\alpha}, \alpha \sim 3.2$
- In comparison with the case of *fixed B_{bag}* the radius increases with the less steep slope.
 The maximum gravitational mass increases in comparison with the case of *fixed B_{bag}*.

$$B_{bag} = B_{\infty} + (B_0 - B_{\infty}) \exp(-\beta (\frac{\rho}{\rho_0})^2)$$

G. H. Bordbar, and M. Modarres, J. Phys. G23,
1631 (1997).

Results

 $B_{bag} = 90 \text{ MeV}/\text{fm}^3$

Magnetic field	$\frac{M}{M_{sun}}$	<u>R</u> (km)	$\frac{2M}{R}$	Z_s	
0	1.22	7.10	0.68	0.42	
$5 \times 10^{17} G$	1.11	6.06	0.72	0.47	
$5 \times 10^{18} G$	0.97	5.32	0.73	0.47	

- The Buchdahl condition (2M/R ≤ 8/9) is established for all magnetic fields.
 H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)
- > The gravitational redshift value $(Z_s = [1 2\frac{GM}{c^2R}]^{\frac{1}{2}} 1)$ is larger than that value for neutron stars.

Density – dependent B_{bag}

Magnetic field	$\frac{M}{M_{sun}}$	<u>R</u> (km)	$\frac{2M}{R}$	Zs	
0	1.80	8.65	0.82	0.61	
$5 \times 10^{17} G$	1.65	7.43	0.88	0.70	
$5 \times 10^{18} G$	1.42	6.37	0.88	0.71	

- > The Buchdahl condition $(2M/R \le 8/9)$ is established for all magnetic fields.
- > The gravitational redshift value is larger than that for neutron stars.
- The compactification factors and corresponding surface redshifts are larger than those in the case of fixed bag constant model.

Results

Strange quark star candidates

Observed stars	$\frac{M}{M_{sun}}$	<i>R</i> (km)	$\frac{2M}{R}$	Zs
RXJ185635 - 3754 [1]	1.20	8.00	0.60	0.34
Her X - 1 [65]	1.10	7.70	0.57	0.31
4U1608 - 52 [66]	1.74	9.3	0.74	0.49
4 <i>U</i> 1820 - 30 [67]	1.58	9.1	0.69	0.43
SAXJ1808.4 - 3659 (SS1) [68]	1.44	7.07	0.80	0.57
SAXJ1808.4 - 3659 (SS2) [68]	1.32	6.35	0.83	0.62

M. Prakash, J.M. Lattimer, A.W. Steiner, D. Page, Nucl. Phys. A, 715, 835 (2003).
 Bombaci, (2002). arXiv:astro-ph/0201369.
 T. Guver et al., Astrophys. J. 712, 964 (2010)
 T. Guver et al., Astrophys. J. 719, 1807 (2010)
 X.D. Li et al., Phys. Rev. Lett. 83, 3776 (1999)

Conclusion

- We have considered the pure SQM (u, d, s quarks), Isotropic EOS and spherical symmetry HEE.
- The maximum gravitational masses and radii decrease by increasing the magnetic field.
- The SQS becomes more compact by increasing the magnetic field.
- The density-dependent bag constant model leads to more compact SQS in comparison with the fixed bag constant model.

A brief introduction of current work Einstein-Maxwell field equations

$$R_{\mu\vartheta} - \frac{1}{2} R g_{\mu\vartheta} = \frac{8\pi G}{c^4} T_{\mu\vartheta}$$

$$T_{\mu\vartheta} = \left(\rho c^2 + p\right) u_{\mu} u_{\vartheta} + p g_{\mu\vartheta} + \frac{1}{4\pi} \left(F_{\mu\alpha} F^{\alpha}_{\vartheta} - \frac{g_{\mu\vartheta}}{4} F_{\alpha\beta} F^{\alpha\beta}\right)$$

- \succ $T_{\mu\vartheta}$ is the energy-momentum tensor,
- > The two first terms are the perfect fluid contribution (ρ : The matter energy density, p: Isotropic fluid pressure, u_{μ} : 4-vector fluid velocity)
- > The third term is the Maxwell energy momentum tensor.
- $\succ F_{\alpha\beta} = \partial_{\alpha}A_{\beta} \partial_{\beta}A_{\alpha} (A_{\alpha}: \text{The magnetic vector potential})$
- Lorene Library: http://www.lorene.obspm.fr

D. Chaterjee, et al. MNRAS 447, 3785–3796 (2015)

Thank you for your attention

2 1 1

Arg of Karim Khan, Shiraz, Iran