Tri-Boson Signals from BSM

Kaustubh Agashe (University of Maryland)

[Based on KA, Du, Hong, Sundrum (1608.00526): theory; KA, Collins, Du, Hong, Kim, Mishra (1612.00047, 1711.09920 and 1809.07334): LHC signals]

Introduction

- Searches for new physics (NP) in full gear/ reached maturity
- lack of signals for NP so far
- To some extent, focussed on "minimal" version of extension of SM (whether SUSY or extra dimensions etc.)

Introduction (continued)

- Given above situation, searching for nonstandard signals motivated
- in fact, sometimes simple modification of minimal incarnation of framework significantly changes signals (which are perhaps less constrained)
- in this talk, illustrate (in detail) with warped/ composite Higgs; mention others at end

Outline

- Standard warped model: (resonant) di-SM signals
- General extension:
 - Suppression of usual (di-SM) signals
 - Emergence of (generalized) "tri-boson" final states ("doubly"-resonant)
- Specific models/signals: targeted searches needed

Other models: LR, photophobic axion

"Disclaimer"

• General/schematic idea and summary of results only: details (plots etc.) in papers

contact Peizhi Du (peizhidu@gmail.com) for model files

[dual to composite Higgs (discuss offline): here use geometrical picture (easier to visualize)]

Planck-weak hierarchy

[Randall, Sundrum (1999)]

• master formula: $M_{\rm 4D}^{\rm eff}(y) \sim e^{-ky} M_{\rm 5D}^{\rm fund}$

• RS1:

4D gravity (zero-mode graviton): $y \sim 0 \Rightarrow M_{\rm 4D}^{\rm eff} \sim M_{\rm 5D}^{\rm fund}$ $\Rightarrow {\rm choose} \ M_{\rm 5D}^{\rm fund} \sim M_{\rm Pl}$

warp factor

Weak scale/Higgs mass: $y \sim L \Rightarrow M_{\rm 4D}^{\rm eff} \sim e^{-kL} M_{\rm 5D}^{\rm fund}$ \Rightarrow choose $kL \sim 30$ (mild hierarchy, with $k \sim M_{\rm 5D}^{\rm fund}$)

4D Flavor hierarchy from 5D anarchy

[Grossman, Neubert (1999); Gherghetta, Pomarol (2000)]

SM fermions are zero-modes of 5D fields

- Coupling of modes \propto overlap of profiles (in general) profile of zero-mode fermion $\propto e^{-cky}$ (ck is 5D mass parameter)
- Small variation in c suffices (5D Yukawa non-hierarchical): c>1/2 for up, charm vs. c<1/2 for top

Flavor/CP violation tests

[Gherghetta, Pomarol (2000); Huber, Shafi (2000); Huber (2003); KA, Perez, Soni (2004)]

down

strange

- SM gauge fields also in bulk
- New particles: Kaluza-Klein (KK) excitations of SM (near TeV brane)
- RS-GIM mechanism (flavor violation from KK

 quark masses) bound on KK scale (much) weaker than \sim $O(10^5)$ TeV for generic new physics
- still $\sim O(10)$ TeV [Csaki, Falkowski, Weiler (2008); Buras et al. (2008); Bauer et al. (2009)]
- ameliorated by flavor symmetries: a few TeV allowed

EW precision tests

• Vanilla model: KK scale \sim 5-10 TeV (from $\Delta
ho$ and Zbb)

• custodial symmetries [KA, Delgado, May, Sundrum (2003); KA, Contino, Da Rold, Pomarol (2006)] relax it to \sim 3 TeV [Carena et al, (2006); Delaunay et al. (2010)]

LHC signals (assume a few TeV KK scale for this slide)

- focus on gauge KK signal [for a review, see Davoudiasl, Gopalakrishna, Ponton, Santiago (2009)]
- "nearest neighbor" effect: coupling in production via $q\bar{q}$ small (one mode near TeV brane, other 2 near Planck brane); large for decay into pair of heavy SM, tt (or $W/Z_{\rm long.}/h$) (all 3 modes near TeV brane) (cf. sequential W'/Z': decay back into $q\bar{q}$ or leptons)

• "classic" search for boosted top $W/Z_{\rm long.}/h$, using jet-substructure [for a review, see proceedings of "BOOST" workshops]

What if we take flavor/CP bounds at face value (no symmetries)?!

• KK scale $\sim O(10)$ TeV no on-shell production at LHC?! (indirect signals still possible)

....maybe not (rest of this talk)!

Standard warped model at a glance (everyone in same bulk, cf. later...)

- Two branes/endpoints
- Radion (fluctuation of size of extra dimension):
 also localized near TeV brane (like KK/top/Higgs),
 can be a bit lighter than gauge KK

(...end of review, onto new...)

Simple extension(s)

[KA, Du, Hong, Sundrum (2016)]

General framework

- various fields in different, but overlapping "bulk" regions (plausible, reasonable) more than two branes
- matter/Higgs till $\sim O(10)$ TeV: satisfy flavor/CP
- gauge continue down to a few TeV (see later), gravity (possibly) even lower (another talk!)

 $\sim O(10) \text{ TeV}$

way to model non-trivial IR region (more structure than simply one, featureless brane)

Treasure chest (opens-up model/signalbuilding possibilities): focus here on LHC signals from gauge KK (as illustration + gives multi-boson signals)

Extended warped model at a glance...

- Gauge fields in entire bulk (same as gravity) for simplicity
- (lightest) gauge KK, radion peak at (final) IR (not Higgs) brane

New (lower) bound on gauge KK scale

- can show flavor/CP/EW precision (indirect) tests safe even for gauge KK $\ll O(10)$ TeV, as long as matter/Higgs (most relevant for tests) till $\sim O(10)$ TeV [like in standard (two branes) warped model]
- leading bound from direct search at LHC (see next)

Production of gauge KK unchanged

coupling $\sim \frac{g_{\rm SM}^2}{g_{\rm KK}}$, with $3 \lesssim g_{\rm KK} \lesssim 6$

• No modification near Planck brane (where $q\bar{q}$ live)

Usual dominant decay modes of gauge KK [$t\bar{t}$ (or $W/Z_{\mathrm{long.}}/h$)] suppressed here

all 3 near TeV brane

coupling $\sim g_{\rm KK}$ (standard) $\rightarrow \frac{g_{\rm SM}^2}{g_{\rm KK}}$ (extended), with $3 \lesssim g_{\rm KK} \lesssim 6$

due to gauge KK "split" from top/Higgs

Other decay modes can then shine [already existed with same strength, but were swamped earlier

(standard - 2 branes - model)]

• Gauge KK decay back into $q\bar{q}$ (including $t\bar{t}$)/ $l\nu$ gives bounds of a few TeV (likely discovery mode) near TeV brane \sqrt{l} near TeV brane \sqrt{l}

near TeV brane near TeV brane flat

• Gauge KK decay into radion + SM gauge boson (focus of this talk): coupling "in-between" to $q\bar{q}$ and to $t\bar{t}$ in standard case (2 branes)

SM
SM
KK gauge
$$\varphi$$
 (radion)

$$\sim g_{\rm SM} \ \epsilon \ ({\rm with} \ \epsilon \lesssim 1)$$

related to stabilzation

"New" cascade decay channel for gauge KK: tri-bosons of various kinds

Basic process (I): gauge KK decay to radion

- Radion decay mode of gauge KK comparable to (or a bit larger than) decay into $q\bar{q}$ (or $l\nu$)
- final state depends on fate of radion

Radion decays also modified

Radion (near gauge brane) "split" from top/Higgs

• Erstwhile dominant decays [$tar{t}$ (or $W/Z_{
m long.}/h$)] highly suppressed

 Pair of SM gauge bosons (sub-dominant in standard warped model) take over in extended warped model

• Two radions for 2 separations: focus on lighter one (~fluctuation of gauge brane vs. heavier one that of top/Higgs brane)

Basic process (II): emergence of "tri"-boson signal (putting it all together)

- radion heavy (not boosted) or light (boosted)
 2 SM gauge bosons from its decay well-separated or merged
- more specific signals to come...

3 specific models: (I). All SM gauge fields in extended bulk

[KA, Collins, Du, Hong, Kim, Mishra (2016)]

All extended model (I) at a glance...

- Similar profile/mass for QCD vs. EW gauge (SM or KK)
- Role of SM or KK gauge bosons $\propto g_{\rm SM}^2$

Light (\$1 TeV) radion not allowed

 Di-photon bound from direct production of radion (also likely discovery channel for radion for ~1 TeV/on edge of current bound):

fixed at 3 TeV

- ◆ ≥ 1.5 TeV radion (well above current bound), production via gauge KK dominates over direct (likely discovery channel)
- Radion (≥1 TeV) produced from few TeV gauge KK not boosted
 2 SM gauge bosons from it well-separated (and from "prompt" SM gauge boson)

(Genuine) Tri-Boson signals: basic structure/warm-up

2 resonances: di- and tri-boson (use to suppress background: signal small)

- Largest rate for tri-gluon/jet (based on KK production and radion decay)
- Results (including background, using Delphes etc.): observation of signal (discovery of heavier radion) with \sim 300/fb for \sim 3 TeV KK gluon (and \sim 1-1.5 TeV radion); \sim 3000/fb for other KK

(II). Only EW gauge fields in extended bulk

[...as "likely" as all in extended bulk as in model (I)...]

[KA, Collins, Du, Hong, Kim, Mishra (2017 and 2018)]

EW-extended model (II) at a glance...

• Gluons (SM or KK) till \sim O(10) TeV out of the game: KK gluon beyond LHC reach, radion "split" from gluons

Tri-EW-gauge boson signals for heavy radion (I)

- 3 isolated $W/Z/\gamma$ (all W/Z boosted)
- largest rate for WWW (based on production of gauge KK and radion decay)

Tri-EW-gauge boson signals for heavy radion (II)

- Existing di-boson (WW/WZ/ZZ) search selects two hardest W/Z, not from radion typically not efficient here (excess, but no bump)
- dedicated search needed: invariant mass of various combinations of di-bosons (for digging out radion) + invariant mass of tri-boson (for getting to gauge KK)
 coupling to gluons/direct production suppressed (more later)
- Results (including background, using Delphes etc.): discovery of \sim 1-1.5 TeV radion from decay of \sim 3 TeV KK W with O(100)/fb

"New" radion decay: (Z + photon)

 φ (radion)

- vanishes in minimal model (focus thus far), but present in general
- also for standard (2 branes) model
- hierarchy of radion BR's:
 WW > ZZ > (Z + photon) > di-photon
- boosted Z(fat jet) for heavy radion
 background for (Z + photon) vs. di-photon might be less
 compared to SM Higgs (Z→ resolved jets, with larger QCD
 background)
- extended model (radion from KK W): (W + Z + photon) signal

New: light [~ O(100) GeV] radion allowed

(even lighter is unnatural)

- Usual dominant direct production turned off (even if radion BR to di-photon enhanced: decay into EW only), WW fusion small difficult to discover via this channel
- Instead, radion dominantly produced (boosted) from decay of a few TeV gauge KK (its coupling to $q\bar{q}$ significant/unchanged)

Boosted/merged di-boson [+ (boosted) boson] (I) W/Z

4-prong fat-jet (or lepton buried in 2-prong fat-jet), with mass not W/Z/Higgs/top
likely "missed" with current searches (need dedicated algorithm)

Boosted/merged di-boson [+ (boosted) boson] (II)

- 2 resonances: fat-jet and [fat-jet + (isolated) W]
- Results (including background, using Delphes etc.):
 discovery of (light) radion from decay of ~3 TeV KK W
 with ~300/fb (combining fully-hadronic and semi leptonic channels)

Only hypercharge in extended bulk

- At a glance: gluons/W/Z out of picture...
- Only KK hypercharge (~photon + bit of Z)
- Radion decays into di-photon [+ bit into ZZ and (Z + photon)]

Tri-photon (with 2 resonances)...

Heavy radion: 3 well-separated photons
 negligible background, but combinatorial ambiguity
 motivates dedicated search

...or, boosted/merged di-photon + photon

• Light [$\sim O(100)$ GeV], boosted radion: isolated photon + merged di-photon existing search require isolation $\Delta R_{\gamma\gamma} \gtrsim 0.3$, vs. here $\Delta R_{\gamma\gamma} \sim 100$ GeV/1 TeV $\sim O(0.1)$ not efficient, need to relax isolation (dedicated search)

Boosted/merged (Z + photon)

- from light radion decay
- photon inside Z-jet (hadronic) or
 (photon + leptons) "jet"

(III). Only QCD in extended bulk

[KA, Collins, Du, Hong, Kim, Mishra (unpublished note)]

QCD-extended model (III) at a glance...

- EW gauge bosons (SM or KK) till $\sim {\cal O}(10)~{\rm TeV}$ out of action
- Heavy radion as in case (I): (well-separated) tri-gluon/jet

Light radion [~0(100) GeV] (again) allowed

 Now production unchanged, but decay to di-photon turned off (radion "split" from EW gauge bosons)

Light radion decay to di-gluon

- directly produced (not boosted) radion
 2 gluons well-separated [di-jet signal,
 with invariant mass ~ O(100) GeV], buried in background
- reduce background by boosting to give merged di-gluon: either by ISR (as for $h \to b\bar{b}$) or...

KK gluon \rightarrow boosted/merged di-gluon (2-prong fat-jet) + gluon/jet

p \sim 3 TeV φ \sim 0(100) GeV g \sim 0(100) GeV q $q\bar{q}$ (latter studied, e.g., light Z': CMS -PAS-EXO-17-001) q dedicated search required

◆ 2 resonances: fat-jet and [fat-jet + (isolated) jet],
 use to suppress background

New feature: Discovery of KK gluon (and radion)?

- KK gluon decay BR to radion and $q\bar{q}$ (usual di-jet) comparable
- Radion signal of KK gluon has more "structure" than simple di-jet:
 isolated gluons/jets (for heavy radion) or [(isolated gluon/jet + boosted/merged di-gluon/jet) for light radion]
 - QCD background (to dedicated search for above "tri"-jet) likely smaller than for usual di-jet
- sensitivity to KK gluon larger in new channel
- Light radion missed in usual (non-boosted) di-jet search (direct production from gluon fusion) use KK gluon decay instead
- Heavy radion (resolved jets: whether direct production or via KK gluon) discovery via usual di-jet if radion just above that bound (\sim 1 TeV), but via KK gluon (fixing that mass at \sim 3 TeV) instead if heavier

Summary table/diagram

Signal features \rightarrow	General	Which gauge bosons	(I). All SM gauge in	(II). Only EW in	(III). Only QCD in
(gauge KK $\sim 3 \text{ TeV}$)	topology	can "play"?	extended bulk	extended bulk	extended bulk
Radion mass ↓					
Heavy	Tri-boson, with	gluons and/or	Mixture of	Mixture of $W/Z/\gamma$:	Only 3 gluon/jet:
$(\gtrsim 1 \text{ TeV})$	2 resonances:	EW	gluons and EW	for WWW etc., combinatorics	combinatorics
	2-particle (radion) &		gauge bosons	makes existing	makes existing
	3-particle (gauge KK)		(3 gluon/jet is largest)	di-boson search <i>in</i> efficient	di-jet search <i>in</i> efficient
Light	Boosted/merged di-boson	Either gluons	not possible	boosted/merged $WW/ZZ/Z\gamma/\gamma\gamma$:	boosted/merged di-gluon:
O(100) GeV	resonance (radion) +	or EW, i.e.,		search for 4-prong jet or	different (in N -subjettiness etc.)
	isolated boson	not both		lepton(s) inside 2-prong jet	from $q\bar{q}$
	(combined resonance:			(for WW/ZZ); photon inside Z-jet/leptons;	+ gluon
	gauge KK)			allow $\Delta R_{\gamma\gamma} \lesssim 0.4$	
				$+W/Z/\gamma$	

goldmine of signals to choose from!
 (Similar topology of signals possible with other new physics)

Other examples/models

(giving tri-boson signals)

Left-Right symmetric (LR) model

- extend EW gauge symmetry to $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- spontaneous breaking (at \sim TeV): $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$ using extended scalar sector
- (one of) standard signals: W_R^{\pm} and Z' [extra U(1)]:

$$W_R^{\pm}, Z'$$
 (a few TeV) \rightarrow di-bosons (W, Z, h)

modified signals (similar to warped model: 2 resonances...):

$$W_R^{\pm},~Z' \to W/Z/h + \varphi~(extra~{\rm scalar}),$$
 followed by $\varphi \to WW/ZZ...$

Photophobic axion-like particle (ALP)

[Craig, Hook, Kasko (2018)]

- suppressed coupling to di-photon (unlike usual)
- coupling to WW/ZZ...dominates, giving tri-W/Z signal
- only 1 resonance, different than 2 in warped and LR models

Conclusions

- Simple modification of standard warped model can dramatically change LHC signals: instead of di-top/W/Z/Higgs final states, variety of
 - tri-boson or

- W/Z/gluon/photon
- novel fat-jet (boosted/merged di-"boson") + boson
- requires new/dedicated searches

* similar lesson for other frameworks: broaden searches

Back-ups

Probe Higgs compositeness $[at \sim O(10) \text{ TeV}]$?!

(Above is testing compositeness of spin-1 resonances)

...via precision analysis of gauge KK decay modes [KA, Du, Hong, Sundrum (2016)]

gauge KK coupling to top/Higgs:

spin-1 compositeness scale top/Higgs compositeness scale
$$\sim g_{\rm SM}^2/g_{\rm KK} + g_{\rm KK} \; \Lambda_{\rm gauge}^2/\Lambda_{t/H}^2$$

• For $\Lambda_{t/H} \sim O(10)$ TeV (and $g_{\rm KK} \sim$ a few), top/Higgs compositeness component modulates coupling (gauge KK decay BR's) by $\sim O(1)$

