


Efficiently exploit multicore architectures
The LHCb experience

Sébastien Ponce
sebastien.ponce@cern.ch

June 5th 2019 Exploit multicore 2/ 31



Outline

Context - LHCb and computing

Multi-threading and scheduling

Memory management

Results and lessons

June 5th 2019 Exploit multicore 3/ 31



Context - LHCb and computing

Context - LHCb and computing

Multi-threading and scheduling

Memory management

Results and lessons

June 5th 2019 Exploit multicore 4/ 31



LHCb overview

June 5th 2019 Exploit multicore 5/ 31



LHCb Run 3 landscape

• Upgrade of the detector itself
to take more luminosity (x5)

• still 30MHz collisions
• more pile-up (now 5.5, was 1.1)

• New trigger system
• no hardware, fully software
• input rate x30 !

Experiment

Hardware trigger

Software Trigger
2 levels (HLT1, HLT2)

30MHz

1MHz

Run2

Experiment

Software Trigger
2 levels (HLT1, HLT2)

30MHz Run3

June 5th 2019 Exploit multicore 6/ 31



LHCb Run 3 landscape

• Upgrade of the detector itself
to take more luminosity (x5)

• still 30MHz collisions
• more pile-up (now 5.5, was 1.1)

• New trigger system
• no hardware, fully software
• input rate x30 !

Experiment

Hardware trigger

Software Trigger
2 levels (HLT1, HLT2)

30MHz

1MHz

Run2

Experiment

Software Trigger
2 levels (HLT1, HLT2)

30MHz Run3

June 5th 2019 Exploit multicore 6/ 31



Computer science landscape
• Hardware evolution continues

• Moore’s law still holding
• in numbers of transistors

• Hardware always more complex
• more parallelization
• pipelines, fuse multiple add,

hyperthreads, vectors, ...

• Many-core area has started
• easily 40, up to 100

logical CPU cores

Data source : https://github.com/karlrupp/microprocessor-trend-data, modified to only show transistors

June 5th 2019 Exploit multicore 7/ 31



More computer science landscape

CPU versus
Memory
improvements
in last decades

• Memory is now extremely slow (relatively)

• Level of caches have been introduced to mitigate

• Good usage of caches has become a must

June 5th 2019 Exploit multicore 8/ 31



How to adapt ?

• Multi-core architecture asks for multi-threading
• and careful scheduling

• Memory management is of utter importance
• while it had been neglected in the past
• and thus in our code bases

• Low level optimizations can make a difference
• and in particular vectorization
• this will be the topic of Arthur’s talk

June 5th 2019 Exploit multicore 9/ 31



Multi-threading and scheduling

Context - LHCb and computing

Multi-threading and scheduling

Memory management

Results and lessons

June 5th 2019 Exploit multicore 10/ 31



Why not multi-job ?

• Because it exhausts easily the memory
• think of an application needing 10GB of memory
• launch it 256 times on a KNL machine...
• mitigation exists, but no more sufficient

• Because it harms the memory caches
• jobs are competing for memory
• while threads are cooperating, as they share most of it
• resulting in performances gains (20% for LHCb)

June 5th 2019 Exploit multicore 11/ 31



Why not multi-job ?

June 5th 2019 Exploit multicore 12/ 31



Implications of multi-threading

All code needs to be reentrant

non-reentrant code
void MyClass::handleXYZ {

...

m_xyzCounter++;

}

read

0

read

0

incr incr

write 1write 1

Thread 1:counter Memory:counter Thread 2:counter

time

• Hard to identify non reentrant code !

• Need to review all the code

• Implies major changes in coding habits

June 5th 2019 Exploit multicore 13/ 31



Implications of multi-threading

All code needs to be reentrant

non-reentrant code
void MyClass::handleXYZ {

...

m_xyzCounter++;

}

read

0

read

0

incr incr

write 1write 1

Thread 1:counter Memory:counter Thread 2:counter

time

• Hard to identify non reentrant code !

• Need to review all the code

• Implies major changes in coding habits

June 5th 2019 Exploit multicore 13/ 31



Implications of multi-threading

All code needs to be reentrant

non-reentrant code
void MyClass::handleXYZ {

...

m_xyzCounter++;

}

read

0

read

0

incr incr

write 1write 1

Thread 1:counter Memory:counter Thread 2:counter

time

• Hard to identify non reentrant code !

• Need to review all the code

• Implies major changes in coding habits

June 5th 2019 Exploit multicore 13/ 31



A practical approach in LHCb
Use the framework of the experiment

• Users write algorithms
• their entry point is the operator() method
• which now has to be reentrant

• Which interact with a white board
• items in the whiteboard are now immutable
• so you can no more modify them once created

Use latest C++ features

• const means “bit-wise constant or thread-safe”
• Hence const methods of classes are reentrant
• Thread unsafe code leads to compile errors

June 5th 2019 Exploit multicore 14/ 31



Make sure all cores are busy

Constraints
• Each thread needs to run

independant tasks
• avoid contention and false sharing

• Still some time dependencies

Consequences

• A directed acyclic graph of tasks

• “scheduling” needed

Velo Reco

UT Reco
Vertex
finding

SciFi
Tracking

Fitting

Decision

June 5th 2019 Exploit multicore 15/ 31



LHCb’s HLT1 example

Tasks

• Only use event level parallelism

• No intra event multi-threading

• One event is only 1ms of CPU

Scheduling

• Static scheduling
• Graph solved at initialization time

• and converted to linear sequence

Velo Reco

UT Reco

Vertex
finding

Forward
Tracking

Fitting

Decision

June 5th 2019 Exploit multicore 16/ 31



Memory management

Context - LHCb and computing

Multi-threading and scheduling

Memory management

Results and lessons

June 5th 2019 Exploit multicore 17/ 31



Remember Memory is really slow

L1 data L1 inst.

L2 Cache

L3 Cache

DRAM

size latency

64 kB 4 cycles

256 kB 10 cycles

10 MB 40 cycles

64 GB 400 cycles

400 cycles

Typical data, on an Haswell architecture

Cost of an access to RAM

• 400 cycles, that is of the order of 10 Kflop !

June 5th 2019 Exploit multicore 18/ 31



Remember Memory is really slow

L1 data L1 inst.

L2 Cache

L3 Cache

DRAM

size latency

64 kB 4 cycles

256 kB 10 cycles

10 MB 40 cycles

64 GB 400 cycles400 cycles

Typical data, on an Haswell architecture

Cost of an access to RAM

• 400 cycles, that is of the order of 10 Kflop !

June 5th 2019 Exploit multicore 18/ 31



Memory management strategy

• Limit seeks and jumps to the minimum
• to load all in one single access
• i.e. collocate what goes together

• Limit memory allocations to the minimum
• the number of them, not the size
• so group many allocations into one

June 5th 2019 Exploit multicore 19/ 31



Example of bad code (1)

std::vector<Track*> myTracks;

for (...) {

myTracks.push(new Track(...));

}

• Each new track is an allocation

• Tracks are completely scattered in memory

Rule 1 : no container of pointers !
at least when they own their content

June 5th 2019 Exploit multicore 20/ 31



Example of bad code (1)

std::vector<Track*> myTracks;

for (...) {

myTracks.push(new Track(...));

}

• Each new track is an allocation

• Tracks are completely scattered in memory

Rule 1 : no container of pointers !
at least when they own their content

June 5th 2019 Exploit multicore 20/ 31



Example of bad code (2)

std::vector<Track> myTracks;

for (...) {

myTracks.push(Track(...));

}

• Vector will get reallocated many times

• And existing items copied over

Rule 2 : reserve space in your containers !

June 5th 2019 Exploit multicore 21/ 31



Example of bad code (2)

std::vector<Track> myTracks;

for (...) {

myTracks.push(Track(...));

}

• Vector will get reallocated many times

• And existing items copied over

Rule 2 : reserve space in your containers !

June 5th 2019 Exploit multicore 21/ 31



Example of bad code (3)

std::vector<Track> myTracks;

myTracks.reserve(100);

for (...) {

myTracks.push(Track(...));

}

• Tracks get copied

• They should be created directly in place

Rule 3 : use emplace !

June 5th 2019 Exploit multicore 22/ 31



Example of bad code (3)

std::vector<Track> myTracks;

myTracks.reserve(100);

for (...) {

myTracks.push(Track(...));

}

• Tracks get copied

• They should be created directly in place

Rule 3 : use emplace !

June 5th 2019 Exploit multicore 22/ 31



Do you think this is optimal ?

std::vector<Track> myTracks;

myTracks.reserve(100);

for (...) {

myTracks.emplace(...);

}

Of course not !

• Use std::array or boost::small_vector

• And wait for Arthur’s talk for more !

June 5th 2019 Exploit multicore 23/ 31



Do you think this is optimal ?

std::vector<Track> myTracks;

myTracks.reserve(100);

for (...) {

myTracks.emplace(...);

}

Of course not !

• Use std::array or boost::small_vector

• And wait for Arthur’s talk for more !

June 5th 2019 Exploit multicore 23/ 31



Memory management and threading
• Heap allocations are serialized

• Too many new/malloc/... will lead to
contention

• Another good reason to reduce their usage

Example of a bad case on 40 virtual cores :

June 5th 2019 Exploit multicore 24/ 31



Memory management and threading
• Heap allocations are serialized

• Too many new/malloc/... will lead to
contention

• Another good reason to reduce their usage

Example of a bad case on 40 virtual cores :

June 5th 2019 Exploit multicore 24/ 31



Detecting memory offending code

• Measure time spent in
malloc/new/free/delete/... ?

• more than a few % ? Room for improvement !
• What is your last level cache miss rate ?

• above 1% ? Room for improvement !

June 5th 2019 Exploit multicore 25/ 31



Detecting memory offending code

• Measure time spent in
malloc/new/free/delete/... ?

• more than a few % ? Room for improvement !
• What is your last level cache miss rate ?

• above 1% ? Room for improvement !

June 5th 2019 Exploit multicore 25/ 31



Results and lessons

Context - LHCb and computing

Multi-threading and scheduling

Memory management

Results and lessons

June 5th 2019 Exploit multicore 26/ 31



3 years of LHCb HLT1 performances

Multithreading, from 500 evts/s to 3500 evts/s

• Make the HLT1 code thread safe and scalable

Vectorization, 2x to 3x speedup per algo

• Vectorize key algorithms

Change event model, from 24K evts/s to 33K evts/s

• Adopt SoA and plain old data – see Arthur’s talk

Numbers measured on a “reference” machine, corresponding to 1o/ooof the
HLT1 farm capacity

June 5th 2019 Exploit multicore 27/ 31



Lessons
We can gain factors !

• Modern CPUs can be efficiently used

• And they are pretty good and fast actually

... not for free ...

• Deep changes in the code and data structures

• A change of paradigm, similar to the GPU

but it’s rewarding

• New code is shorter, faster and more readable !

June 5th 2019 Exploit multicore 28/ 31



Advices, learnt the hard way...

• Start by cleaning up your code
• will save you unecessary work
• will already gain up to 2x in speed !

• Deal with memory before you go threaded
• or the contention will be immediate

• Go to a simple event model
• do not overdo object orientation
• think structure of arrays from the beginning

• Only then vectorize
• only if worth it, do not expect miracles
• check expected gain with Amdahl’s law in mind

June 5th 2019 Exploit multicore 29/ 31



Final remark

• Computing has become very complicated

• Huge need for disseminating the knowledge

• This is the key point to success for run 3 and 4 !

June 5th 2019 Exploit multicore 30/ 31




	Context - LHCb and computing
	Multi-threading and scheduling
	Memory management
	Results and lessons

