

# $Z[\ell \ell]$ +Jets benchmarks with Sherpa-2.2.7

### LHC EW Jets and EW Bosons Subgroup Meeting 28 May 2019

Enrico Bothmann





# Sherpa overview



## Sherpa pQCD calculations for Z[*ll*](+jets)

- methods available to generate  $Z[\ell \ell](+jets)$  predictions include:
  - Fixed-order (LO, NLO, NNLO)
    - NNLO QCD and NLO EW for incl. Z
    - ▶ NLO QCD and NLO EW für  $Z[\ell \ell]+j^n$  (for QCD, n ≤ 4)
    - parton-level
  - Parton-shower matched (LOPS, NLOPS/MC@NLO, NNLOPS)
    - NNLOPS for incl. Z
    - NLOPS (S-MC@NLO) for  $Z[\ell \ell] + j^n (n \le 4)$
    - particle-level, but not predictive for multi-jet observables
  - Multi-jet merged (MEPS@LO, MEPS@NLO, MENLOPS) [Höche et al. 0903.1219, 1009.1127]
    - ▶ NLOPS (S-MC@NLO) for  $Z[\ell \ell] + j^n$  (n ≤ 4), can add more multiplicities at LOPS
    - particle-level, predictive for multi-jet observables
- full pQCD reweighting for on-the-fly uncertainties in all modes [EB,Schönherr,Schumann <u>1606.08753</u>]

# Multi-jet merging



# Multi-jet merging: algorithm



# EW corrections in particle-level evtgen

slide adapted from Marek Schönherr

[Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr 1511.08692]

- already many QCD+EW NLO fixed-order results V\*+1,2j, W+1,2,3j, γ+j, also γγ+0,1,2j, γγγ, γγV\*, Z\*Z\*, ttH, W\*W\*W\*, tt+0,1j
- particle-level not automated yet, but approx. EW corrections in MEPS@NLO though K factor to Born configuration:

$$\bar{B}_{n,\text{QCD+EW}_{\text{approx}}}(\Phi_n) = \bar{B}_{n,\text{QCD}}(\Phi_n) + V_{n,\text{EW}}(\Phi_n) + I_{n,\text{EW}}(\Phi_n) + B_{n,\text{mix}}(\Phi_n)$$

- real QED radiation through parton shower / YFS
- stand-in for proper matching & merging
- comparisons to fixed-order, found to be reliable:
  - $\leq 5$  % if observable not driven by real radiation inaccurate e.g. for  $m_{\ell_v} < m_v$  due to large real photon radiation corrections

### Roadmap / <a href="https://gitlab.com/sherpa-team/sherpa">https://gitlab.com/sherpa-team/sherpa</a>

- 2.2.6 (current)
  - EW<sub>approx</sub> within merging as alternate event weights
  - include sub-leading terms in MEPS@NLO in on-the-fly reweighting
  - bugfixes
- 2.2.7 (~hours/days)
  - improvements+fixes for massive quark production
  - bugfix in shower reweighting
  - better support for recent Rivet and OPENLOOPS 2

- 3.0.0 (~few months)
  - partial NLO shower, subleading colour effects [Dulat, Hoeche, Krauss, Prestel <u>1705.00982</u>, <u>1705.00742</u>, <u>1805.03757</u>]
  - complete NLO EW subtraction automation [Schönherr <u>1712.07975]</u>
  - semi-automated MC@NLO for loop-induced processes [Jones, Kuttimalai <u>1711.03319]</u>
  - improved HPC support
     [Benjamin, Childers, Höche, LeCompte, Uram
     J.Phys.Conf.Ser. 898 (2017) 072044]
  - physical colour flow in VBF-like configurations

up-to-date infos: <u>gitlab/tags</u> & <u>gitlab/milestones</u>
 communicate with us via our <u>gitlab/issue-tracker</u>

bugfixes

# Sherpa 2.2.7 Z[ee]+jets @ 13 TeV benchmarks

### Sherpa 2.2.6 Z[ee]+jets @ 13 TeV benchmarks

#### event generation

- MEPS@NLO
   V + 0,1,2j@NLO + 3,4j@LO
   Q<sub>CUT</sub> = 20 GeV
- NNPDF30\_nnlo\_as\_0118 default
- $\alpha_{\rm S}(m_{\rm Z}) = 0.118$  default
- default core scale  $\mu^2$ 
  - $\ell\ell$ -like  $\rightarrow m_{\ell\ell}^2$
  - Vj-like  $\rightarrow m_T^2/4$
  - jj-like  $\rightarrow -1/(1/s+1/t+1/u)/4$
- Virtuals from OPENLOOPS
- 7-point scale variations on-the-fly, with and w/o shower dependence
- extra variation includes EW<sub>approx</sub>
- minimal cut (66  $\leq m_{\ell\ell}$ )

#### event sample

- 2k HepMC event files à 7.5k events (100MB)
  - ➡ in total 15M events and 200 GB data
- ready to be pushed to common storage space

#### analysis

- ATLAS\_2017\_I1514251
  - 3.16 fb<sup>-1</sup>
  - $p_{T,j} > 30$  and  $|y_j| > 2.5$
- comparison to Hannes Jung's POWHEG V+2j MiNLO / Pythia (CUETP8M1) Z[ee] benchmarks linked at the WG TWiki page
  - also NLO accurate up to 2j
  - 4th+ jet from parton shower!
  - same PDF in hard process
  - sintw instead of sintweff
     ~5 % normalisation

#### https://www.theorie.physik.uni-goettingen.de/~bothmann/LHCEW\_Zjets\_benchmarks/\_\_\_9

### Z[ee]+jets benchmarks: N<sub>jets</sub>



# Z[ee]+jets benchmarks: leading jet





11

# Z[ee]+jets benchmarks: 2-4th jet p<sub>T</sub>



→ no shape differences even for
 the 4th jet, but normalisation
 difference increases to ~20%



### Z[ee]+jets benchmarks: H<sub>T</sub>

$$H_{\rm T} = p_{T,\ell_1} + p_{T,\ell_1} + \sum_{i} p_{T,j_i}$$

 here: only events with at least 1 jet!



→ Sherpa 2.2.7 tends to has
 slightly enhanced tails (also
 visible in previous observables)

### Z[ee]+jets benchmarks: jet pairs



# Conclusions

- Sherpa V+jets
  - we provide a comprehensive list of example configs, only one tune & hopefully sensible defaults

ightarrow easy to compare across experiments

MEPS@NLO (+EWvirt) state-of-the-art

particle-level, multi-jet observables

- Z+jets @ 13 TeV benchmarks consistent with PH+Py and data
- generate W+Jets @ 13 TeV on the way, will include 5j @ LO

### THANKS!

### BACK-UP

### pQCD uncertainties with Sherpa

- see following talk(s) for more systematic discussion (?)
- here: QCD input parameters & scale choices:
  - →  $a_s(M_Z)$ , PDFs, μ<sub>R</sub>, μ<sub>F</sub>, μ<sub>CKKW</sub>
  - ➡ appear both in ME & PS: traceable
- dedicated re-simulation often too expensive/time consuming
- solutions:
  - interpolations grids
    - APPLGRID, FASTNLO [Sutton et al.] PoS DIS2010 (2010) 051; [Wobisch et al.] hep-ph/0609285
    - automated using AMCFAST, MCGRID [Bertone et al.] JHEP 1408 (2014) 166; [DelDebbio,Hartland,Schumann] CPC 185 (2014) 2115
  - extended event files (BLACKHAT/SHERPA NTUPLE) [Bern et al.] CPC 185 (2014) 1443
  - on-the-fly reweighting of ME ...
    - ... and new since 2016 in SHERPA/HERWIG/PYTHIA: PS
       [EB,Schönherr,Schumann], [Bellm et al.] PRD 94 (2016) 034028, [Mrenna,Skands] PRD 94 (2016) 074005
  - a-posteriori PS variations using a neural net TODO: provide reference

### Issue with the 0-jet OTF uncertainty band



→ a freak event spoils the 7-point uncertainty band for 0-jet events
 → used ME-only variation for 0-jet bin on previous slides
 → will search+remove the event from the final sample

# **CPU cycles**



- Efficient tree-level generators for Born and real-emission corrections Amegic [Krauss,Kuhn,Soff] hep-ph/0109036, Comix [Gleisberg,SH] arXiv:0808.3674
- In Comix factorial scaling with multiplicity reduced to exponential by dynamic programming & sampling of color configurations [Berends,Giele] NPB306(1988)759, [Duhr,Maltoni,SH] hep-ph/0607057

# NNLOPS for $pp \rightarrow V$

### [Hoeche et al.] arXiv:1405.3607,1407.3773





### Vector-boson scattering simulations with Sherpa slide by Stefan Höche

 VBF-like situations require judicious setting of color flow information in interface between fixed-order calculation and parton shower



- Current color selection in Sherpa based on hardcoded probabilities for the most relevant processes, VBF topologies are *not* included
- ► Alternative, generic option in future version 3.0.0
  - Idenitify all possible color flows in core interaction (after ME+PS clustering, e.g. pp → e<sup>+</sup>e<sup>-</sup> in pp → e<sup>+</sup>e<sup>-</sup>+jets)
  - Compute corresonding partial amplitudes [Gleisberg,SH] arXiv:0808.3674
  - Select winner topology probabilistically
- Sherpa 3.0.0 also allows to specify different starting scales for parton-shower evolution of disconnected dipoles

### Vector-boson scattering simulations with Sherpa slide by Stefan Höche



Differential distributions confirm improvement:

- Third jet produced more forward and at lower rate in Sherpa 3.0.0
- PS radiation pattern in Sherpa 2.2.0 corrected by ME+PS merging, but breaking of PS unitarity in CKKW(L) decreases overall event rate
- Sherpa 3.0.0 predicts ~20% larger cross section after cuts as a result of correct color flow and PS starting scales

## WHAT WE GET OUT

► Sherpa pp→ $Z\gamma$ → $vv\gamma$ , NLO ≤ 1j, LO ≤ 3j (multi-jet merging)

compares well to data & NNLO



also see recent Sherpa pheno study on  $Z\gamma \rightarrow vv\gamma$  production [Krause, Siegert, Eur.Phys.J. C78 (2018) no.2, 161]

## EW NLO

needed to regularise V and R ME pieces in MCEG based on universal behaviour in divergent limit

lists by S. Kuttimalai

- ► motivation: previous talk  $\alpha_s^2 \approx \alpha$
- Sherpa: tree-level ME, IR subtraction, process management, PS integration
- ► one-loop MEs from external libraries
- ► SHERPA+GOSAM:
  - ➤ γγ+0,1,2 jets [Chiesa et al, JHEP 1710 (2017) 181]
  - γγγ/γγℓν/γγℓℓ
     [Greiner, Schönherr, JHEP 1801 (2018) 079]
- ► SHERPA+RECOLA
  - ► V/ℓv/ℓℓ+j, ℓℓ+2j, ℓℓℓℓ, ttH [Biedermann et al, Eur.Phys.J. C77 (2017) 492]
  - ► ℓℓℓVVV [Schönherr, JHEP 1807 (2018) 076]

- ► SHERPA+OPENLOOPS
  - ► W+1,2,3 jets [Kallweit et al, JHEP 04 (2015) 012]
  - Z/γ+j
     [Kallweit et al, Moriond QCD2015 proceeding]
  - *ℓℓ/ℓv/vv/γ+j* [Lindert et al, Eur.Phys.J. C77 (2017)]
  - ► ℓℓVV [Kallweit et al., JHEP 1711 (2017) 120]
  - >  $\ell \ell / \ell v + 2j$ , ttH [LH 2015 SM WG report]
  - ➤ tt+0,1 jets [Gütschow, Lindert, Schönherr, Eur.Phys.J. C78 (2018) no.4, 317]

### **EW NLO: TOP PAIR PRODUCTION & APPROX MERGING**

[Gütschow, Lindert, Schönherr, Eur.Phys.J. C78 (2018) no.4, 317]

$$d\sigma^{NLO EW}_{virt} = \left[ B_{QCD} + V_{EW} + \int R^{approx} d\Phi_1 + B_{sub} \right] d\Phi_B$$



- MEPS@NLO QCD+EW<sub>virt</sub> 0,1 @ NLO, 2,3,4 @ LO
- recover real QED
   bremsstrahlung: YFS
- boosted top quark, ID by substructure technique from fat jet

### EW NLO VS. EWAPPROX



## LOOP-INDUCED PROCESSES AT MC@NLO

slide adapted from S. Kuttimalai



- ► Born & real-emission by automated one-loop tools
- SHERPA: IR subtraction, process management, PS integration, matching (MC@NLO), fully automated [Jones, Kuttimalai: JHEP 1802 (2018)]
- Available two-loop virtual amplitudes
  - > gg → үү/HH/Hj
     e.g. ggHH difficult due to massive propagators & externals

► 
$$gg \rightarrow VV \rightarrow \ell \ell \ell \ell$$

# LOOP-INDUCED PROCESSES AT MC@NLO

- ►  $gg \rightarrow \gamma\gamma/HH$  (full top-quark mass dependence) [Jones, Kuttimalai, JHEP 1802 (2018) 176]
- large K factor enhances matching uncertainties



uncertainties on NLO+NLL in left plot: 3% near  $p_{\perp}^{HH} = 20$  GeV, 10% near 100 GeV

# NLO DGLAP IN THE PARTON SHOWER

► goal: fully differential PS evolution with NLO kernels

- ➤ last year: inclusion of NLO collinear splitting functions (NLO DGLAP) & flavour-changing 1→3 collinear splittings [Höche, Prestel, Phys.Rev. D96 (2017) no.7, 074017] [Höche, Krauss, Prestel, JHEP 1710 (2017) 093]
- this year: higher-order soft terms [Dulat, Höche, Prestel, 1805.03757]
- implemented in SHERPA and PYTHIA via two independent cross-checked DIRE shower implementations
- higher-order soft terms, fully differential in one-emission PS
  - check: sum of integrated terms = two-loop cusp anomalous dimension which is included in CMW method already for "LO" showers

# **NLO DGLAP IN THE PARTON SHOWER**

[Dulat, Höche, Prestel, 1805.03757]

fair agreement between fully diff NLO and approximate treatment using CMW in "LO" shower



### **SHERPA tunes**

- SHERPA comes with exactly one tune
- 1) tune hadronisation parameters to LEP data
  - $\rightarrow$  iterative between event shapes and hadron multiplicities
  - $\rightarrow$  colour-reconnection found not to be needed to improve tune
- 2) tune intrinsic transverse momentum parameters to LHC DY data  $\rightarrow$  no Tevatron data, as mostly corrected to unphysical Born leptons
- tune multiple interaction and beam remnant parameters to LHC data
  - $\rightarrow$  model rather basic, but key observables can be described
  - $\rightarrow$  currently no Tevatron data used
- LEP data mostly ALEPH 2004 event shapes
   LHC data selection somewhat ATLAS biased for historical reasons