

Impact of flux jumps on orbit stability

D. Gamba, L. Fiscarelli, M. Martino, J. Coello de Portugal

150th HiLumi WP2 – 11 June 2019

MBH HYBRID - Residuals and differential voltage

- Current shows peaks related to voltage spikes $\sigma = 0.3$ units.
- The difference of current minus flux shows changes $\sigma = 0.2$ units.
- Gradient (up/dw) shows changes $\sigma = 0.14$ units.

CERN

Flux jumps seems to be concentrated at "low energy"

 σ is computed in the interval [2kA, 4kA]

2

Lucio's conclusions

 We have tested many short models and we have data for the first full-size aperture (MBH HYBRID)

From circuit point of view, we consider "linearity" and "Short
A term stability – 20 min" as boundary of "tracking" performance ix jumps and during ramps at nominal ramp-rate (10 A/s) we see:

This is the contribute of flux jumps

- flucti according to Lucio
- changes on the main field not related to the current (σ = 0.2 units)
- changes of the up-down gradient (σ = 0.15 units)

The spectral density of the flux jumps is mainly concentrated in the interval 0.1-10 Hz

In this range PC don't have a detailed specification! -> still under discussion how to use "Noise"

Inductance Jump Model – O/C Voltage Loop

CERN

HILUM

4

Inductance Jump Model – O/C Voltage Loop

CERN

HILUM

Putting numbers together (11T)

- flux jumps given in unit worst case (in equivalent ppm) at top energy
- PC specs given in ppm of I_{rated} worst case at injection
- Impact of PCs in units computed as [ppm] * 10⁻² * I_{PC rated}/I_{dipoles(inj./nom.)}

	11T Magnet/Trim	Main Dipoles			
PC class	3	1			
I _{rated} [A]	600	13000			
I _{injection} [A]	(0)	728			
I _{nominal} [A]	(250)	11850			
Short term stability [r.m.s. ppm]	1	0.2			
Linearity [r.m.s. ppm]	4.6	1.2			
Flux jump -> PC -> circuit [rms ppm]	6.04	0.01			
Flux jump [rms units of 1e-4]	0.2	-			
Tot. PC [rms units] inj. / nom.	0.063 / 0.004	0.217 0.013			
oncerns here: flux jump on itself has an about 50 imes bigger effect than PC stability at top energy					
(cérn) performance domin	performance dominated by short term stability and linearity				

Comparison: flux jumps statistics for RQX

From a manual selection. Very probably biased towards larger strengths (easier to spot...).

Putting numbers together (Triplet)

Impact of PCs in units computed as [ppm] * 10⁻² * I_{PC rated}/I_{RQX(inj./nom.)}

	RQX	RTQX1/3	RTQXA1
PC class	0	2	4
I _{rated} [A]	18000	2000	60
I _{injection} [A]	1059	(0)	(0)
I _{nominal} [A]	16470	(1647)	(35)
Short term stability [r.m.s. ppm]	0.2	0.6	2.5
Linearity [r.m.s. ppm]	1.2	2.9	5.2
PC Short + Lin. [rms units] inj. / nom.	0.207/0.013	0.056/0.004	0.003/ <0.001
Flux jump -> PC -> circuit [rms units]	0.06/ <0.06?	???	???
Tot. PC [rms units] inj. / nom.	0.22/ <0.06?	???	???

- **Circuit performance still dominated by PC stability** (at least for RQX)
- Values to be compared with 0.2 units flux jump expected in each single magnet, independently
 - Comparable at injection for RQX circuit

11T: impact on B1 orbit at 15 cm β^* , 7 TeV

Feed-down from IR1/5 triplet: impact on orbit

D1/D2: impact on B1 orbit at 15 cm β^* , 7 TeV

Conclusion: impact on orbit at TCP @ inj / 15 cm β^*

	TCP orbit var. from optics [σ _{beam} /unit]	Expected jitter [rms units]	Expected TCP orbit var. [rms e-3 σ _{beam}]
11T magnet (flux jump)	0.02 / 0.07	0.2	4 / 14
11T trim circuit	0.04 / 0.14	0.063/0.004	<1 / <1
RB.A78 circuit	0.06 / <mark>0.21</mark>	0.217 /0.013	13 / 3
Q1 single magnet	<0.01 / 0.06	0.2	<2 / 12
Q2 single magnet	0.01 / <mark>0.28</mark>	0.2	2 / <mark>56</mark>
Q3 single magnet	<0.01 / 0.18	0.2	<2 / 36
RQX main circuit	0.01 / 0.48	0.22 / <0.06?	2 / 29*
Q1 trim circuit	<0.01 / 0.10	~0.056 <mark>?</mark> / ~0.004 ?	< 1? / < 1?
Q3 trim circuit	0.01 / <mark>0.33</mark>	~0.056 ? / ~0.004 ?	< 1? / 1?
D1/D2 circuit	0.02 / <mark>0.63</mark>	0.205 / 0.013	4 / 8

- The impact of flux jump at top energy for a 15 cm β* with 295 urad half crossing can reach up to 5.6% σ_{beam} (MQX2) or 1.4% σ_{beam} (MBH)
- At injection energy dominated by main dipole PC (1.3% σ_{beam})
 - in this case it should be a slow variation (<< 1 Hz), which can be corrected by orbit feedback, while a flux jump is a sudden variation (a few Hz)!

* Note: during stable beam, PC "linearity" should not play a role, i.e. about x6 better stability.

Appendix

11T: impact on B1 orbit at injection

11T: impact on B1 orbit at 15 cm β^* , 7 TeV

Feed-down from IR1/5 triplet (295 urad xing)

Feed-down from IR1/5 triplet (295 urad xing)

Impact of D1/D2 elements

