Searches for Lepton Flavour Violation at LHCb

Andreas Güth, Jan-Marc Basels, Christoph Langenbruch, Stefan Schael I. Physikalisches Institut B, RWTH Aachen

October 1st 2019

Jahrestreffen der deutschen LHCb-Gruppen, Rostock

Lepton Flavour Violation at LHCb - Introduction

Why search for lepton flavour violation (LFV)?

- Lepton flavour conservation is an accidental symmetry in the SM $(m_{\nu} = 0)$
- Normalized rates of LFV processes involving charged leptons are tiny $\mathcal{O}(10^{-55}) - \mathcal{O}(10^{-40})$ in the SM \Rightarrow LFV hadron decays would be a striking
 - signature of new physics
- (Possible) Connection between violation of lepton flavour universality (LFU) and LFV

⇒ Current interest in LFV in the light of observed LFU anomalies R_K , R_{K^*} , R_D , R_{D^*}

Selective overview of upper bounds on cLFV observables (status 2017) Riv. Nuovo Cimento. Vol. 41 (2018) 71

			· ·	
Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \rightarrow e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^- \text{Ti} \rightarrow e^- \text{Ti}^\dagger$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^-Pb \rightarrow e^-Pb^+$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^-Au \rightarrow e^-Au^+$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^-\text{Ti} \rightarrow e^+\text{Ca}^{*\dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+e^- \rightarrow \mu^-e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999
$\tau \rightarrow e \gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010
$\tau \rightarrow \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010
$\tau \rightarrow eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010
$\tau \rightarrow \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010
$\tau \rightarrow \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007
$\tau \rightarrow \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$\tau \rightarrow \rho^0 \dot{e}$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$\tau \rightarrow \rho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011
$\pi^0 \rightarrow \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008
$K_L^0 \rightarrow \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^0 \rightarrow \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ \rightarrow \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005
$J/\psi \rightarrow \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi \rightarrow \tau e$	$< 8.3 \times 10^{-6}$	90%	BESH	2004
$J/\psi \rightarrow \tau \mu$	$< 2.0 \times 10^{-6}$	90%	BESH	2004
$B^0 \rightarrow \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \rightarrow \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 \rightarrow \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B \rightarrow K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \rightarrow K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \rightarrow K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \rightarrow K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \rightarrow \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s) \rightarrow \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$Z \rightarrow \mu e$	$<7.5\times10^{-7}$	95%	LHC ATLAS	2014
$Z \rightarrow \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z \rightarrow \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h \rightarrow e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h \rightarrow \tau \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \rightarrow \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017

LFU and LFV

Possible connection between LFU and LFV: They appear alongside each other in many models of new physics, $b \rightarrow s \ell^+ \ell'^-$ transitions particularly interesting

 \Rightarrow Observable rates for LFV processes in models for LFU anomalies

- eµ pair in the final state:
 - $\mathcal{B}(\mathsf{B}^0_s \to \mathsf{e}^{\pm}\mu^{\mp})$ up to 10^{-11} Hiller, Loose, Schönwald JHEP 12 (2016) 027 • $\mathcal{B}(\mathsf{B} \to \mathsf{K}^{(*)}\mathsf{e}^{\pm}\mu^{\mp})$ up to 10^{-8}
- $\tau\mu$ pair in the final state:
 - $\mathcal{B}(\mathsf{B}^0_{\mathsf{s}} \to \tau^{\pm} \mu^{\mp})$ up to 10^{-4} Bordone et al., JHEP 1810 (2018) 148 • $\mathcal{B}(\mathsf{B} \to \mathsf{K}^{(*)} \tau^{\pm} \mu^{\mp})$ up to 10^{-5}

Common challenges in searches for LFV

- Extremely rare decays \rightarrow Large samples of B^0_d , B^0_s decays needed \checkmark
- Understanding of backgrounds crucial
 - \bullet Semileptonic cascades with B,D decays
 - B \rightarrow J/ ψ (\rightarrow $\ell^+\ell^-$)X decays with mis-identification
- Two different lepton flavours \rightarrow Additional challenge e/τ reconstruction:

Final state with $\textit{e}\mu$ pair

• Electron's bremsstrahlung losses degrade $\sigma(m_{\rm B}),$ effects mitigated by brem photon recovery in electron reconstruction

• Hardware trigger E_T^e thresholds higher than for p_T^{μ}

Final state with $\tau\mu$ pair

- τ reconstructed through its decays Leptonic:
 - $BR(\tau \rightarrow \mu \nu \nu) = 17.41 \pm 0.04 \%$
 - $BR(\tau \rightarrow e^{-}vv) = 17.83 \pm 0.04 \%$

Hadronic:

- BR(τ→ π⁻ν) = 10.83 ± 0.06 %
- BR($\tau \rightarrow \pi^{-} \pi^{0} v$) = 25.52 ± 0.09 %
- BR($\tau \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu$) = 9.30 ± 0.11 %
- BR($\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}\nu$) = 9.31 ± 0.06 %
- BR($\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu$) = 4.62 ± 0.06 %
- ν : Missing momentum degrades $\sigma(m_{\rm B})$
- $\bullet\ \tau$ decay vertex cannot always be reconstructed

$B^+ \rightarrow K^+ \mu^{\pm} e^{\mp}$: Introduction / Selection $\textcircled{U}^{\text{technische universität}}$

New Result arXiv:1909.01010 Normalization channel:

Analysis essentials

- LHCb Run I data, $\mathcal{L}_{int} = 3 \text{ fb}^{-1}$
- Signature: Muon provides highly efficient trigger 3 tracks forming secondary vertex

Selection

• Significant background from semileptonic cascades $B^+ \to \overline{D}^0 (\to K^+ \ell'^- \bar{\nu}_{\ell'} h') \ell^+ \nu_{\ell} h$

 $\Rightarrow D^0$ veto $m(K^+\ell^-) > 1885$ MeV

- Topological BDT against combinatorial
- 2nd BDT including m^{HOP}_B variable against semileptonic cascades
- Tight PID cuts on kaon and leptons

${\rm B^+} \rightarrow {\rm K^+} \mu^\pm {\rm e^\mp}$: Results

Analysis split by charge of the $\mu^\pm {\rm e}^\mp$ pair

$$\mathcal{B}(B^+ \to K^+ \mu^- e^+) < 9.5 \cdot 10^{-9} \text{ at } 95\% \text{ CL}$$

 $\mathcal{B}(\text{B}^+ \rightarrow \text{K}^+ \mu^+ \text{e}^-) < 8.8 \cdot 10^{-9}$ at 95% CL

Systematic uncertainties in the limit ${<}7\%$

Improving former most stringent limit from BaBar by one order of magnitude Starting to probe interesting range of parameter space for LFU+LFV models

$B^+ \rightarrow K^+ \mu^{\pm} e^{\mp}$: Signal model / (Re-)Interpretation

Analysis split according to charge combination of the $\mu^{\pm} e^{\mp}$ pair: B⁺ $\rightarrow K^{+}\mu^{+}e^{-}$ B⁺ $\rightarrow K^{+}\mu^{-}e^{+}$

(BSM) Model independent approach:

- Phase space decay model used for signal decay
- Efficiency maps provided over the Dalitz plane \rightarrow Re-weighting allows for re-interpretation of exclusion limits in terms of a specific signal

 $\begin{array}{c} \mbox{Goal: Cover in one analysis} \\ B^0_d \rightarrow \mathsf{K}^*(892)(\rightarrow \mathsf{K}^+\pi^-)\mu^\pm \mathrm{e}^\mp \\ \mathcal{B} < 1.8 \times 10^{-7} \ (90\% \ \text{CL}) \ [\text{Belle, Phys. Rev. D 98, 071101 (2018)]} \\ B^0_s \rightarrow \phi(1020)(\rightarrow \mathsf{K}^+\mathsf{K}^-)\mu^\pm \mathrm{e}^\mp \end{array}$

No limit in the literature

Analysis essentials $\phi \mu^{\pm} e^{\mp}$

- Normalization channel: $B_s^0 \rightarrow J/\psi (\rightarrow \mu^+ \mu^-)\phi(1020)$
- Using same-sign data to model background
- Tight cut on $|m(K^+K^-)-m(\phi)| < 12$ MeV
- Veto m(K⁺K[−]ℓ[±]) < 2000 MeV targeting semilept. cascades B⁰_s → D[−]_s(→ φℓ'[−]ν
 _{ℓ'})ℓ⁺ν_ℓ
- Topological BDT against combinatorial
- Currently studying remaining exclusive backgrounds and efficiencies

Preliminary estimate of expected limit (Run I data only): $\mathcal{B}(B_s^0 \rightarrow \phi(1020)\mu^{\pm}e^{\mp}) < 4 \times 10^{-8}$ (90% CL)

Search for LFV with purely leptonic final state, electron reconstruction challenging

JHEP 1803 (2018) 078

Analysis essentials

• LHCb Run I data,
$$\mathcal{L}_{int} = 3 ext{ fb}^-$$

- Signature:
 - Efficient trigger: both muon/electron triggers
 - \bullet Secondary vertex formed by ${\rm e}^\pm\mu^\mp$ candidates fulfilling tight PID requirements
- Recovery of bremsstrahlungs photons in e reco \Rightarrow Analysis split into brem/no brem categories Separate evaluation of ϵ_{sig} , mass shape
- 2 normalization channels:
 - $B^0_d
 ightarrow K^+ \pi^-$ (topology)
 - $B^+ \rightarrow J/\psi K^+$ (high yield, similar triggers)

$B^0_{s,d} ightarrow \mathrm{e}^\pm \mu^\mp$: Selection

Selection and background

• Topological BDT targeting combinatorial Uniform response for signal \rightarrow Flatness checked using $B^0_d \rightarrow K^+\pi^-$ selected data

- Peaking bkg $B^0 \rightarrow h^+ h'^-$ reduced to ~ 0.1 events by tight PID requirements
- Remaining exclusive background contribution dominated by partially reconstructed processes $B^0 \to \pi^- \mu^+ \nu_\mu$ and $\Lambda_b \to p \ell^- \bar{\nu_\ell}$ is modelled in the fit

Signal efficiencies obtained from simulation except for trigger and PID efficiencies $\epsilon_{sel}^{tot}(B_d^0 \rightarrow e^{\pm}\mu^{\mp}) = (2.22 \pm 0.05)\%$, $\epsilon_{sel}^{tot}(B_s^0 \rightarrow e^{\pm}\mu^{\mp}) = (2.29 \pm 0.05)\%$

$B^0_{s,d} ightarrow \mathrm{e}^{\pm} \mu^{\mp}$: Results

3 scenarios considered in the interpretation: $B_d^0 \rightarrow e^{\pm} \mu^{\mp}$; $B_{sH}^0 \rightarrow e^{\pm} \mu^{\mp}$, $B_{sL}^0 \rightarrow e^{\pm} \mu^{\mp}$ Impact of systematic uncertainties on

expected limit < 5%

 $\mathcal{B}(B^{0}_{sH} \to e^{\pm}\mu^{\mp}) < 6.3 \cdot 10^{-9} \text{ at } 95\% \text{ CL}$

 $\mathcal{B}(B^0_d
ightarrow {
m e}^\pm \mu^\mp) < 1.3 \cdot 10^{-9}$ at 95% CL

Improving former most stringent limit on $\mathcal{B}(B^0_d \to e^{\pm} \mu^{\mp})$ (LHCb, $\mathcal{L}_{int} = 1 \text{ fb}^{-1}$) by almost a factor 3

$B^0_{s,d} \to \tau^{\pm} \mu^{\mp}$: Introduction

First search for LFV with a τ lepton in the final state by LHCb arXiv:1905.06614

Analysis essentials

- LHCb Run I data, $\mathcal{L}_{int} = 3 \text{ fb}^{-1}$
- τ reconstructed in 3-prong channel $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm} \nu$ $\mathcal{B}(\tau^{\pm} \rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm} \nu) = 9.31 \pm 0.06\%$
- Normalization channel: $B_d^0 \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-) \pi^+$
- Same-sign data $\tau^{\pm}\mu^{\pm}$ used to model background

Signal toplogy & selection basics

- Muon provides efficient L0/HLT1 triggers
- τ decay vertex reconstruction \Rightarrow Reconstruction of p_{ν} , $m(B_{s,d}^0)$
- τ decays via intermediate resonances $\tau^{\pm} \rightarrow a_{1}^{\pm}(1260)\nu \rightarrow \rho(770)\pi^{\pm}\nu$ $\rightarrow \pi^{\pm}\pi^{\mp}\pi^{\pm}\nu$ \Rightarrow Rejection of low $m(\pi^{+}\pi^{-})$ bkgs $\epsilon_{sel}^{tot}(B_{s}^{0} \rightarrow \tau^{\pm}\mu^{\mp}) \approx 1.6 \cdot 10^{-4}$

$B^0_{s,d} ightarrow au^\pm \mu^\mp$: $m(B^0_{s,d})$ calculation

$m(B_{s,d}^0)$ calculation

Available information for kinematic constraints:

Muon & pion tracks, primary vertex, τ decay vertex, \textit{m}_{τ}

 $\Rightarrow m(B_{s,d}^0)$ determined analytically up to a 2-fold ambiguity

 $m(B_{s,d}^0)$ solution with best discrimination power and corresponding p_{ν} chosen

Refit of the decay tree with the inferred neutrino momentum performed Fit parameters and their uncertainties used in the selection

$B^0_{s,d} \to \tau^{\pm} \mu^{\mp}$: Results

Improving the former most stringent limit on $\mathcal{B}(B_d^0 \to \tau^{\pm} \mu^{\mp})$ (BaBar) by a factor 2 First limit on $\mathcal{B}(B_s^0 \to \tau^{\pm} \mu^{\mp})$, in the range of interest of models for LFU anomalies

Searches for LFV (+LNV/BNV) in LHCb

Published searches for LFV using (parts of) LHCb Run I data

Decay	Publication	Year	Туре	Limit \mathcal{B} (95% CL) Strongest limit in lit.	
${\rm B^+} \rightarrow {\rm K^+ e^\pm} \mu^\mp$	arXiv:1909.01010	2019	I FV	8.8×10^{-9}	
	submitted to PRL	2015		0.0×10	
$B^0 o au^{\pm} \mu^{\mp}$	arXiv:1905.06614	2019	L EV/	1.4×10^{-5}	
	submitted to PRL	2019		1.4 ~ 10	
$B^0 o e^{\pm} \mu^{\mp}$	JHEP 1803 (2018) 078	2018	LFV	$1.3 imes10^{-9}$	
$D^{0} ightarrow \mathbf{e}^{\pm} \mu^{\mp}$	PLB 754 (2016) 167	2016	LFV	1.6×10^{-8}	
$ au^- ightarrow \mu^+ \mu^- \mu^-$	JHEP 02 (2015) 121	2015	LFV	5.6×10^{-8}	
$ au^- ightarrow {\sf p}^+ \mu^- \mu^-$	PLB 724 (2013) 36	2013	BNV+LNV	$5.7 imes10^{-7}$	
$B^- o \pi^+ \mu^- \mu^-$	PRL 112 (2014) 131802	2014	LNV	$4.0 imes10^{-9}$	
$D^- o \pi^+ \mu^- \mu^-$	PLB 724 (2013) 203	2013	LNV	$2.5 imes10^{-8}$	

Work on Run I+II update (adding almost $4 \times$ Run I statistics) started

More searches for LFV working towards publication, Run I+II $\tau \mu$: B⁺ \rightarrow K⁺ $\mu^{-}\tau^{+}$ (B_{s2}^{*} -tagged and τ 3-prong), B⁰_d \rightarrow K^{*} $\mu^{-}\tau^{+}$, B⁰_s $\rightarrow \phi \mu^{-}\tau^{+}$ $e\mu$: B⁰_d \rightarrow K^{*} $e^{-}\mu^{+}$ + B⁰_s $\rightarrow \phi e^{-}\mu^{+}$, $\Lambda_{b} \rightarrow \Lambda e^{-}\mu^{+}$

Searches for LFV are becoming a cornerstone of the LHCb physics program $_{15}$

Searches for LFV - A Glimpse into the future

Decay	Max. NP	Best Limit	Evn	1 HCb '10	LHCb	Belle II
Decay	LFU models	90% CL	с.р.	LITED 19	Upgrade I	50 ab^{-1}
$B^{0}_{d} o e \mu$		$1.0 imes10^{-9}$	LUCH		$2 imes 10^{-10}$	-
$B^{0}_{s} \to e\mu$	10^{-11}	$5.4 imes10^{-9}$	LITCD	Kull I	$8 imes 10^{-10}$	-
$B^+ \to K^+ e \mu$	10^{-8}	6.4×10^{-8}	LHCb	Run I	${\rm few}\times 10^{-9}$	-
$B^+ \rightarrow K^+ \tau \mu$	10 ⁻⁵	$4.8 imes 10^{-5}$	BaBar	ongoing	$\sim 10^{-6}$	$3.3 imes 10^{-6}$
$B^{0}_{d} o K^{*} au \mu$	10^{-5}	-	-	ongoing	$\sim 10^{-6}$	few $ imes 10^{-6}$
$B^+ \rightarrow K^+ \tau e$		$3.0 imes 10^{-5}$	BaBar	-	-	$2.1 imes 10^{-6}$

Official LHCb expectations from arXiv:1808.08865 in blue Official Belle II expectations from arXiv:1808.10567 in orange Guess from similar channels or extrapolation for luminosity in grey

Tests of charged lepton flavour conservation will benefit from LHCb / Belle II competition and complementarity in the coming years

Summary

- LHCb has a strong program of searches for LFV hadron (and τ) decays In the light of the LFU anomalies, the LFV effort has recently been intensified
- LHCb has demonstrated its capability to push the sensitivity of searches for LFV in 2- and 3-body decays with $e\mu$ and $\mu\tau$ pairs

Current sensitivities:
$$\mathcal{O}(10^{-9})$$
 for $\mathcal{B}(\mathsf{B} \to X e\mu)$
 $\mathcal{O}(10^{-5})$ for $\mathcal{B}(\mathsf{B} \to X \tau\mu)$

Probing interesting regions in parameter space of several BSM models for LFU anomalies

Stay tuned for the next round of results of LFV searches covering new decay channels and Run I+II updates of published Run I searches

• LHCb (Upgrade I) and Belle II will allow for further improvement of these sensitivities by about one order of magnitude in the coming years

BACKUP

Decay	Max. NP	Best 90% CL	Publication	Exp.	LHCb '19	LHCb Upg. I	Belle II '27
$B_d^0 \rightarrow e \mu$	10 ⁻¹¹	1.0×10^{-9}	JHEP1803078	LHCb	Run I	$2 imes 10^{-10}$	-
$B_{s}^{0} ightarrow e\mu$	10 ⁻¹¹	$5.4 imes 10^{-9}$				$8 imes 10^{-10}$	-
$B^+ ightarrow K^+ e^- \mu^+$	10 ⁻⁸	$6.4 imes 10^{-8}$	1909.01010	LHCb	Run I	2×10^{-9}	-
$B^0_d \rightarrow K^* e \mu$	10 ⁻⁸	1.8×10^{-7}	PRD98071101	Belle	ongoing	$\sim 10^{-9}$	$\sim 2 imes 10^{-8}$
$B^0 \rightarrow \phi e \mu$		_		_	ongoing	-	_
D _s , φομ					4×10^{-8}		
$B_d^0 \rightarrow \tau \mu$	10 ⁻⁵	1.2×10^{-5}	1905.06614	LHCb	Run I	3×10^{-6}	1.3×10^{-5}
$B_s^0 \rightarrow \tau \mu$	10 ⁻⁵	$3.4 imes 10^{-5}$				$9 imes 10^{-6}$	10^{-5}
$B^+ \rightarrow K^+ \tau \mu$	10 ⁻⁵	$4.8 imes 10^{-5}$	PRD86012004	BaBar	ongoing	10 ⁻⁶	3.3×10^{-6}
$B_d^0 \rightarrow K^* \tau \mu$	10 ⁻⁵	-	-	-	ongoing	10^{-6}	$\sim 10^{-6}$
$B_d^0 \rightarrow \tau e$		2.8×10^{-5}	PRD77091104	BaBar	-	-	1.6×10^{-5}
$\text{B}^+ \rightarrow \text{K}^+ \tau \text{e}$	-	3.0×10^{-5}	PRD86012004	BaBar	-	-	$2.1 imes 10^{-6}$

Official LHCb expectations from arXiv:1808.08865 in blue

Official Belle II expectations from arXiv:1808.10567 Guess from similar channels or extrapolation for luminosity in grey

(adapted from presentation by F. Polci, $b \rightarrow s\ell\ell$ 2019 Workshop, Lyon)

$B^0_{s,d} ightarrow au^{\pm} \mu^{\mp}$: Selection

Preselection

 \bullet Cut-based preselection using resonance structure of the τ decay

Selection targeting specific bkgs

- BDT against combinatorial bkg
- $au_{ au}/\sigma(au_{ au}) > 1.8$ Rejection of 'reverse topology'

• Remaining background dominated by 'signal topology'. modelled in the fit

