Branching fraction measurement of $B_s^0 \rightarrow \phi \mu^+ \mu^$ and search for $B_s^0 \rightarrow f'_2(1525)\mu^+\mu^-$ FSP Meeting in Rostock

S. Kretzschmar, C. Langenbruch, M. Materok, E. Smith

RWTH Aachen, I. Physikalisches Institut B

Oct 1st, 2019

 $\phi \phi \mu^+ \mu^-$ and $B_s^0 \to f_2'(1525) \mu^+ \mu^-$

Probing for New Physics with $B_s^0 \to \phi(\to K^+ K^-) \mu^+ \mu^-$

Southern rockhopper penguin

- $b \rightarrow s \mu^+ \mu^-$: Flavour Changing Neutral Current
- Only occurs via higher order diagrams highly suppressed in the SM
- Sensitive to possible New Physics contributions

Run 1 Analysis of $B_s^0 \rightarrow \phi \mu^+ \mu^-$

• Run 1 analysis in JHEP 09 (2015) 179 ("Angular analysis and differential branching fraction of the decay $B_s^0 \rightarrow \phi \mu^+ \mu^-$ ")

- <u>Result</u>: Branching fraction around 3σ lower compared to Standard Model expectation at low q^2
- <u>Goal</u>: Update analysis using Run 2 data

 $\phi \mu^+ \mu^-$ and $B_s^0
ightarrow f_2'(1525) \mu^+ \mu^-$

 $B_{s}^{0} \rightarrow f_{2}'(1525)(\rightarrow K^{+}K^{-})\mu^{+}\mu^{-}$

- Similar to $B_s^0 \rightarrow \phi \mu^+ \mu^-$ mode: $B_s^0 \rightarrow f'_2(1525) \mu^+ \mu^-$
- $\mathcal{B}(B^0_s \to J/\psi f_2'(1525))$ already measured [PRL 108 (2012) 151801]
- Rare mode $B_s^0
 ightarrow f_2'(1525)\mu^+\mu^-$ should also be observable!
- Bonus: Would be the first FCNC decay with spin-2 particle

General idea:

Keep analysis as close to $B^0_s\to\phi\mu^+\mu^-$ as possible Expect more background pollution due to larger width...

Branching Fraction Analysis Strategy

Measurement strategy ($X = \phi(1020), f'_2(1525)$):

$$\frac{d\mathcal{B}(B^0_s \to X\mu^+\mu^-)}{\mathcal{B}(B^0_s \to J/\psi \,\phi) dq^2} = \frac{\mathcal{B}(J/\psi \to \mu^+\mu^-)}{q^2_{\max} - q^2_{\min}} \cdot \frac{N_{X\mu^+\mu^-}}{N_{J/\psi\phi}} \cdot \frac{\epsilon_{\text{tot}}^{J/\psi\phi}}{\epsilon_{\text{tot}}^{X\mu^+\mu^-}}$$

• Control channel with
$$q^2 \in [8,11]\,{
m GeV}^2/c^4$$

- Event selection (incl. MVA) to reduce backgrounds
- Fits for event yields
- Efficiencies from corrected simulations

Binning:

- Align $B^0_s \! \to \phi \mu^+ \mu^-$ binning to $B^0 \! \to K^{*0} \mu^+ \mu^-$ analysis
- Plan $B_s^0
 ightarrow f_2'(1525) \mu^+ \mu^-$ observation using one bin

Datasets and selection - $B_s^0 \rightarrow \phi \mu^+ \mu^-$ analysis

Datasets:

- 3/fb Run 1 (2011/12)
- 1.67/fb 2016 still blinded!
- 0.33/fb 2015 still blinded!

Selection:

- B_s^0 meson from pp-collision
- flight distance of B⁰_s
- kaons, muons well identified
- $|m_{K^+K^-} m_{\phi}| < 12. \text{ MeV}/c^2$

 \Rightarrow BDT against comb. background

 $\phi \phi \mu^+ \mu^-$ and $B_s^0 \to f_2^{\prime}(1525) \mu^+ \mu^-$

Datasets and selection - $B_s^0 \rightarrow \phi \mu^+ \mu^-$ analysis

Datasets:

- 3/fb Run 1 (2011/12)
- 1.67/fb 2016 still blinded!
- 0.33/fb 2015 still blinded!

Selection:

- B_s^0 meson from pp-collision
- flight distance of B⁰_s
- kaons, muons well identified
- $|m_{K^+K^-} m_{\phi}| < 12. \, \text{MeV}/c^2$

BDT:

trained on data: $B_s^0 \rightarrow J/\psi \phi$ (sig. proxy), upper mass band (bkg. proxy)

5200 5400 \Rightarrow Signal clearly visible

variables:

topology, daughter PID

Datasets and selection - $B_s^0 ightarrow f_2'(1525) \mu^+ \mu^-$ analysis

Datasets:

- 3/fb Run 1 (2011/12)
- 1.67/fb 2016 still blinded!
- 0.33/fb 2015 still blinded!

Selection:

- B_s^0 meson from pp-collision
- flight distance of B⁰_s
- kaons, muons well identified
- $|m_{K^+K^-} m_{f_2'}| < 225. \text{ MeV}/c^2$
- tighter requirement on kaon PID

BDT:

- trained on data: $B_s^0 \rightarrow J/\psi \phi$ (sig. proxy), upper mass band (bkg. proxy)
- variables:

topology, daughter PID

 $B_{\epsilon}^{0} \rightarrow J/\psi \phi$ and $B_{\epsilon}^{0} \rightarrow \phi \mu^{+} \mu^{-}$ yields

Mass model:

DCB for signal (tail params + rel. fraction fixed from simulation), exponential for combinatorial background

 $\rightarrow \phi \mu^+ \mu^-$ and $B_c^0 \rightarrow f_2'(1525) \mu^+ \mu$

$B_s^0 \rightarrow \phi \mu^+ \mu^-$ branching fraction Run 1

Efficiencies: Taken from corrected simulation of $B^0_s \rightarrow \phi \mu^+ \mu^-$ and $B^0_s \rightarrow J/\psi \phi$

Branching fraction:

Comparison of published Run 1 to this work's result. Note: Statistical errors only

$B_{\epsilon}^{0} \rightarrow J/\psi f_{2}^{\prime}(1525)$ and $B_{\epsilon}^{0} \rightarrow f_{2}^{\prime}(1525)\mu^{+}\mu^{-}$ fit model

Plan for observation: Use full q^2 range

Fit model:

S. Kretzschmar (RWTH)

Rare mode $B_s^0 \rightarrow f_2'(1525)\mu^+\mu^-$ exp. sensitivity

Expected yields: $N_{\text{Run 1}} = 50 \pm 12$ and $N_{\text{Run 2p1}} = 57 \pm 13$

Expected sensitivity:

Generate using $B_s^0 \rightarrow J/\psi f_2'(1525)$ model with yields extrapolated to rare mode.

Example for such toy (Run 1):

Using Wilk's theorem:

5.2 σ in Run 1 + Run 2p1

(considering only statistical uncertainties so far)

S. Kretzschmar (RWTH)

 $\phi_s \to \phi \mu^+ \mu^-$ and $B_s^0 \to f_2^{\prime}(1525) \mu^+ \mu^-$

Summary and Outlook

Run 1 branching fraction analysis of $B^0_s\to\phi\mu^+\mu^-:$ around 3σ deviation from expectation

Status of analysis:

- Performed analysis on Run 1 following previous $B_s^0 o \phi \mu^+ \mu^-$ analysis \checkmark
- Reproduced Run 1 $B_s^0 \rightarrow \phi \mu^+ \mu^-$ branching fraction result \checkmark
- Added blind Run 2p1 data 🗸
- First sensitivity estimates for $B_s^0
 ightarrow f_2'(1525)\mu^+\mu^-$ observation \checkmark
- Finished large fraction of studies of systematics (\diamondsuit)

Outlook:

- Update of $B_s^0
 ightarrow \phi \mu^+ \mu^-$ angular analysis (by M. Materok) ${}^{igodoldsymbol{\otimes}}$
- Currently considering adding 2017/2018 data