# HL-LHC Dynamic Aperture at Injection

### N. Karastathis and Y. Papaphilippou

with many thanks to F. Asvesta, X. Buffat, R. De Maria, S. Kostoglou K. Skoufaris, F.v.d.Veken

WP2 Meeting 28.05.2019



## Introduction

- <u>Motivation:</u> Perform a multi-parametric study at the HL-LHC injection plateau to identify the available parameter space.
- To compare with the present situation results for the LHC injection optics used in Run-II and the foreseen settings for Run-III are quickly presented.
- As usual the "full OP configuration" is used for the simulations (i.e. all IPs, worst polarity on the experimental spectrometers etc).
- According to the operational scenario\* the beam/machine parameters are:

\* E. Metral et al., "Update of the HL-LHC operational scenarios for proton operation", CERN ACC Notes, CERN-ACC-NOTE-2018-0002, 2018

### (\*\*) using 2.5 for margin

| Energy [TeV]                           | 0.45             |
|----------------------------------------|------------------|
| Bunch Intensity [10 <sup>11</sup> ppb] | 2.3              |
| Normalized Emittance [µm]              | 2.1-2.3 (**)     |
| β* IP1/5 [m]                           | 6                |
| β* IP2/8 [m]                           | 10               |
| Half-Crossing Angle IP1/5 [µrad]       | 295              |
| Half-Crossing Angle IP1/5 [µrad]       | 170              |
| Parallel Separation IP1/5 [mm]         | 2                |
| Parallel Separation IP2/8 [mm]         | 3.5              |
| Working Point                          | (62.270, 60.295) |
| Chromaticity [#]                       | +20              |
| Octupole Current [A]                   | -40              |



## LHC Run-II vs Run-III





28/05/2019 - WP2

Quick degradation of DA from the increased octupoles, not significant impact of the +50% more intensity.

### HL-LHC v1.3





## $I_{MO} = 0 A \& Q' = 20$

Min DA HL-LHC v1.3, Injection, N<sub>b</sub>=2.2 × 10<sup>11</sup> ppb,  $\beta_{\rm IP1/5}^*=6$  m,  $\beta_{\rm IP2/8}^*=10$  m  $\phi_{\rm IP1/5}/2=295 \ \mu$ rad,  $\phi_{\rm IP2/8}/2=170 \ \mu$ rad,  $\epsilon_{\rm n}=2.5 \ \mu$ m, Q'=20, I<sub>MO</sub>=0 A



In the case of no octupoles, the available DA space (as expected from the footprints previously) is very large.



## $I_{MO} = 20 A \& Q'=20$

Negative polarity provides slightly better  $DA \rightarrow Different$  resonances?

**І**мо>**О** 

Min DA HL-LHC v1.3, Injection, N<sub>b</sub>=2.2 × 10<sup>11</sup> ppb,  $\beta_{\text{IP1/5}}^*=6$  m,  $\beta_{\text{IP2/8}}^*=10$  m  $\phi_{\text{IP1/5}}/2=295 \ \mu\text{rad}, \ \phi_{\text{IP2/8}}/2=170 \ \mu\text{rad}, \ \epsilon_{n}=2.5 \ \mu\text{m}, \ \text{Q}'=20, \ \text{I}_{\text{MO}}=20 \ \text{A}$ 





**І**мо<**О** 



Movement of the optimal WP in the tune space as an effect of the octupoles



(62.270, 60.295)

(62.295, 60.300)

(62.295, 60.270)



CERN

28/05/2019 - WP2



Min DA HL-LHC v1.3, Injection, N<sub>b</sub>=2.2 × 10<sup>11</sup> ppb,  $\beta_{1P1/5}^{*}=6$  m,  $\beta_{1P2/8}^{*}=10$  m  $\phi_{1P1/5}/2=295 \ \mu rad, \ \phi_{1P2/8}/2=170 \ \mu rad, \ \epsilon_{n}=2.5 \ \mu m, \ Q'=20, \ I_{MO}=-20 \text{ A}$ 60.33



### I<sub>MO</sub> = 40 A & Q'=20

### **І**мо>**О**





#### Significantly worse than the LHC case



28/05/2019 - WP2

N. Karastathis

### FMA @ I<sub>MO</sub> = -40 A, Q'=20







### Maybe some BB effect?

#### $I_{MO} = -40 A$ with Beam-Beam

Min DA HL-LHC v1.3, Injection, N<sub>b</sub>=2.2 × 10<sup>11</sup> ppb,  $\beta^*_{\rm IP1/5}$ =6 m,  $\beta^*_{\rm IP2/8}$ =10 m  $\phi_{\rm IP1/5}/2$ =295 µrad,  $\phi_{\rm IP2/8}/2$ =170 µrad,  $\epsilon_{\rm n}$ =2.5 µm, Q'=15, I<sub>MO</sub>=-40 A

#### I<sub>MO</sub>= -40 A without Beam-Beam

Min DA HL-LHC v1.3, Injection, No BB, N<sub>b</sub>=2.2 × 10<sup>11</sup> ppb,  $\beta^*_{IP1/5}$ =6 m,  $\beta^*_{IP2/8}$ =10 m  $\phi_{IP1/5}/2$ =295 µrad,  $\phi_{IP2/8}/2$ =170 µrad,  $\epsilon_n$ =2.5 µm, Q'=15, I<sub>MO</sub>=-40 A



As expected from the footprints, the impact on DA is almost negligible. → Crossing angle/separation increase is not driven by BB.



60.325

60.310-

*े* 60.295−

60.280

60.265-

62.260

Dynamic Aperture  $[\sigma_{\text{beam}}]$ 

### **Octupoles vs Chromaticity**

Min DA HL-LHC v1.3, Injection, N<sub>b</sub>= $2.3 \times 10^{11}$  ppb,  $\beta_{\text{IP1/5}}^*=6$  m,  $\beta_{\text{IP2/8}}^*=10$  m  $\phi_{\text{IP1/5}}/2=295 \ \mu\text{rad}, \ \phi_{\text{IP2/8}}/2=170 \ \mu\text{rad}, \ \epsilon_{n}=2.5 \ \mu\text{nC}(\text{Q}_{\text{X}}, \text{Q}_{\text{Y}})=(62.270, \ 60.295)$ 





### Magnetic field errors spread

Selecting (.295, .300) as WP and calculate for 60 seeds for -20 A and -40 A the minimum DA → Take the mean and RMS of the min DA results.

rms spread of  $<0.2\sigma$ Min DA HL-LHC v1.3, Injection,  $(Q_X, Q_Y) = (62.295, 60.300)$ in minimum DA  $N_b=2.3 \times 10^{11} \text{ ppb}, \beta_{IP1/5}^*=6 \text{ m}, \phi_{IP1/5}/2=295 \ \mu\text{rad}, \epsilon_n=2.5 \ \mu\text{m}, \text{Q'}=20$  $I_{MO} = -20A$  $I_{MO} = -20A$ : (5.61 ± 0.16)  $\sigma_{\text{beam}}$ Minimum Dynamic Aperture  $[\sigma_{
m beam}]$  $I_{MO} = -40A$ Drop from mean  $I_{MO} = -40 A$ : (3.37 ± 0.10)  $\sigma_{\text{beam}}$ 6.0 0.56 σ 0.34 σ 4.53.0 Less spread due to already low DA. 2040 60 0 Seed Number



### **Magnetic field errors spread (II)**

Calculate for 60 seeds for -20 A and -40 A the minimum DA
 Take the mean and RMS of the min DA results.





### **Optimal WP vs Octupoles**

• Reducing the chroma to **15 units** and evaluating the impact of octupoles on the optimal working point with a (fractional) tune split of **0.015** Min DA HL-LHC v1.3, Injection, N<sub>b</sub>= $2.3 \times 10^{11}$  ppb,  $\beta_{IP1/5}^*=6$  m,  $\beta_{IP2/8}^*=10$  m





### Summary

- Comparing with the LHC injection, HL-LHC shows slightly reduced DA at  $I_{MO} = |40| A$ 
  - The reduced  $\beta^*$  at IP1/5 could significantly increase the maximum  $\beta$  and possibly have an impact on DA (??)
- Impact of bunch intensity is relatively small in the LHC result.
- Impact of beam-beam interactions at the nominal crossing/separation values is almost negligible ( $\Delta Q \approx 2 \times 10^{-4}$ )
- At injection the transverse detuning from octupoles dominate the final result.
  - Negative octupoles have slightly better DA.
  - The polarity of the octupoles significantly impacts the optimal WP.
  - What are the lower octupole current limits that we can go in terms of stability?
- Chromaticity has a smaller impact compared to octupoles.
- Impact of magnetic field errors at minimum DA is at the level of <0.2σ. Drop from the average of the statistical population around 0.5-1.0σ.





### 3Qx for symmetric WP @ +20 A?





28/05/2019 - WP2

#### N. Karastathis

### For completeness: Nb=2.3e11 ppb $\rightarrow$ No impact



Min DA HL-LHC v1.3, Injection, N<sub>b</sub>=2.3 × 10<sup>11</sup> ppb,  $\beta_{\text{IP1/5}}^*=6 \text{ m}$ ,  $\beta_{\text{IP2/8}}^*=10 \text{ m}$  Min DA HL-LHC v1.3, Injection, N<sub>b</sub>=2.3 × 10<sup>11</sup> ppb,  $\beta_{\text{IP1/5}}^*=6 \text{ m}$ ,  $\beta_{\text{IP2/8}}^*=10 \text{ m}$   $\phi_{\text{IP1/5}/2}=295 \ \mu\text{rad}$ ,  $\phi_{\text{IP2/8}/2}=170 \ \mu\text{rad}$ ,  $\epsilon_{n}=2.5 \ \mu\text{m}$ , Q'=20, I<sub>MO</sub>=40 A 60.33 60.32 60.32 60.32 960.32





### **Reducing Chromaticity Q'=15**

 $I_{\rm MO} = -20 \ A$ 

Min DA HL-LHC v1.3, Injection, N<sub>b</sub>=2.2 × 10<sup>11</sup> ppb,  $\beta^*_{\rm IP1/5}$ =6 m,  $\beta^*_{\rm IP2/8}$ =10 m  $\phi_{\rm IP1/5}/2$ =295 µrad,  $\phi_{\rm IP2/8}/2$ =170 µrad,  $\epsilon_{\rm n}$ =2.5 µm, Q'=15, I<sub>MO</sub>=-20 A



Min DA HL-LHC v1.3, Injection, N<sub>b</sub>= $2.2 \times 10^{11}$  ppb,  $\beta_{\text{IP1/5}}^*=6$  m,  $\beta_{\text{IP2/8}}^*=10$  m  $\phi_{\text{IP1/5}}/2=295 \ \mu\text{rad}$ ,  $\phi_{\text{IP2/8}}/2=170 \ \mu\text{rad}$ ,  $\epsilon_n=2.5 \ \mu\text{m}$ , Q'=15, I<sub>MO</sub>=-40 A

 $I_{MO} = -40 A$ 



Min DA HL-LHC v1.3, Injection, N<sub>b</sub>=2.2 × 10<sup>11</sup> ppb,  $\beta^*_{IP1/5}=6$  m,  $\beta^*_{IP2/8}=10$  m  $\phi_{IP1/5}/2=295 \mu$ rad,  $\phi_{IP2/8}/2=170 \mu$ rad,  $\epsilon_n=2.5 \mu$ m, Q'=15, I<sub>MO</sub>=20 A





## **Octupoles vs Chromaticity (I)**

Min DA HL-LHC v1.3, Injection, N<sub>b</sub>= $2.3 \times 10^{11}$  ppb,  $\beta_{\text{IP1/5}}^*=6$  m,  $\beta_{\text{IP2/8}}^*=10$  m  $\phi_{\text{IP1/5}}/2=295 \ \mu\text{rad}, \ \phi_{\text{IP2/8}}/2=170 \ \mu\text{rad}, \ \epsilon_{n}=2.5 \ \mu\text{m}, \ (Q_X, Q_Y)=(62.295, 60.300)$ 



