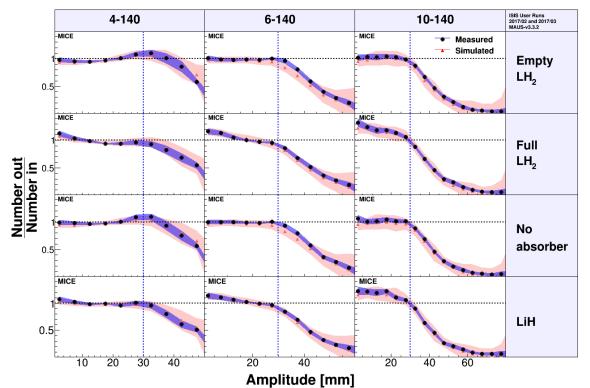
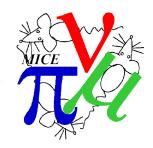
Introduction

C. Rogers, ISIS Intense Beams Group Rutherford Appleton Laboratory

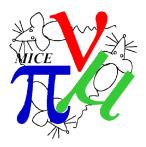
Reminder – Publication plan

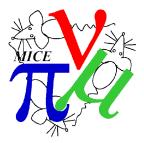

		12-j un-19	v16		
Title	Contact	Target date		Comments	Target
		Preliminary	Final	Jan-19	joumal
Phase-space density/ emittance evolution; rapid communication	C Rogers	Apr18 w/s	Apr19	4th referees meeting before around CM53 (21, 22Feb19, RAL)	Nature
Measurement of multiple Coulomb scattering of muons in lithium hydride	J. Nugent	Jun18; CM51	Apr19	Unfolding issues; perhaps resolved; CM53, 21,22Feb19, RAL	Euro Phys C? PRAB?
Performance of the MICE diagnostic systems	P. Franchini	Feb19; CM53		Almost complete draft	
Phase-space density/emittance evolution review paper	C. Hunt	TBD		Full analysis chain in place.	
Phase-space density/ KDE/ 6D-emittance evolution	C. Brown	TBD		Thesis published on initial analysis; taken over by CBrown	
Measurement of multiple Coulomb scattering of muons in LH2	J. Nugent	TBD		Awaits completion of LiH paper	
Field-on measurement of multiple Coulomb scattering	A. Young	TBD		Analysis underway	


- Where do the priorities lie?
- Where should we focus our remaining resource
 - Discuss this afternoon

Emittance Evolution

First observation paper




- Paper now at final reading please read and comment!
 - http://micewww.pp.rl.ac.uk/projects/analysis/wiki/First_demonstration_of_ionization_cooling_using_ the_Muon_Ionization_Cooling_Experiment_Draft_2
 - Note the plot shown here is now updated with full MC statistics
- Discuss
 - Next steps
 - Delivering the remaining analyses

Detailed emittance evolution

- Handover from Chris Hunt \rightarrow Paolo and Paul Jurj
- Scope of the paper is huge
- Some new aspects to the analysis may arise
- Current plan is to split by flip vs non-flip
 - Flip \rightarrow similar analysis to the "first observation" paper
 - Non-flip
 - study angular momentum
 - may choose eigenmode analysis
- Jobs
 - Systematic errors @ 2 T, 3 T and 140 240 MeV/c
 - Detector inefficiency/resolution corrections @ 2 T, 3 T and 140 – 240 MeV/c
 - PID esp at 200, 240 MeV/c
 - MC generation and analysis
 - Beam subsampling
 - Improved understanding of momentum scale
 - Reconstruction in full field maps
 - Dealing with problems

Wedge analysis

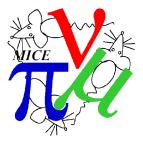
- Getting to grips with the analysis
 - Beam weighting/sampling
 - Phase space density or equivalent analysis
- Can we crystallise this into a full analysis loop
 - Sample selection
 - Detector resolution and efficiency
 - Systematic and Statistical uncertainties
 - Result
- Note this is only the second time 6D emittance, including correlations, has been reconstructed
 - We may have higher resolution, TBD

Scattering Analysis

Field-off scattering (Nugent/Gavrik Probability per 2.61 mrad $_{-0}^{-1}$ MICE ISIS cycle 2015/04 1 iH, 200, MAUS v3.1.2 MC Truth DPL, Deconvolved MC Recon INIORROW 10^{-3} 0.02 0.0 $\Delta \theta_x$ (mrad) (rac -0.04-0.02 0 0.02 -0.06

- Still rumblings of misalignment issues
 - Possible bias in Kalman reconstruction in data but not MC
 - Slides later this afternoon

Field-on scattering

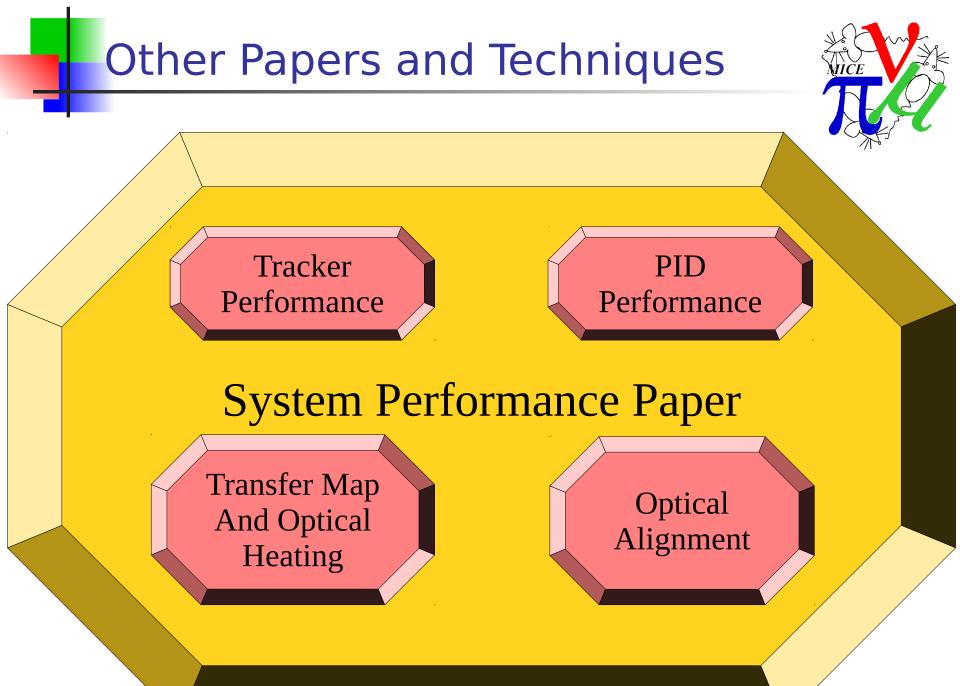


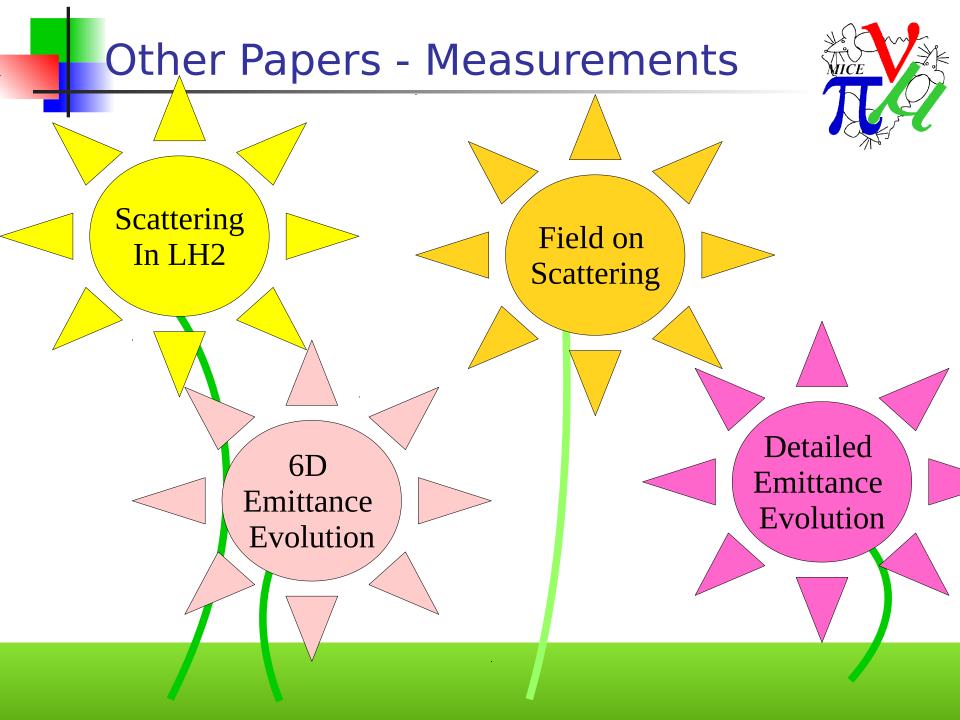
- Should allow larger angles to be measured
- Can we move to a convolution or deconvolution analysis?
 - Sample selection
 - Detector resolution and efficiency
 - Systematic and Statistical uncertainties
 - Results

System Performance Paper

System performance paper

- Progress in cutting down on the number of plots
- Need to plug away at the sub-analyses
 - Make sure that everything presented is self-consistent and shows the experiment in its best light


Energy loss analysis



- Most complicated "system performance" analysis
 - Looking for agreement between data and MC
 - Looking at effects like hydrogen absorber thickness?
- May come in too late for system performance paper
 - Potentially can go in with emittance analysis
 - Probably not enough for standalone paper

Optical alignment and aberration

- Understanding the alignment of the optical system is important
 - Demonstrate understanding of the system
 - Untangle issues e.g. momentum inconsistencies
 - Prerequisite to understanding the aberrations
- Alignment algorithm c/o Chris Hunt
 - Other concepts by Chris Rogers, YingPeng
- Understanding of the aberrations valuable theory
 - First particle-by-particle measurement of transfer map/higher order terms?
 - Beamlet analyses do exist...
- Where does this sit in the priority list

