Review of results using heavy ion collisions at CMS ### Throwing a bullet through an apple... Why? - To probe **cold** QCD matter - Collisions of unequal species (proton-lead) @ LHC revealed surprises - signs reminiscent of a quark-gluon plasma (QGP) - interest exploded (the 5th most cited CMS paper in PLB!) pp - Establish the baseline pA - Control initial state effects → can only alter incoming wavefunction #### Throwing a bullet through an apple... Why? 3 - To probe **cold** QCD matter - Collisions of unequal species (proton-lead) @ LHC revealed surprises - signs reminiscent of a quark-gluon plasma (QGP) - interest exploded (the 5th most cited CMS paper in PLB!) - Are pp and pA collisions AA alike? - Complementary mechanism(s) for long-range correlations? - At what level we understand QGP properties at the end? pp - Establish the baseline pA - Control initial state effects → can only alter incoming wavefunction 2013) 795 adron elations bciated #### Studies with heavy ion collisions @ CMS - Toolbox to infer from heavy ion and their 'reference' collisions: - Hard probes and photon-induced processes - Nuclear PDFs, gluon saturation, BSM physics, etc. - Jet modifications - In-medium parton energy loss and medium response - Heavy quark dynamics - Hadronization and long-range correlations - New probes accessible with high-luminosity data samples - Toolbox to infer from heavy ion and their 'reference' collisions: - Hard probes and photon-induced processes - Nuclear PDFs, gluon saturation, BSM physics, etc. - Jet modifications - In-medium parton energy loss and medium response - Heavy quark dynamics - Hadronization and long-range correlations - New probes - accessible with high-luminosity data samples #### Surpassing the baseline luminosity goals - LHC collided more types of beam, than originally foreseen, with better performance - In practice, we've come close to the "HL-LHC" performance with PbPb and pPb collisions - In 2018 the peak luminosity at IP1/5 reached ×6 the design without magnet quenches - Opens up further opportunities for high-density QCD studies - For probes **not accessible** so far due to lower luminosity or energy - \blacksquare All 4 experiments participate \rightarrow complementary phase space regions, cross checks #### Studies with heavy ion collisions @ CMS - Extended experimental toolbox to infer from heavy ion and their 'reference' collisions: - Hard probes and photon-induced processes - Jet modifications - Heavy quark dynamics - New probes Dijet event (pPb) - Stringent constraints with CMS dijet events - Data consistent with NLO pQCD predictions with nuclear PDFs (EPPS16) - Enhanced **suppression** at forward y - Significant reduction in EPPS16 uncertainties after reweighting 9 - Stringent constraints with CMS dijet events - Data consistent with NLO pQCD predictions with nuclear PDFs (EPPS16) - Enhanced suppression at forward y - Significant reduction in EPPS16 uncertainties after reweighting - Complimentary constraints using **W bosons** and **top quarks** #### Exclusive vector meson photoproduction in pPb10 - Idea: Imaging proton using ions as a photon source - Probe gluon distributions at low $x \approx (M_{VM}/W_{\gamma p})^2$ - \square $\Upsilon(1S)$ differential in y, p_T^2 and as a function of $W_{\gamma p}$ - Consistent with - b slope parameters at other center-of-mass energies - various models of the low-x gluon behavior - exponent from HERA and LHCb EPJC **79** (2019) 277 #### Exclusive vector meson photoproduction in pPb11 - First measurement using $\rho(770) \to \pi^+\pi^-$ exclusive UPC events - About 20K candidates from unfolded $M_{\pi^+\pi^-}$ - Consistent with those at HERA - indeed ions act as a source of quasi-real photons - Data (CMS and lower energy) agree with theory-inspired fits EPJC **79** (2019) 702 ### Light-by-light scattering - Challenging to measure owing to tiny cross section $O(\alpha^4)$ - ☑ Optimized EGM reconstruction for E_T < 10 GeV </p> - Measured with significance at 4σ level - Limits on coupling of axion-like particles to photons (or hypercharge) - **Best** exclusion limits over $m_a = 5-50 (5-10) \text{ GeV}$ Phys. Lett. B **797** (2019) 134826 ### Studies with heavy ion collisions @ CMS - Extended experimental toolbox to infer from heavy ion and their 'reference' collisions: - Hard probes and photon-induced processes - Jet modifications - Heavy quark dynamics - New probes #### Back-to-back dijet (PbPb) γ +jet (PbPb) #### Jet quenching - Jets are tomographic probes of the QGP - We characteristically measure - Changes in the dijet p_T balance for the most central (head-on collision) events - Reshuffling of energy in and out of jet cone in PbPb compared to pp events - Energy of partons is lost ('quenched') in QGP - Experimentally seen as R_{AA} modifications - increases for p_T>10 GeV; independent of flavor - Significantly better precision with HL-LHC CMS PAS-FTR-17-002 (also in arXiv: 1812.06772) #### Jet R_{AA}: the first large radius scan - New phase space - ☑ Competing effects for wide jets 🥞 - Constraints on models CMS PAS-HIN-18-014 ### Jet shapes and fragmentation with γ +jet events 17 - Initial parton energy better constrained by γ p_T (quark-enriched jets) - Jet shape - Jets are wider in PbPb than pp - Jet fragmentation function - Indication of medium-induced modifications Photon-tagged jets $\xi_{\rm T}^{\gamma} = -\ln(p_{\rm T}^{\rm h}/E_{\gamma})$ Phys. Rev. Lett. 122 (2019) 152001 Phys. Rev. Lett. **121** (2018) 242301 #### Jet quenching in smaller systems? - Crucial to understand the minimum requirement(s) for jet quenching - Final state effect in high multiplicity pPb - No suppression observed in pPb collisions for p_T > 2 GeV - Use smaller ions - Charged particle R_{AA} simply scales with initial 'geometry' (N_{part}) #### Jet charge in PbPb vs pp - Extract quark, gluon fractions from a jet charge observable - sensitive to the charge of the initiating parton - using templates from PYTHIA 8 - No modification of jet charge distribution in PbPb - consistent fractions with pp CMS PAS HIN-18-018 # Studies with heavy ion collisions @ CMS - Extended experimental toolbox to infer from heavy ion and their 'reference' collisions: - Hard probes and photon-induced processes - Jet modifications - Heavy quark dynamics - New probes $\Upsilon \rightarrow \mu \mu \ (PbPb)$ # Quenching depends on parton shower and mass? - Study parton showering and particle composition in the large-angle radiation - b-jet shapes in pp - Flavor-dependence in parton fragmentation - Radial profile of D⁰ mesons in jets - Charm quark diffusion with respect to the jet axis CMS PAS-HIN-18-020 CMS *Preliminary* pp 27.4 pb⁻¹ (5.02 TeV) iets #### Fourier decomposition of the projected $\Delta \phi$ Azimuthal correlations of particle pairs are decomposed via Fourier expansion: $$\frac{1}{N_{\rm trig}}\frac{dN^{\rm pair}}{d\Delta\phi} = \frac{N_{assoc}}{2\pi}\left[1 + \sum_{n} 2V_{n\Delta}\cos(n\Delta\phi)\right]$$ - single-particle azimuthal anisotropy Fourier coefficients measured as $v_n = \sqrt{v_{n\Delta}}$ (n > 1) - \square In hydrodynamic models v_2 and v_3 referred to as "elliptic" and "triangular" flow and related to the - initial collision geometry and its fluctuations A fluid that retains its QCD asymptotic freedom character! - Multidifferential in p_T, |y|, and centrality - v_2 , v_3 as expected from collision geometry - Search for strong EM fields effects - **no** sign of rapidity dependence of Δv_2 (D₀–D₀) #### CMS PAS HIN-19-008 #### Prompt and nonpromot D⁰ v₂ in pp and pPb - First measurement with high-multiplicity events in pp - $v_2 \neq 0$; close to the v_2 of light flavors - Puzzle on heavy quark collectivity in small systems - Open charm (prompt D_0) similar to hidden charm (prompt J/ψ) - Beauty (nonprompt D₀) consistent with 0 - smaller than prompt D⁰ at low p_T CMS PAS HIN-19-009 - Flow of bottomonia in PbPb - Precise $\Upsilon(1S)$ v_2 consistent with 0 - First $\Upsilon(2S)$ v₂ measurement consistent with 0 too - in contrast to larger $J/\psi v_2$ - Sequential suppression of Υ family - stronger in PbPb than pPb ### Studies with heavy ion collisions @ CMS - Extended experimental toolbox to infer from heavy ion and their 'reference' collisions: - Hard probes and photon-induced processes - Jet modifications - Heavy quark dynamics - New probes $$t\bar{t} \rightarrow W(\mu\nu_{\mu})bW(e\nu_{e})b$$ (pPb) $$t\bar{t} \to W(\mu\nu_{\mu})bW(e\nu_{e})b$$ (PbPb) J/ψ #### Evidence of X (3872) production in PbPb - X(3872) (or $\chi_{c1}(3872)$): Observed by BELLE (2003), its internal structure is still under debate μ^+ - extended, compact four-quark or mixed molecule-charmonium state? - Production in QGP probes its structure, e.g., coalescence models - \square Measured with significance at 4σ level - X(3872) to $\sqrt{(2S)}$ ratio enhancement in PbPb? 40 50 60 70 20 30 D #### Evidence of tt cross section in PbPb - First experimental evidence (4σ level) of the top quark in nucleus-nucleus collisions - using leptons only and leptons+b jets - It establishes a **new tool** for probing nPDFs as well as the QGP properties CMS PAS HIN-19-001 #### Extending the LHC HI program & CMS LS3 upgrades - Runs 3+4: main **goal** of >10/nb PbPb - focus on rare triggers - even larger minimum-bias event sample - > 6 kHz at HLT in Run 3, goal to increase for Run 4 - ✓ Major Phase-2 upgrades for HL-LHC (2026+) - Extension of tracker (muon systems) acceptance from $|\eta|$ < 2.5 to < 4.0 (3.0), etc. - Precise timing detectors for pileup rejection - byproduct TOF PID - Radiation-hard zero degree calorimeter (2021+) - Can also be used in collisions with lighter ions, e.g., pO/OO #### CERN-LHCC-2017-027 #### Outlook: General goals in HL-LHC & beyond - **Parton densities** in broad kinematic range and search for **saturation** - Macroscopic long-wavelength QGP properties with unprecedented precision - Collectivity across colliding systems - Microscopic parton dynamics underlying QGP properties # Key characteristics of the latest fits of nPDFs (in chronological order from left to right) arXiv:1704.04036 | | EPS09 | DSSZ12 | ка15 | NCTEQ15 | EPPS 16 | |---|--|-----------------|------------------------|---|---------------| | Order in α_s | LO & NLO | NLO | (NNLO) | NLO | NLO | | Neutral current DIS ℓ +A/ ℓ +d | ✓ | ✓ | | ✓ | ✓ | | Drell-Yan dilepton p+A/p+d | ✓ | ✓ | ✓ | ✓ | ✓ | | RHIC pions d+Au/p+p | ✓ | ✓ | | ✓ | ✓ | | Neutrino-nucleus DIS | | ✓ | He | ssian matrix | ✓ | | Drell-Yan dilepton π + A | | 0. | - | | √ | | LHC p+Pb jet data | $\chi^2_{\mathrm{global}} \approx \chi^2_0 + \sum_{i,j}$ | $(a_i - a_i^0)$ | H_{ij} $(a_j - a_j)$ | $\sum_{j=0}^{0} 1 = \chi_0^2 + \sum_{i=0}^{\infty} z_i^2$ | √ | | LHC p+Pb W, Z data | | | | | ✓ | | arXiv:1704.04036 | | Parameter var | ations | | | | Q cut in DIS | 1.3 GeV | 1 GeV | 1 GeV | 2 GeV | 1.3 GeV | | datapoints | 929 | 1579 | 1479 | 708 | 1811 | | free parameters | 15 | 25 | 16 | 17 | 20 | | error analysis | Hessian | Hessian | Hessian | Hessian | Hessian | | error analysis 0% CL defined by the global error tolerance $\Delta\chi^2$ | 50 | 30 | not given | 35 | 52 | | Free proton baseline PDFs | стеоб.1 | мѕтw2008 | jr09 | стеобм-like | ст14NLO | | Heavy-quark effects | | ✓ | | ✓ | ✓ | | Flavor separation | | | | some | ✓ | | Reference | [JHEP 0904 065] | [PR D85 074028] | [PR D93, 014026] | [PR D93 085037] | [EPJ C77 163] | # As compared to the PDF fitting landscape Ubiali, DIS2017 | April 2017 | NNPDF3.0 | MMHT2014 | CT14 | HERAPDF2.0 | CJ15 | ABMP16 | |------------------|-------------------------------|--------------------------|---------------------------|-------------------------|-------------------------|-------------------------| | Fixed Target DIS | V | V | V | x | V | V | | JLAB | × | x | × | x | ✓ | × | | HERA I+II | V | ✓ | V | ✓ | ✓ | ~ | | HERA jets | × | ✓ | × | x | × | × | | Fixed Target DY | V | ✓ | ~ | x | ✓ | ~ | | Tevatron W,Z | V | ✓ | ✓ | X | ✓ | ~ | | Tevatron jets | V | ✓ | ✓ | X | ✓ | × | | LHC jets | V | ✓ | ~ | x | × | × | | LHC vector boson | V | ✓ | ~ | x | × | V | | LHC top | ✓ | × | X | X | X | ✓ | | Stat. treatment | Monte Carlo | Hessian
Δχ² dynamical | Hessian
Δχ² dynamical | Hessian
Δχ²=1 | Hessian
Δχ²=1.645 | Hessian
Δχ²=1 | | Parametrization | Neural Networks
(259 pars) | Chebyshev
(37 pars) | Bernstein
(30-35 pars) | Polynomial
(14 pars) | Polynomial
(24 pars) | Polynomial
(15 pars) | | HQ scheme | FONLL | TR' | ACOT-χ | TR' | ACOT-χ | FFN (+BMST) | | Order | NLO/NNLO | NLO/NNLO | NLO/NNLO | NLO/NNLO | NLO | NLO/NNLO | #### Signal separation: measuring tt with leptons only - Use the kinematics of the two leading- p_T leptons to train a BDT - $p_{\mathrm{T}}(\ell_1)$, the p_{T} of the highest- p_{T} lepton, - A_{p_T} , the asymmetry in the lepton- p_T 's, namely $\frac{p_T(\ell_1)-p_T(\ell_2)}{p_T(\ell_1)+p_T(\ell_2)}$, - $p_{\rm T}(\ell\ell)$, the $p_{\rm T}$ of the dilepton system, - $|\eta(\ell\ell)|$, the absolute η of the dilepton system, - $|\Delta\phi(\ell\ell)|$, the absolute value of the separation in ϕ of the two leptons, and - $\Sigma |\eta_i|$, the sum of the absolute η 's of the leptons. #### A nice heuristic idea for a yocto-chronometer! Knowing the energy loss, it is possible to build the density evolution profile of the medium! #### BSM searches with heavy ion collisions at the LHC Submitted as input to the update of the European Particle Physics Strategy (EPPS) arXiv: 1812.07688 | Production mode | BSM particle/interaction | Remarks | | | |-------------------|--|--|--|--| | Ultraperipheral | Axion-like particles Radion Born-Infeld QED Non-commutative interactions | $\gamma \gamma \to a, m_a \approx 0.5100\text{GeV}$
$\gamma \gamma \to \phi, m_\phi \approx 0.5100\text{GeV}$
via $\gamma \gamma \to \gamma \gamma$ anomalies
via $\gamma \gamma \to \gamma \gamma$ anomalies | | | | Schwinger process | Magnetic monopole | Only viable in HI collisions | | | | Hard scattering | Dark photon Long-lived particles (heavy ν) | $m_{A'} \lesssim 1 \text{GeV}$, advanced particle ID $m_{\text{LLP}} \lesssim 10 \text{GeV}$, improved vertexing | | | | Thermal QCD | Sexaquarks | DM candidate | | | Table 1: Examples of new-physics particles and interactions accessible in searches with HI collisions at the LHC, listed by production mechanism. Indicative competitive mass ranges and/or the associated measurement advantages compared to the *pp* running mode are given. #### Also not exhaustive list • e.g, tau g-2 using LHC heavy ion collisions in arXiv: 1908.05180