## Review of results on forward physics and diffraction by CMS

**Cristian Baldenegro** 

On behalf of the CMS Collaboration

University of Kansas



Workshop on Forward Physics & QCD November 18th - November 21st 2019, Guanajuato, Mexico

### Introduction

- Quantum chromodynamics (QCD), very rich and successful theory of strong interactions!
- Precise understanding of perturbative and non-perturbative QCD necessary for:
  - constraining parton distribution functions in special corners in x and Q<sup>2</sup>
  - testing pQCD in unexplored regions of phase-space
  - modeling soft QCD physics
  - ▶ all above interesting in their own right- → better SM measurements and searches for physics beyond SM
- We present a summary of recent results by the CMS Collaboration on:
  - Measurement of energy density as a function of pseudorapidity in proton-proton collisions at \sqrt{s} = 13 TeV, Eur. Phys. J. C 79 (2019) 391
  - Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at \sqrt{s} = 13 TeV, JHEP 07 (2018) 032
  - Measurement of charged particle spectra in minimum-bias events from proton-proton collisions at \sqrt{s} = 13 TeV, Eur.Phys.J. C78 (2018) no.9, 697
  - Measurement of inclusive very forward jet cross sections in proton-lead collisions at  $\sqrt{s_{NN}} = 5.02$  TeV, JHEP 05 (2019) 043
  - Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at  $\sqrt{s} = 7$  TeV, J. High Energy Phys. 08 (2016) 139
  - Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at \sqrt{s} = 7 TeV, Eur. Phys. J. C 78 (2018) 242
  - Measurement of exclusive Υ photoproduction from protons in pPb collisions at √s<sub>NN</sub> = 5.02 TeV, Eur. Phys. J. C 79 (2019) 277
  - Measurement of exclusive ρ<sup>0</sup>(770) photoproduction in ultraperipheral pPb collisions at √s<sub>NN</sub> = 5.02 TeV, Eur. Phys. J. C 79 (2019) 702

## Charged particle spectra in minimum-bias events at 13 TeV (I) **EPJC78(2018)no.9,697**





• Study charged particle densities for particles with  $p_T > 0.5$  GeV and  $|\eta| < 2.4$ 

#### **Event categories**

- Inelastic: At least one calorimeter tower with E > 5 GeV in 3 < |η| < 5;</li>
- Non-single diffractive (NSD): At least one calorimeter tower with *E* > 5 GeV in 3 < |η| < 5 in both sides;</li>
- Single-diffractive (SD): At least one calorimeter tower with E > 5 GeV in 3 < |η| < 5 in only one side;</li>
- Single-diffractive (exactly one-side)

## Charged particle spectra in minimum-bias events at 13 TeV (II)



PYTHIA8 w/ tunes MBR 4C and CUETP8M1 and EPOS-LHC show similar agreement with data;

Difficult to describe simultaneously the density in central and most forward regions

## Charged particle spectra in minimum-bias events at 13 TeV (III)



- PYTHIA8 w/ tune MBR 4C describes SD enriched samples better than tune CUETP8M1 and EPOS-LHC;
- Difficult to describe simultaneously the density most backward and most forward regions;

## Charged particle spectra in minimum-bias events at 13 TeV (IV)



- Difficult to describe leading p<sub>T</sub> distribution simultaneously at small-p<sub>T</sub> and large-p<sub>T</sub> (order 10 GeV);
- PYTHIA w/ tune CUETP8M1 gives reasonable description across selections and leading p<sub>T</sub> spectrum;
- PYTHIA8 MBR 4C overestimates data by 10-50% for different selections around leading p<sub>T</sub> of 10 GeV;
- EPOS-LHC describes data reasonably well for inelastic and NSD selection, but underestimates data for the SD selection by a factor of ~2.

# Underlying event in inclusive Z boson in pp collisions at 13 TeV (I) **JHEP 07 (2018) 032**

- Underlying event (UE): Activity not attributed to hard energy scales: multiparton interactions (MPI), proton remnants interactions.
- Experimental strategy: study particle activity relative to a clean hard scattering probe (Z → μ<sup>+</sup>μ<sup>−</sup> → Not sensitive to QCD final state radiation).
- Leading and subleading muon with  $p_T^{\mu} > 10$  and 20 GeV,  $|\eta^{\mu}| < 2.4$  and 81  $< m_{\mu\mu} < 101$  GeV.
- Study charged particle activity relative to μ<sup>+</sup>μ<sup>-</sup> system.
- One can study the UE in three azimuthal angle regions:
  - Towards region (|Δφ<sup>μμ,ch</sup>| < 60°) and away region (|Δφ<sup>μμ,ch</sup>| > 120°); dominated by the μ<sup>+</sup>μ<sup>-</sup> system and hadronic recoil;
  - Transverse region (60° < |Δφ<sup>μμ,ch</sup>| < 120°): most sensitive to UE activity.</p>



### Underlying event in inclusive Z boson in pp collisions at 13 TeV (II)

Away



- Slow increase of activity in the transverse and towards regions at higher p<sub>T</sub>; sharp increase of activity in the away region (recoiling hadronic activity):
- Similar activities in the 3 regions; different behaviors due to varying initial-state radiation activity.

### Underlying event in inclusive Z boson in pp collisions at 13 TeV (III)

Away Towards Transverse  $pp \to Z + X \to \mu^* \mu^\cdot + X$  $pp \rightarrow Z + X \rightarrow \mu^*\mu^* + X$ 2.1 fb<sup>-1</sup> (13 TeV)  $pp \rightarrow Z + X \rightarrow \mu^{+}\mu^{-} + X$ 2.1 fb<sup>-1</sup> (13 TeV) 2.1 fb<sup>-1</sup> (13 TeV) v/rad] [GeV/rad] [GeV/rad] - Data CMS Data CMS - Doto CMS MADGRAPH + PYTHIA8 MADGRAPH + PYTHIA8 -- MADGRAPH + PYTHIA8 POWHEG + PYTHIA8 POWHEG + PYTHIA8 POWHEG + PYTHIA8 <u>[</u>g POWHEG + HERWIG++ POWHEG + HERWIG++ POWHEG + HERWIG++ 81 < M., (GeV) < 101 81 < M... (GeV) < 101 81 < M... (GeV) < 101 ~3 ς μ Charged particles Charged particles Charged particles  $1/[\Delta \eta \Delta(\Delta \phi)] \langle \Sigma p_{T}$ 3 < Zp (p\_ > 0.5 GeV, |n| < 2, away) > 0.5 GeV. Inl < 2. transverse) (p > 0.5 GeV, hl < 2, towards) 1/[\$\vec{2}{2}[(\vec{2}{2}\vec{2}{2}]^2]^2 )[(ملك)كرامك[/] ( det frite der ber -0.5 / Data / Data / Data Š Ň 0.9 Š 0 Total uncertainty Total uncertainty Total uncertaint 0.8 0. Data Data Data 1.2 1.1 MC/I MC/1 MC / Total uncertaint Total uncertaint Total uncertainty 0.8 Data Data Data 1.2 \*\*\*\*\*\*\*\*\*\* WC / WC / 0.9 0. ğ Total uncertainty Total uncertainty Total uncertainty 0.8 40 20 40 100 p\_{\_{\_{\_{\_{\_{\_}}}}}}^{\mu\mu}[GeV] p\_r^{\mu\mu}[GeV] p\_[GeV]

- POWHEG + HERWIG++ EE5C: overestimates by 10-15% in all regions;
- POWHEG + PYTHIA8 CUETP8M1: describes data within 5%;
- MADGRAPH + CUETP8M1: gives the best description across the 3 regions.

### Underlying event in inclusive Z boson in pp collisions at 13 TeV (IV)



- At low dimuon p<sup>μμ</sup><sub>T</sub> < 5 GeV, UE is dominated by MPI contributions. Expected to be similar in transverse and towards region.
- Average particle and energy densities vs.  $\sqrt{s}$  in the combined transverse and towards regions.
- Increase of MPI activity with energy is well reproduced by POWHEG + PYTHIA8 CUETP8M1 and overestimated by POWHEG + HERWIG++ EE5C.

## Intermezzo CASTOR: Very forward calorimeter at the LHC

### CASTOR

- Electromagnetic-hadronic calorimeter of CMS, covers  $-6.6 < \eta < -5.2$ ;
- 14.37 m w.r.t. interaction point;
- 16-fold segmentation in φ, 14-fold segmentation in z;
   no segmentation in η;
- Operational in heavy-ion collisions and in dedicated runs in pp collisions.
- Previous uses in the past:
  - Forward energy flow measurement;
  - Inelastic and diffractive cross section measurements;
  - Jet spectra;





## Energy density as function of $\eta$ in pp collisions at 13 TeV (I) **Eur. Phys. J. C 79 (2019) 391**

#### Analysis strategy

· Measure the average energy density per collision,

$$\frac{\mathrm{d}E}{\mathrm{d}\eta} = \frac{1}{N_{\mathrm{coll}} \cdot \Delta\eta} \sum_{i} E_{i}(\Delta\eta) \tag{1}$$

- Energy-densities are measured in 3.15  $<|\eta|<$  5.2 and with CASTOR  $-6.6<\eta<-5.2.$
- Sensitive to UE and projectile fragmentation.
- Comparison of tranverse energy densities with previous  $\sqrt{s} = 0.7$ , 7 TeV, for different shifted-intervals  $\eta' = \eta y_{\text{beam}}$ .



## Energy density as function of $\eta$ in pp collisions at 13 TeV (II)



- Good description of *dE*/*dη* by models in INEL and NSD-Enhanced event categories
- EPOS-LHC and QGSJETII.04 slightly underestimate measured energy densities in SD-enhanced category.



## Energy density as function of $\eta$ in pp collisions at 13 TeV (III)



- MPI necessary to describe forward energy densities in INEL and NSD-enhanced categories.
- Absence of MPI does not affect the PYTHIA8 predictions in the SD-enhanced category.
- Similar performance across PYTHIA8 tunes within exp. uncertainties.



## Comparison of measurements of transverse energy density $dE_T/d\eta'$ (IV)



## Intermezzo: Small-x limit of QCD



Figure from EIC white paper.

In high-energy limit of QCD,  $x \ll 1$  at fixed  $Q^2$ , resummation of log(1/x) to all orders in  $\alpha_s$  is necessary.

Linear evolution described by Balitsky-Fadin-Kuraev-Lipatov (**BFKL**) evolution equations.

At some point, parton recombination effects have to be taken into account  $\rightarrow$  non-linear evolution, described for example by Balitsky-Kovgechov (**BK**) evolution equation.

#### Difficult to observe small-x QCD effects!

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution effects, with parton emissions strongly ordered in  $k_r$ , describes evolution in most of phase-space covered by experiments.

## Inclusive forward jet cross section in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV (I) JHEP05(2019)043

Study inclusive jet cross section in forward region (CASTOR jets  $-6.6 < \eta < -5.2$ ) in proton-lead and lead-proton collisions. Jets have low- $p_T \gtrsim 5$  GeV.

Probes parton densities at  $x \sim 10^{-6}$ . Saturation scale enhanced by a factor of  $A^{1/3} \approx 6$  for proton-lead configuration.



## Forward inclusive jet cross section in p-Pb collisions (II)





- Large systematic uncertainties, dominated by jet energy scale and model dependence (unfolding).
- EPOS and HIJING describe spectrum shape reasonably well up to normalization, within uncertainties.

## Forward inclusive jet cross section in p-Pb collisions (III)



- Large cancellation of systematic uncertainties; model dependence dominates;
- Caveat: Pb+p and p+Pb are boosted w.r.t. each other;
- HIJING describes shape well, but is off by a factor of ~ 2 due to poor Pb+p description;
- EPOS and QGSJet2 are off in shape, with largest discrepancy at 2 TeV;

# Mueller-Navelet jets in pp collisions at $\sqrt{s} = 7$ TeV (I) **JHEP08(2016)139**



Azimuthal angle decorrelations  $\Delta \phi$  between the outermost two jets as function of  $\Delta y \equiv |y_{jet 1} - y_{jet 2}|$ .

At large  $\Delta y$ , angular decorrelations caused by parton emissions strongly ordered in rapidity  $y_1 \gg y_2 \gg \dots \gg y_{n-1} \gg y_n$ , as described by BFKL evolution.

The outermost jets have  $p_{T, jet} > 35$  GeV each, within |y| < 4.7.



Normalized differential cross section in  $\Delta \phi$ 

## Mueller-Navelet jets in pp collisions at $\sqrt{s} = 7$ TeV (II)



- BFKL at NLL calculations describe data at large Δy within uncertainties.
- HEJ+ARIADNE, based on LL BFKL amplitudes, underestimates data at large  $\Delta y$ .
- PYTHIA8, HERWIG++, SHERPA, based on LO DGLAP calculations, are able to describe data over wide range in Δy within uncertainties.
- POWHEG (NLO matrix elements) supplemented with PYTHIA6 or PYTHIA8 for parton-shower and hadronization
  effects underestimates or overestimates data at large Δy, respectively.

#### Mueller-Navelet jets in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ (III) Ratio of average of cosines $C_2/C_1 = \langle \cos(2[\pi - \Delta \phi]) \rangle / \langle \cos(\pi - \Delta \phi) \rangle$ versus $\Delta y$ .



- BFKL at NLL calculations describe data at large *△y* within uncertainties.
- HEJ+ARIADNE, based on LL BFKL amplitudes, describe data at large Δy within uncertainties.
- SHERPA overshoots data from medium to large Δy.
- PYTHIA8, HERWIG++, based on LO DGLAP calculations, are able to describe data over wide range in Δy within uncertainties.
- POWHEG (NLO matrix elements) supplemented with PYTHIA6 or PYTHIA8 for parton-shower and hadronization effects describes data at large Δy within uncertainties.

Cristian Baldenegro (U. of Kansas)

# Jet-gap-jet events in pp collisions at $\sqrt{s} =$ 7 TeV (I) EPJC 78 (2018) 242

Color-singlet exchange mechanism can be described in terms of BFKL pomeron exchange.

Each of the two jets has  $p_T > 40$  GeV,  $1.5 < |\eta_{iet}| < 4.7$ , and  $\eta_{iet 1} \cdot \eta_{iet 2} < 0$ .



Rapidity gap is defined as the absence of charged-particle tracks in  $|\eta| < 1$ .





Excess of events in charged-particle multiplicity distribution at  $N_{tracks} = 0 \rightarrow jet$ -gap-jet events!

## Jet-gap-jet events in pp collisions at $\sqrt{s} = 7$ TeV (II)

Fraction of jet-gap-jet events to inclusive dijet events (CSE fraction) versus  $p_{T, iet 2}$  and  $\Delta \eta_{ii}$ 



- BFKL-LL calculations underestimate the gap fraction value, without soft-rescattering effects taken into account.
- Predictions by Ekstedt-Enberg-Ingelman (EEI) based on BFKL calculations at NLL.
- Different treatments of survival probability: soft-color interaction (SCI), MPI, or constant survival probability factor.
- Difficult to describe all aspects of the measurement simultaneously!

## Jet-gap-jet events in pp collisions at $\sqrt{s} = 7$ TeV (III)



- Gap fraction decreases with increasing  $\sqrt{s}$ : 0.63 TeV  $\rightarrow$  1.8 TeV  $\rightarrow$  7 TeV.
- Interpreted in terms of larger soft-rescattering effects contributions with increasing \sqrt{s}.
- Measurement of jet-gap-jet events at 13 TeV under collaboration review.

## $\Upsilon$ photoproduction from protons in pPb collisions at $\sqrt{s}_{\it NN}=5.02$ TeV (I), Eur. Phys. J. C 79 (2019) 277

- Photoproduction of quarkonia offers a clean probe of gluon densities of the proton (At LO, σ ~ g<sup>2</sup>(x, Q<sup>2</sup>)).
- In particular, one can probe  $g(x, Q^2)$  at  $x_{Bj} = 10^{-4} 10^{-2}$  at  $Q^2 \sim m_{\Gamma}^2$ , potentially where saturation effects may play a role.



#### Analysis strategy

- Study  $\Upsilon(nS) \rightarrow \mu^+ \mu^-$  decays in UPCs.
- Measure differential cross sections  $d\sigma/dy_{\Upsilon}$  and  $d\sigma/dp_T^2$  and  $\sigma(\gamma p \to \Upsilon p)$  as a function of  $W_{\gamma p}$

## $\Upsilon$ photoproduction from protons in pPb collisions at $\sqrt{s}_{NN} = 5.02$ TeV (II)



- Photoproduction contributions ( $\gamma \gamma \rightarrow \mu^+ \mu^-, \gamma p \rightarrow \Upsilon p, \gamma Pb \rightarrow \Upsilon Pb$ ) are simulated with STARLIGHT generator.

## $\Upsilon$ photoproduction from protons in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (III)



- Extract a slope of b = 6.0 ± 2.1(stat) ± 0.3(syst) GeV<sup>-2</sup> with exp(−bp<sub>T</sub><sup>2</sup>) fit, in agreement with the value measured by ZEUS at lower masses b = 4.3<sup>±2</sup><sub>-1.3</sub> (stat)<sup>+0.5</sup>/<sub>-0.6</sub> (syst) GeV<sup>-2</sup>.
- Predictions by four different theoretical predictions:
  - Jones-Martin-Ryskin-Teubner (JMRT) model.
  - Factorized impact parameter saturation (fIPsat) model.
  - Iancu-Itakura-Munier (IIM) color-dipole formalism.
  - Impact parameter CGC model (bCGC).

 $\Upsilon$  photoproduction from protons in pPb collisions at  $\sqrt{s_{NN}} = 5.02$  TeV (IV)



- W<sub>γp</sub> is related to rapidity of Υ in lab frame via W<sup>2</sup><sub>γp</sub> = 2E<sub>p</sub>m<sub>Υ</sub> exp(±y), where E<sub>p</sub> = 4 TeV, computed in bins of ⟨y⟩
- Photoproduction cross section  $\sigma(\gamma p \rightarrow \Upsilon(1S)p)$  extracted from  $\frac{d\sigma}{dv}(pPb \rightarrow p\Upsilon(1S)Pb)$
- $\sqrt{s}_{NN} = 5.02$  TeV pPb results with CMS cover region unexplored by H1, ZEUS and LHCb results.
- A fit to the CMS data of the form  $A(W_{\gamma\rho}/400 \text{ GeV})^{\delta}$  yields  $\delta = 1.08 \pm 0.42$ , consistent with value by ZEUS  $\delta = 1.2 \pm 0.8$ .

# $ho(770)^0$ photoproduction from protons in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (I), EPJC79(2019) 702

Effective color-dipole size of  $\rho(770)^0$  meson is larger than with other vector mesons  $\rightarrow$  enhancement of parton saturation effects.

Measure production rates of pPb $\rightarrow$  p( $\rho$ (770)<sup>0</sup>  $\rightarrow \pi^{+}\pi^{-}$ )Pb.

 $p_{
m T} >$  0.4 (0.2) GeV for leading (subleading)  $\pi^{\pm}$  in  $|\eta| <$  2



Backgrounds: proton dissociation, resonant  $\rho$ (770)<sup>0</sup>, inclusive  $\pi^+\pi^-$ ,  $\rho^0$ (1700), and  $\omega$  meson production.

## $\rho$ (770)<sup>0</sup> photoproduction from protons in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (II),



• Good agreement of  $-t \approx p_{T,\pi^+\pi^-}^2$  between H1, ZEUS and CMS.

Shrinkage of diffractive peak with energy (Regge fit):

$$b = b_0 + 2\alpha' \ln(W/W_0)^2$$

Pomeron slope using CMS data:

CMS:  $\alpha' = 0.48 \pm 0.33$  (stat)  $\pm 0.12$ (syst) GeV<sup>-2</sup>

Consistent with the ZEUS-only value  $\alpha' = 0.23 \pm 0.15$  (stat)  $\pm 0.11$ (syst) GeV<sup>-2</sup>

pPb+Pbp 16.9 µb<sup>-1</sup> (5.02 TeV)  $\sigma_{\gamma p \rightarrow p(770)^0 p} [\mu b]$ CMS Fixed target ZEUS  $\cdots \alpha_1 W_{\gamma p}^{\delta_1} + \alpha_2 W_{\gamma p}^{\delta_2}$ ······ α **W**<sup>δ</sup>... 10 1 <sup>10<sup>2</sup></sup> W<sub>γp</sub> [GeV] 10 1

 $\rho$ (770)<sup>0</sup> photoproduction from protons in pPb collisions at  $\sqrt{s}_{NN}$  = 5.02 TeV (III),

- Power-law fit  $W_{\gamma p}^{\delta}$  yields  $\delta = 0.23 \pm 0.14$  (stat)  $\pm 0.04$  (syst).
- $\sqrt{s}_{NN} = 5.02$  TeV pPb results with CMS cover region unexplored by H1 and ZEUS results.
- Consistent with trend observed with HERA results.

### Summary

- The LHC keeps enlarging our access to unexplored phase space to study strong interactions;
- Recent measurements provide important inputs for Monte Carlo generator tuning and constraints on small-x gluon PDFs
- Probes of perturbative and non-perturbative QCD predictions include the results presented today:
  - Measurement of energy density as a function of pseudorapidity in proton-proton collisions at \sqrt{s} = 13 TeV, Eur. Phys. J. C 79 (2019) 391
  - Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at \sqrt{s} = 13 TeV, JHEP 07 (2018) 032
  - Measurement of charged particle spectra in minimum-bias events from proton-proton collisions at \sqrt{s} = 13 TeV, Eur.Phys.J. C78 (2018) no.9, 697
  - Measurement of inclusive very forward jet cross sections in proton-lead collisions at  $\sqrt{s}_{NN} = 5.02$  TeV, JHEP 05 (2019) 043
  - Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at  $\sqrt{s} = 7$  TeV, J. High Energy Phys. 08 (2016) 139
  - ► Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at √s = 7 TeV, Eur. Phys. J. C 78 (2018) 242
  - Measurement of exclusive Υ photoproduction from protons in pPb collisions at √s<sub>NN</sub> = 5.02 TeV, Eur. Phys. J. C 79 (2019) 277
  - Measurement of exclusive ρ<sup>0</sup>(770) photoproduction in ultraperipheral pPb collisions at √s<sub>NN</sub> = 5.02 TeV, Eur. Phys. J. C 79 (2019) 702
- See contributions by Georgios Krintiras, Michael Albrow, and future opportunities with detector upgrades by Andre Stahl and Margaret Lazarovits.