

Recent CMS+TOTEM Results on Exclusive Production, Diffraction and Light-by-Light Scattering

Michael Albrow, Fermilab On behalf of CMS & TOTEM

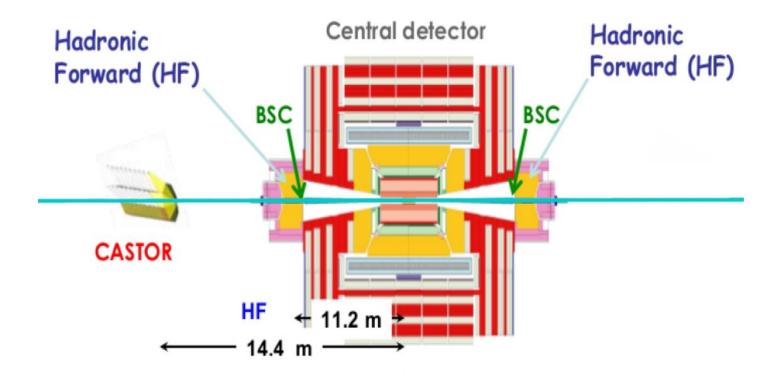
Forward Physics at LHC, EIC, Cosmic rays etc., Guanajuato, Mexico November 2019

Contents

Introduction

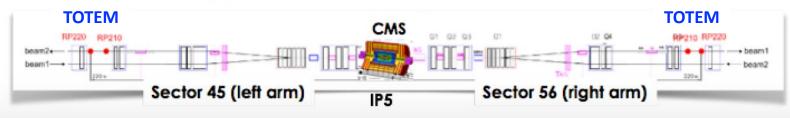
Central (semi-)exclusive $\pi^+ \pi^-$ production at $\forall s = 5, 7, \& 13 \text{ TeV}$

protons not detected, forward rapidity gaps
 (Double Pomeron Exchange – hadron spectroscopy, including elusive glueballs)


To come: $p + p \rightarrow p + X + p$ where X = exactly 2 or 4 hadrons

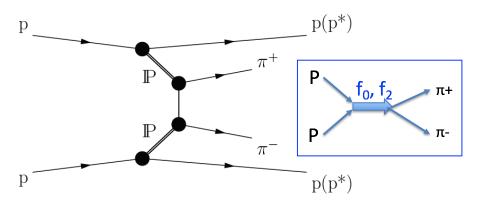
Diffractive dijets: $p + p \rightarrow p + JJ + anything$. Proton in TOTEM Roman pots, jets in CMS

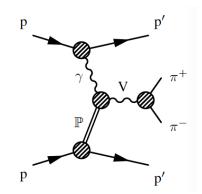
Light-by-light scattering in heavy-ion collisions $\gamma + \gamma \longrightarrow \gamma + \gamma$


Summary

Note: Physics with **Precision Proton Spectrometers (PPS)** not covered See talk by Christophe Royon.

Hadron Forward Calorimeter (HF) : 2.9 < $|\eta|$ < 5.2 CASTOR calorimeter: -6.6 < η < -5.2


TOTEM Roman Pots for proton tagging at ± 220 m from IP:


Exclusive and semi-exclusive π + π - production in pp collisions at $\forall s = 7$ TeV (paper submitted) and at $\forall s = 5.02$ and 13 TeV (in preparation)

Exclusive final state: $p + \pi^+ \pi^- + p$. Semi-exclusive allows dissociation p^* e.g. $p \rightarrow p \pi^+ \pi^-$ These studies do not detect protons, so dissociation is included, and all |t|, $\Delta \phi$ of protons

Double pomeron exchange Alsp K^+K^- , K^0_s K^0_s , K^*K^* , $\varphi\varphi$, $p-\overline{p}$, etc.

Photoproduction
Smaller cross section (EM)
One proton p' at very small |t|

Why interesting?

4-momentum transfer in **elastic scattering** carried by pomeron — **Strongly interacting color singlet** — **challenge to QCD as low Q**² = large distance, non-perturbative Meson spectroscopy not well understood, especially **non-{q-qbar} states like glueballs {gg}, {ggg}**

pp Collisions at $\sqrt{s} = 7$ TeV taken in 2010 at low luminosity

Mean number of inelastic collisions/bunch crossing $\mu \sim 1$

Trigger: only bunch-crossing from BPTX = bunch pick-ups : zero-bias (Highly prescaled - 33.2 million triggers) Integrated luminosity $L = 450 \mu b^{-1}$

Off-line selection:

Exactly 2 charged tracks with common vertex on beam-line Impact parameter track – beam line < 3.2 mm, |z_{vtx}| < 15 cm

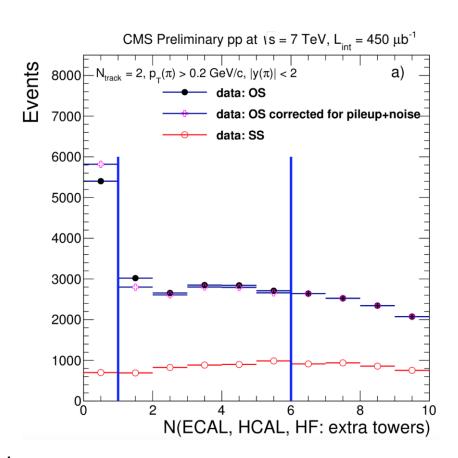
Only one vertex

Fiducial cut on tracks: $p_T > 0.2$ GeV/c and $|\eta| < 2$.

Number of events selected = 57.6 K

But most of these have activity in calorimeters which extend to $|\eta| = 4.9$ due to additional neutral particles and forward or low-p_⊤ charged particles

Then require: No activity in calorimeters above noise levels in $|\eta| < 4.9$ Levels vary from 0.52 GeV (EM Barrel) to 4 GeV (HF = Hadron Forward)


Excluding calorimeter towers hit by tracks, plot shows distribution of number of extra towers in calorimeters.

Clear excess in Q = 0 (+-) (OS) pairs at $N_{extra} = 0$ 5,402 events Not in Q = 2 (++, --) (SS) pairs, 700 events

N_{extra} > 2 distributions fit Negative Binomial Distribution (NBD) – extrapolate to estimate background under 'signal'.

'Signal' defined as [p or p*] + $[\pi^+ \pi^-]$ + [p or p*] where p* = all hadrons in blind region $|\eta| > 4.9$

Diffractive dissociation with $M(p^*)$ up to ~ 27 GeV included as not detected ('semi-exclusive')

Q: Are they all pions?

Q: Are they all pions?

Hadron identification only by ionization loss dE/dx in silicon strip trackers Example for illustration from higher statistics 13 TeV data, $N_{track} \le 4$ - not fully exclusive

At low momenta some separation, but even at p = 0.6 GeV/c π & K merge. Note that K/ π ratio ~ 10%.

In 7 TeV 2-track sample for $p_T < 0.7$ GeV 89.4% $\pi + \pi$ -, 2.5% K+K-, 0.1% $p\overline{p}$, 8% other

Since π efficiency/background changing, all tracks are given pion mass, plots include ~ 10% B/G

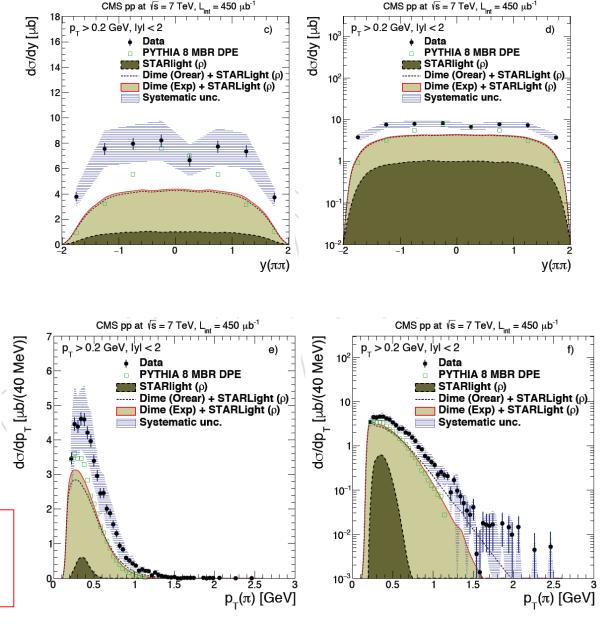
7 TeV final 2-track sample

Left plots: linear, Right :log

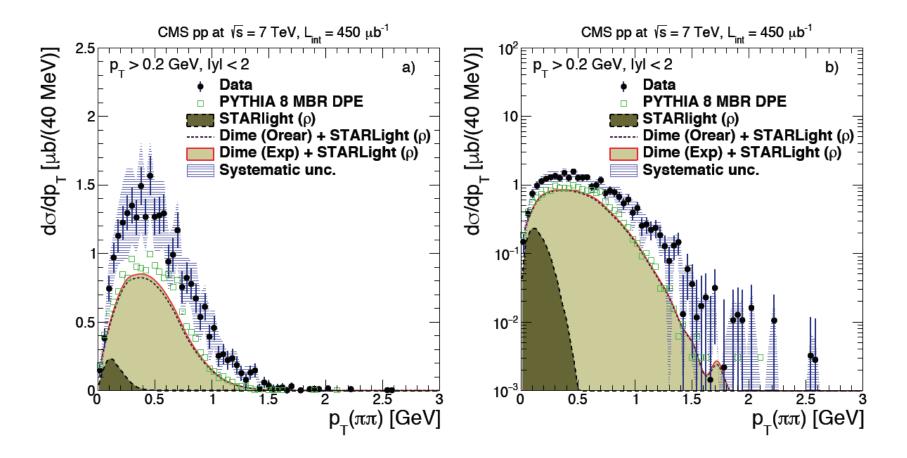
Comparison to event generators

+ GEANT4 detector simulation PYTHIA 8 MBR DPE

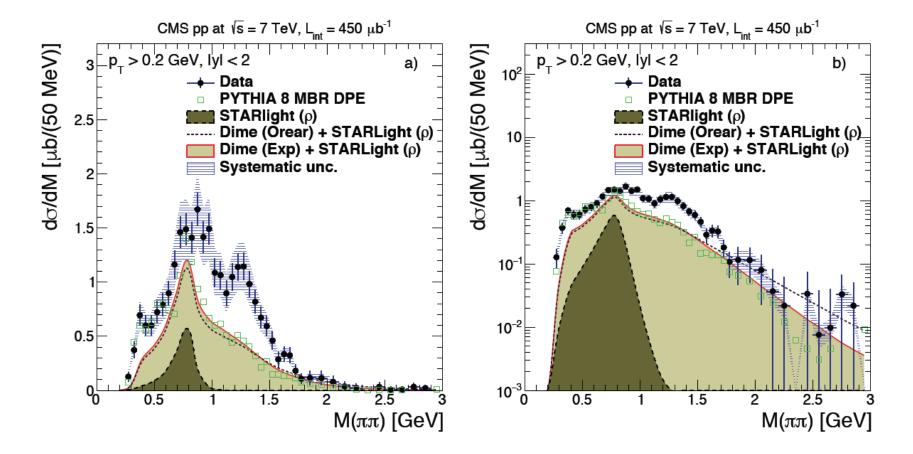
STARLIGHT (ρ – photoproduction)


Minor contributionDIME + STARLIGHT (2 F.F.)

True rapidity (assuming pions) of pair.


Drop at |y| = 2 is acceptance (tracks have |y| < 2)

Transverse momentum p_T of single pions


Data are higher than predictions but include p* dissociation, generators do not.

p_{τ} distribution of central π + π - pair : linear scale (Left) and log (Right)

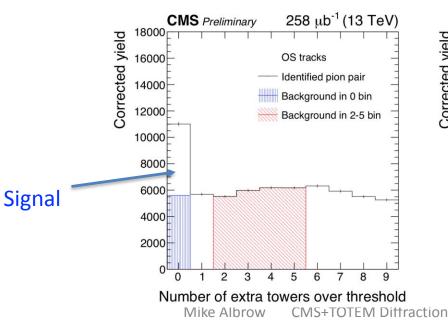
Phase-space rise from $p_T = 0$ (including that of forward p/p^*) Shapes in reasonable agreement with expectation. Photoproduction (STARLIGHT) only at small p_T

Differential cross sections as functions of $M(\pi+\pi-)$ [include ~10% non- $\pi\pi$] Integral is 26.5 ± 0.3(stat) ± 5.0(syst) ± 1.1 (lumi) μb. ~ 50% larger than models w/o p*

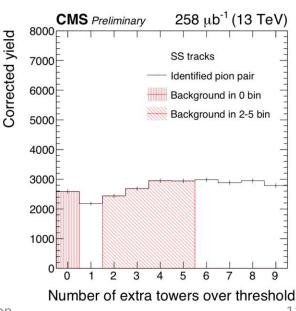
Compatible with some $\rho(770)$, drop at 1 GeV - $f_0(980)$ region & KK threshold), $f_2(1270)$ Small 'blip' at 350 MeV is compatible with $\phi \rightarrow K^+K^-$ with K given $m(\pi)$

Repeat GAP - $\pi^+ \pi^-$ - GAP study at $\sqrt{s} = 5.02$ and 13 TeV

As for 7 TeV analysis:


Exclusive final state: $p + \pi^+ \pi^- + p$. Semi-exclusive allows dissociation p^* e.g. $p \rightarrow p \pi^+ \pi^-$ These studies do not detect protons, so dissociation is included, and all |t| of protons Expect very little Vs - dependence

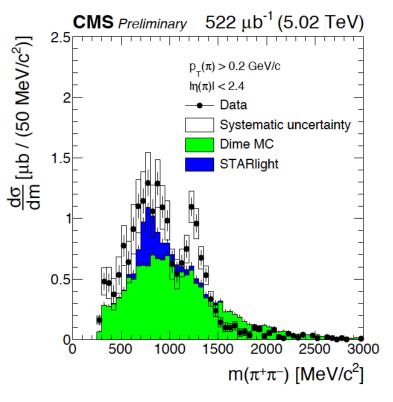
 $\sqrt{s} = 5.02$ TeV run was made for comparison with Pb-Pb run

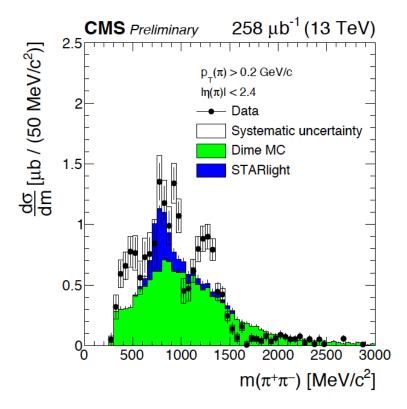

Conditions and selections similar but not identical.

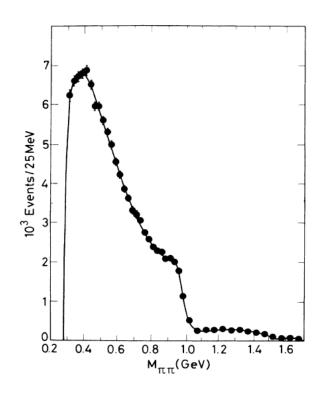
Calorimeter thresholds changed

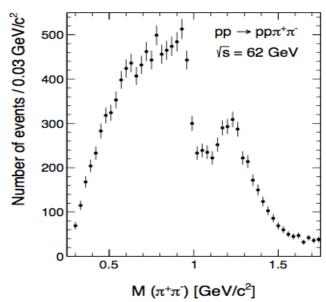
 $|\eta(\pi)|$ extended from 2.0 to 2.4. Opposite sign pairs

Same sign pairs




CMS PRELIMINARY


$$\begin{split} &\sigma_{\mathrm{pp}\to\mathrm{p'p'}\pi^+\pi^-}(\sqrt{s}=5.02\,\mathrm{TeV})=19.6\pm\,0.4(\mathrm{stat.})\pm3.3(\mathrm{syst.})\pm0.01(\mathrm{lumi.})\;\mu\mathrm{b},\\ &\sigma_{\mathrm{pp}\to\mathrm{p'p'}\pi^+\pi^-}(\sqrt{s}=13\,\mathrm{TeV})=19.0\pm\,0.6(\mathrm{stat.})\pm3.2(\mathrm{syst.})\pm0.01(\mathrm{lumi.})\;\mu\mathrm{b}. \end{split}$$


Spectra all show: Low mass bump*, including possible small ρ photoproduction signal, drop at 1 GeV/c² associated with $f_0(980)$, clear $f_2(1270)$ and tail to ~ 3 GeV/c² * Broad $f_0(500) = \sigma$ should contribute

Need: much higher statistics, and protons detected to select exclusive and t_1 , t_2 , $\Delta \phi$

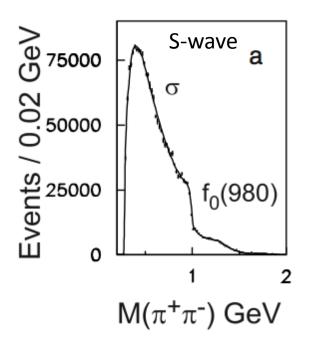
Other Experiments DPE $\rightarrow \pi + \pi$ -

Several expts. at lower \sqrt{s} E.g. two for comparison Intersecting Storage Rings (ISR) $\sqrt{s} = 63$ GeV

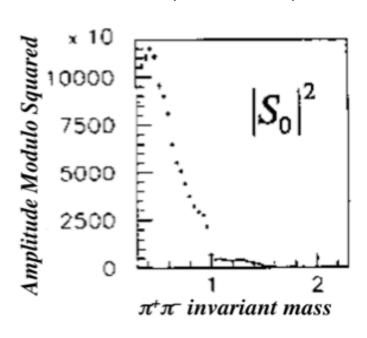
Axial Field Spectrometer (R807)

PL 133 B (1983) 268 & NP B 264 (1986) 154

Exactly two central π + π
2C constraint with 2 forward p's $x_F > 0.95$ p's non-colinear (UP*UP or DN*DN = = TT or BB for TOTEM)


-t = 0.01 - 0.06 GeV² |y($\pi\pi$)| < 1

Shown to be dominated by S-wave (J=0) - $f_0(500) = \sigma$ $f_0(980)$ as « cliff » and broad state ~ 1300 MeV


Split Field Magnet: Breakstone et al. Z.Phys.C **31** (1986) p.185 & ibid. **40** (1988) p.41 -t > 0.1 GeV² with e^{6t} distribution Also sharp $f_0(980)$ then $f_2(1270)$ dominant. Similar to GAP - $(\pi + \pi -)$ – GAP data (all |t|)

Why different? Low mass acceptance, but Small |t| and larger |t|? $J_z = 0$ rule at $t \rightarrow 0$ suppresses J = 2 states Other Experiments DPE $\rightarrow \pi + \pi$ -

WA102 (SPS FT 450 GeV/c)

E710 (Fermilab FT)

These were at lower (fixed target) energies \sqrt{s} , measured the protons and selected S-wave (J = 0) with phase-shift analysis.

 $f_2(1270)$ dominates in GAP- $\pi\pi$ -GAP data (all |t| - mostly |t| > 0.1

11/20/2019

Where are the glueballs?

Especially: Where is the lightest scalar glueball (vacuum-like)?

 $f_0(600)$? Very broad $\pi\pi$ resonance.

Not on pomeron trajectory (only J > 1) ... on a "daughter trajectory"?

Lattice QCD: around 1650 MeV +/- about 100 MeV

One widely studied scenario:

One widely studied scenario:

Two scalar-isoscalar quarkonia : $nn == (uu + dd)/\sqrt{2}$ and ss

Mix & give 3 states:

f0(1370), f0(1500), f0(1710)

T.Gutsche (PPNP 67 (2012) 380:

$$\begin{pmatrix}
1370 \\
1500 \\
1710
\end{pmatrix} = \begin{pmatrix}
0.75 & 0.60 & 0.26 \\
-0.59 & 0.80 & -0.14 \\
-0.29 & -0.15 & 0.95
\end{pmatrix} \begin{pmatrix}
nn \\
G \\
ss
\end{pmatrix}$$

On the other hand:

$$\begin{pmatrix}
1370 \\
1500 \\
1710
\end{pmatrix} = \begin{pmatrix}
0.75 & 0.60 & 0.26 \\
-0.59 & 0.80 & -0.14 \\
-0.29 & -0.15 & 0.95
\end{pmatrix} \begin{pmatrix}
nn \\
G \\
ss
\end{pmatrix}$$

$$\begin{pmatrix}
1370 \\
1500 \\
1710
\end{pmatrix} = \begin{pmatrix}
0.86 & 0.13 & -0.50 \\
0.43 & -0.61 & 0.61 \\
0.22 & 0.76 & 0.60
\end{pmatrix} \begin{pmatrix}
nn \\
ss \\
G
\end{pmatrix}$$

The situation is confusing! $f_0(1710) \rightarrow K+K- \gg \pi + \pi$ unlike glueball domination.

And at least one of these states may be an excited $q - \overline{q}$

Good high statistics DPE data with PWA (p's detected) & different channels should resolve.

Other (non-)production mechanisms e.g. $\gamma + \gamma \rightarrow X$ and $\gamma + IP \rightarrow Y$ should help, Radiative Y decay

Looking Forward: TOTEM + CMS Common Data taking

Special High- β * (90m) runs for TOTEM at \sqrt{s} = 13 TeV

TOTEM: Elastic scattering d σ /dt and total cross section $\sigma_{\rm T}$

Low pile-up: $\mu \sim 0.2$ collisions per bunch crossing.

Latest and best set in July 2018, 4 days, total integrated luminosity \sim 6 pb⁻¹ CMS detectors operated, selecting coincident events with minimal track activity. Analysis on-going of exclusive p + p \rightarrow p + X + p events, X = 2 or 4 charged tracks

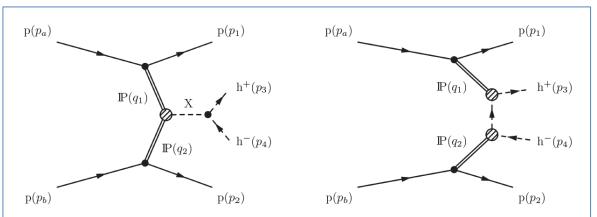
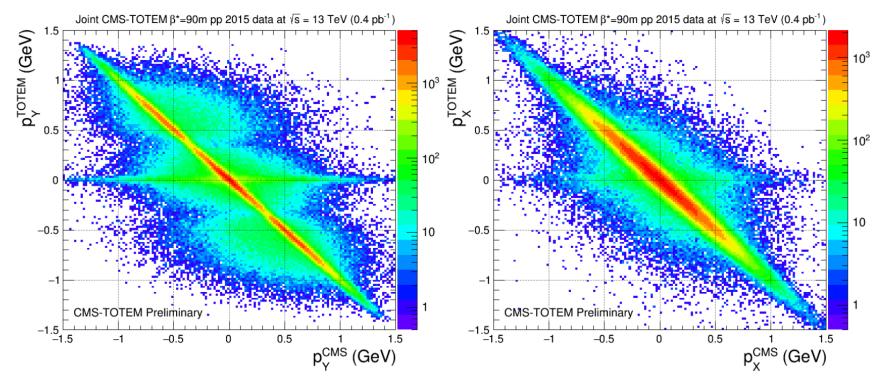
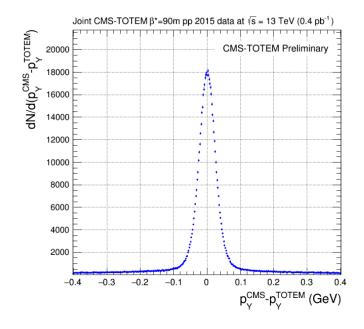
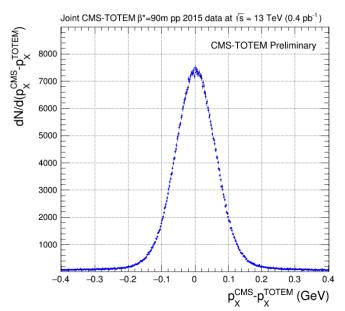
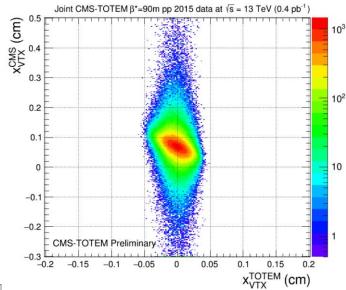



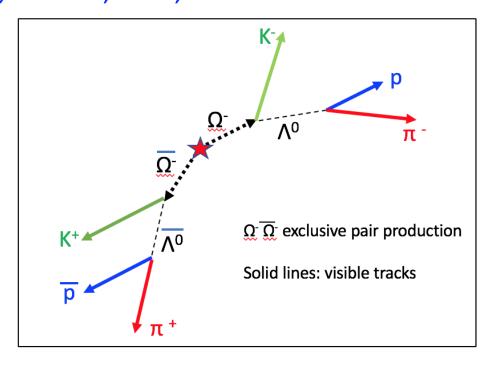
Figure 1: Diagrams of central exclusive production via double pomeron exchange depicting resonant (left) and continuum (right) contributions.


 $|t|_{min} \sim 0.05 \text{ GeV}^2$ Suppresses γ exchange


Data dominated by double pomeron exchange: continuum + resonances Quantum number filter: $I^G J^{PC} = 0^+ 0^{++}$ and $0^+ 2^{++}$ (Isospin = 0, J even) Long-standing puzzles in scalar mesons and glueball spectrum Selection of exclusive 2-track h⁺h⁻ events by p_x , p_y balance Total transverse momentum of 4 tracks $\Sigma p_T < \sim 100$ MeV/c Unlike Gap-X-Gap events can study dependence on protons' t_1 , t_2 , $\Delta \varphi$ -> Phase shift analysis to separate spectra of J = 0, 2, ... states

Transverse momenta p_{χ} and p_{χ} of the scattered protons detected in Roman Pots (TOTEM) vs. transverse momenta of two pion tracks measured in the central tracking system (CMS) for the $pp \to pp\pi^{\dagger}\pi^{\dagger}$ production. Events on the diagonal correspond to the exclusive $\pi^{\dagger}\pi^{\dagger}$ production.


Good balance in px and py required between protons and CMS central tracks Ensures exclusivity

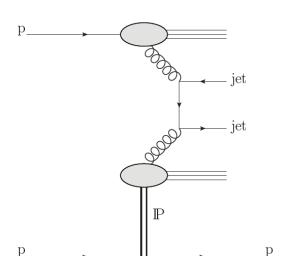

The x-position of the vertex (interaction point) can be reconstructed independently from the two protons in TOTEM and the two tracks in CMS.

(Opposite sign convention – tilt)

Future: DPE should be 'flavor-blind' for same mass baryons. Interesting potential study:

Exclusive central production of baryon pairs with 0, 1, 2, 3 strange quarks pp , $\Lambda^0 \Lambda^0$, $\Xi^- \Xi^-$, $\Omega^- \Omega^-$ are accessible

Charmed meson pairs D^0 - D^0 bar $\rightarrow D^0_s + D^0_s$ even more so!


Imagine the value:

Dedicated 2-day run
Could give ~ 100 million
fully measured DPE events!

 Ω^{-} : M = 1672.45 MeV, c τ = 2.46 cm, 68% BR - > Λ K Λ^{0} : M = 1115.68 MeV, c τ = 7.89 cm, 64% BR - > p π

For $\Xi^- \rightarrow \Lambda \pi$ - same topology, replace K with π M = 1321.71 MeV, $c\tau$ = 4.91 cm, 99.9% BR - > $\Lambda \pi$

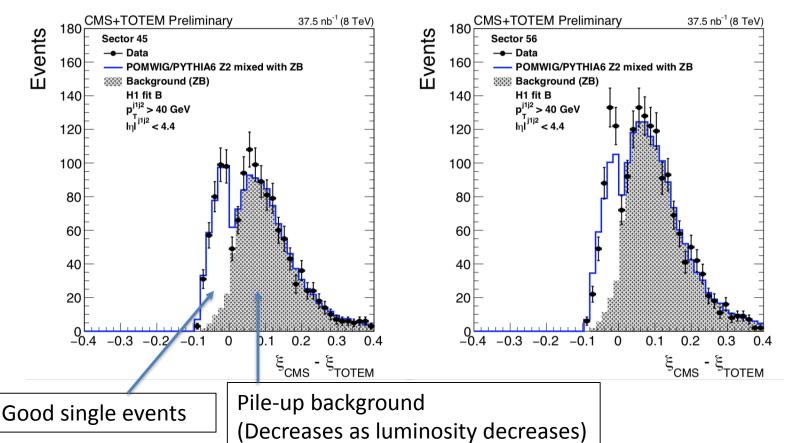
Measurement of dijet production with a leading proton in proton-proton collisions at $\sqrt{s} = 8 \text{ TeV}$

CMS-PAS-FSQ-12-033 TOTEM-NOTE-2018-001

Two jets measured in CMS $E_{\tau} > 40 \text{ GeV } |\eta| < 4.4$

Leading proton $x_F = 0.90 - 0.97$ i.e. $\xi = 0.03 - 0.1$ $0.03 < |t| < 1 \text{ GeV}^2$ Measured in TOTEM Roman pots

Including L ← R


Observed first at CERN p-pbar collider (UA8), Vs = 630 GeV, jets $E_T > 5$ GeV Measured at Tevatron p-pbar collider by CDF and D0 at Vs = 1800, 1960 GeV Structure probe of pomeron, understanding 'survival probabilities' and factorisation breaking between e-p (HERA) and hadron-hadron

Background from random coincidence between proton and jets from different collisions Fractional momentum loss ξ_{TOTEM} of proton measured through machine lattice -> 215 – 220m It can also be estimated, ξ_{CMS} from all particles in CMS detector $|\eta| < 4.9$

TWO DIRECTIONS

$$\xi_{\text{CMS}}^{\pm} = \frac{\sum \left(E^i \pm p_z^i\right)}{\sqrt{s}}$$

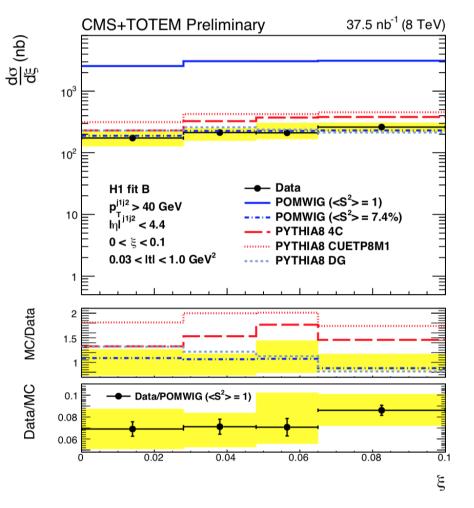
Missed particles (especially forward) make $\xi_{CMS} < \xi_{TOTEM}$ Additional particles from another collision make $\xi_{CMS} > \xi_{TOTEM}$

Distribution in $\xi = 1 - x_F$

$d\sigma/d\xi$ ~ flat in agreement with MC's.

> Low mass diffraction peaks at low- ξ and by $\xi \sim 0.05$ Regge (non-IP) exchange becomes more important.

Here two high-E_T jets enhance high-ξ Q: Is it still pomeron exchange?


Measured integrated cross-section for:

$$\xi$$
 < 0.1, 0.03 < $|t|$ < 1.0 GeV²

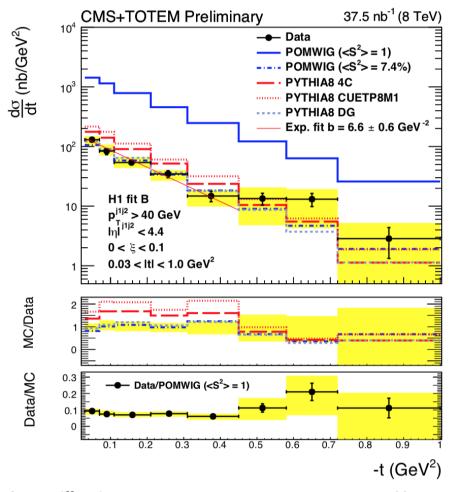
$$>= 2 \text{ jets } p_T > 40 \text{ GeV}, |\eta| < 4.4$$

Average of L-going and R-going proton configurations

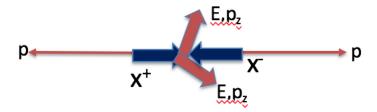
$$\sigma_{\rm jj}^{\rm pX} = 21.7 \pm 0.9 \, ({\rm stat}) \, {}^{+3.0}_{-3.3} | ({\rm syst}) \pm 0.9 \, ({\rm lumi}) \, {\rm nb}$$

Cross section as a function of t:

Exponential fit:In the region $0.03 < |t| < 0.45 \,\mathrm{GeV}^2$ $\mathrm{d}\sigma/\mathrm{d}t \propto \exp^{-b|t|}$ $b = 6.6 \pm 0.6 \,(\mathrm{stat})\,_{-0.8}^{+1.0} \,(\mathrm{syst}) \,\mathrm{GeV}^{-2}$

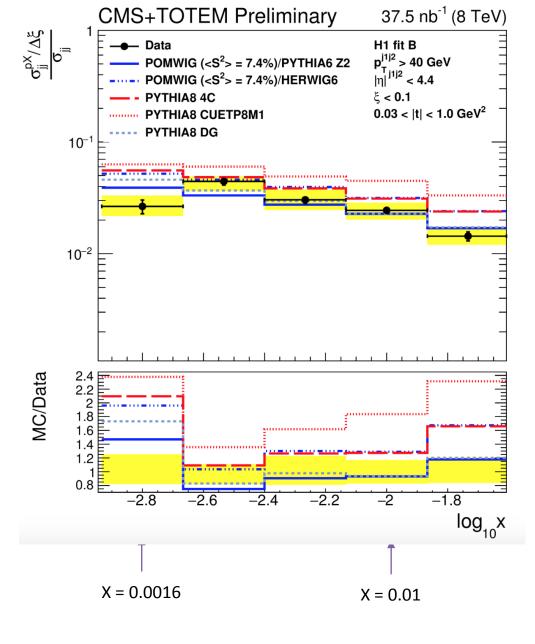

CDF: 5-6 GeV⁻²

Top line is with no gap survival probability factor for illustration only. <S²> = 1


Good fit has <S²> = 0.074

Other quark and gluon interactions destroy the gap

t-distribution, slope as in soft diffaction $\sim \frac{1}{2}$ that of elastic scattering. But flattens above $|t| > \sim 0.5$ GeV⁻² Event generators in fair agreement on shape



Ratio of diffractive dijets to all dijets vs x = momentum fraction in proton of partons initiating the hard scattering

Bjorken-x's of scattering partons given by jets 4-vectors $(2 \rightarrow 2, 3)$

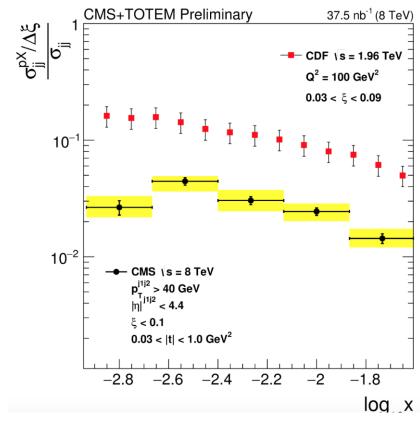
$$x^{\pm} = \frac{\sum_{\text{jets}} \left(E^{\text{jet}} \pm p_z^{\text{jet}} \right)}{\sqrt{S}}$$

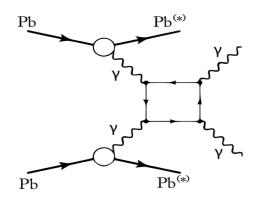
'Diffractive dijet fraction of all dijets' > decrease from Tevatron, but higher E_T

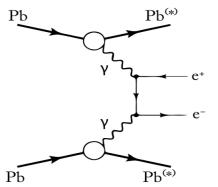
$$x^{\pm} = \frac{\sum_{\text{jets}} \left(E^{\text{jet}} \pm p_z^{\text{jet}} \right)}{\sqrt{s}}$$

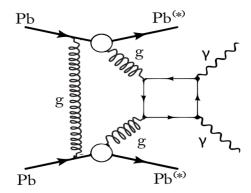
If pomeron exchange, fraction of pomeron momentum carried by scattering parton = β , with:

$$\beta = x^{\pm}/\xi_{\text{TOTEM}}$$



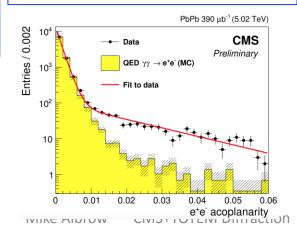

Figure 6: Ratio per unit of ξ of the single-diffractive and inclusive dijet cross sections in the kinematic region given by $\xi < 0.1$ and $0.03 < |t| < 1 \, \text{GeV}^2$. The vertical bars indicate the statistical uncertainties and the yellow band indicates the total systematic uncertainty. The red points represent the results obtained by CDF at $\sqrt{s} = 1.96 \, \text{TeV}$ for jets with $Q^2 \approx 100 \, \text{GeV}^2$ and $|\eta| < 2.5$, with $0.03 < \xi < 0.09$.

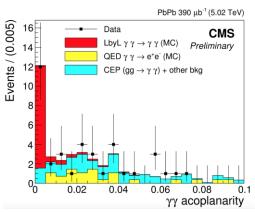

Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at


arXiv:1810.04602 [hep-ex] Phys. Lett. B (subm.)

$$\sqrt{s_{\mathrm{NN}}} = 5.02\,\mathrm{TeV}$$

Photons with $E_T > 2 \text{ GeV } |\eta_{\gamma}| < 2.4$




Process of interest Cross section small - α^4 ~ 3 x 10⁻⁹ But enhanced by Z⁴ = 5 x 10⁷ cf pp

Quasi-real γ have Q² < 10⁻³ GeV² and E $_{\gamma}$ up to ~ 80 GeV

Control sample, σ much higher Same trigger and selections but two tracks, e+ e-Background if tracks missed

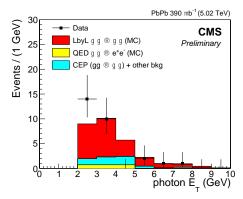
IP + IP $\rightarrow \gamma + \gamma$ Observed in pp in CDF (Not yet claimed at LHC) Acoplanarity A_{ϕ} larger because $p_{\tau}(IP) > p_{\tau}(\gamma)$

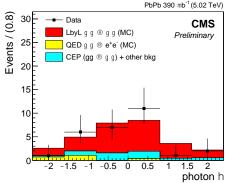
Observed: 14 events

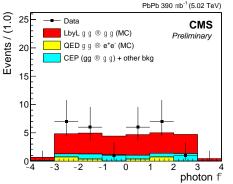
Expected: 11.1 ± 1.1 (th) signal

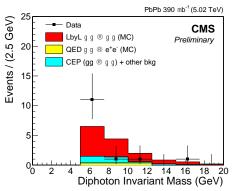
 4.0 ± 1.2 (stat) background events,

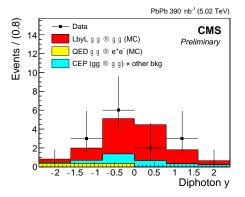
Significance: 4.1σ (expected 4.4σ)

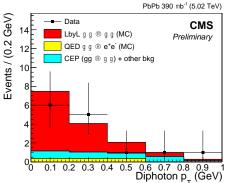

Distributions agree well with LbL scattering Monte Carlo:

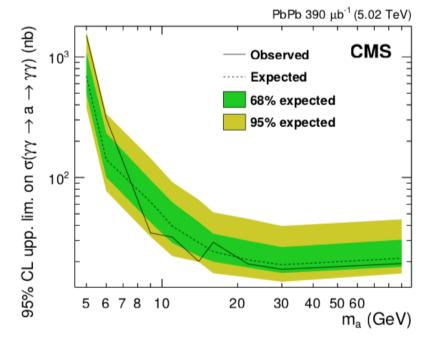

Theoretical predictions: D'Enterria and da Silveira Phys Rev Lett 111(2013) 080405


$$\sigma_{\rm fid}(\gamma\gamma \to \gamma\gamma) = 138 \pm 14 \,\mathrm{nb}.$$

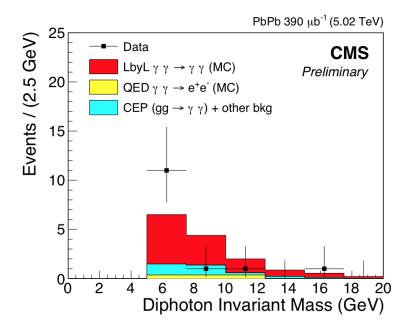

Ratio $\gamma + \gamma : e^+ + e^-$

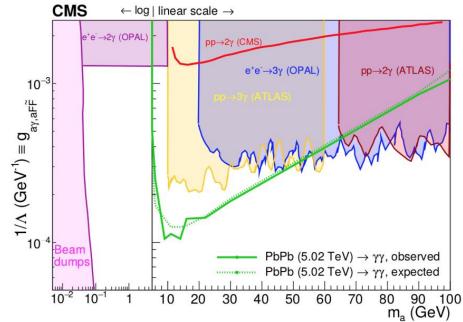

$$R = (25.0 \pm 9.6 \text{ (stat)} \pm 5.8 \text{ (syst)}) \times 10^{-6}$$





27


$$\sigma_{\rm fid}(\gamma\gamma \to \gamma\gamma) = 120 \pm 46 \, {\rm (stat)} \pm 28 \, {\rm (syst)} \pm 4 \, {\rm (theo)} \, {\rm nb}$$
,


20/11/2019 Mike Albrow CMS+TOTEM Diffraction

Observed M($\gamma\gamma$) limits PseudoScalar axion-like particles (a) through $\gamma\gamma \rightarrow$ a $\rightarrow \gamma\gamma$ Sensitive to higher masses

New limits very competitive for M(a) = 5 - 50 GeV ~ ATLAS, and better than e^+e^- at LEP

SUMMARY

Small selection of some recent CMS & [TOTEM + CMS] results – all low pile-up

Color singlet exchanges: pomeron and/or photon interactions

Central exclusive production of low mass hadron systems (resonances, glueballis?) DPE: Potentially a large field of study (tagged IP + IP collisions, jets ...)

High-E_T jet production from pomeron interactions - high mass diffraction.

Pb + Pb collisions as $\gamma\gamma$ collider and $\gamma\gamma \rightarrow \gamma\gamma$ as probe of new physics e.g. axions?

Stay tuned!

Thank You