The strong CP problem beyond the conventional axion

Gilad Perez

Weizmann

BBSM Ascona 2023

Outline

Intro, strong CP problem (?), quality of spin-0 dark matter (DM) Searching for the QCD axion quadratically

Interim summary

New non-QCD axion (but that addresses the strong CP) pheno'

How serious is the strong CP problem ? (sorry if trivial)

3 levels of formulating the strong CP problem, assuming CP is respected by the UV:
(i) $\bar{\theta}=\theta-\arg \left[\operatorname{det}\left(Y_{u} Y_{d}\right)\right] \lesssim 10^{-10}$, is it a problem?
(who knows?)
(ii) $\bar{\theta}=\lesssim 10^{-10} \ll \theta_{\mathrm{KM}}=\arg \left\{\operatorname{det}\left[Y_{u} Y_{u}^{\dagger}, Y_{d} Y_{d}^{\dagger}\right]\right\}$, is it a problem?
(not if these are natural/protected and sequestered)
(iii) $\bar{\theta}=\lesssim 10^{-10} \ll \theta_{\mathrm{KM}}$, but $\bar{\theta}=\bar{\theta}_{\text {bare }}+\epsilon \theta_{\mathrm{KM}} \ln \left(\Lambda_{\mathrm{UV}} / M_{W}\right)$, is it a problem?
(ϵ appears in 7 loops and contains several other suppression factor)

- Should we be more cautious / more generic? [at least till we reach $\mathcal{O}\left(10^{-16}\right)$ precision]

We nevertheless focus on axions \& strong CP Still let's first discuss some pheno of ultralight spin-0 DM

- Begin with ultralight dark matter (UDM), minimal model would be just a free massive scalar:

$$
\mathscr{L} \in m_{\phi}^{2} \phi^{2}, \rho_{\mathrm{Eq}}^{\mathrm{DM}} \sim \mathrm{eV}^{4} \sim m_{\phi}^{2} \phi_{\mathrm{Eq}}^{2}=m_{\phi}^{2} \phi_{\mathrm{init}}^{2}\left(\mathrm{eV} / T_{\mathrm{osc}}\right)^{3} \quad\left[T_{\mathrm{os}} \sim \sqrt{M_{\mathrm{Pl}} m_{\phi}}\right]
$$

Assuming ("best case") MeV reheating: $\phi_{\text {init }}\left(f_{\text {min }}\right)= \begin{cases}10^{17} \mathrm{GeV}\left(\frac{10^{-27} \mathrm{eV}}{m_{\phi}}\right)^{\frac{1}{4}} & m_{\phi} \lesssim 10^{-15} \mathrm{eV} \\ 10^{15} \mathrm{GeV}\left(\frac{10^{-15} \mathrm{eV}}{m_{\phi}}\right) & m_{\phi} \gtrsim 10^{-15} \mathrm{eV}\end{cases}$

However, what if we allow Planck suppressed couplings? (generalized quality)

Planck suppression for ultralight spin 0 field

Let's consider some dimension 5 operators, and ask if current sensitivity reach the
Planck scale (assumed linear coupling and that gravity respects parity):

Graham, Kaplan, Rajendran; Stadnik \& Flambaum;
Arvanitaki Huang \& Van Tilburg (15)

$$
m_{\phi}=10^{-18} \mathrm{eV} \quad \text { (1/hour) }
$$

operator	current bound	type of experiment	DDM $=$ direct dark matter searches
$\frac{d^{(1)}}{4 M_{\mathrm{P}}} \phi F^{\mu \nu} F_{\mu \nu}$	$d_{e}^{(1)} \lesssim 10^{-4}[58]$	DDM oscillations	
	$\tilde{d}_{e}^{(1)} \lesssim 2 \times 10^{6}[68]$	Astrophysics	
$1 \frac{d_{m_{e}}^{(1)}}{M_{P 1}} \phi m_{e} \psi_{e} \psi_{e}^{c}$	$\left\|d_{m_{e}}^{(1)}\right\| \lesssim 2 \times 10^{-3}[58]$	DDM Oscillations!	
${ }_{1}^{1} i$	$\left.\mid \tilde{d}_{-}^{(1)}\right]_{\text {e }}^{(1)} \mid \lesssim 7 \times 10^{8}[63]$	Astrophysics	
$\frac{d_{g}^{(1)} \beta(g)}{2 M_{p 1} g} \phi G^{\mu \nu} G_{\mu \nu}$	$d_{g}^{(1)} \lesssim 6 \times 10^{-6}[67]$	EP test: MICROSCOPE	
$\frac{\hat{d}_{g}^{(1)}}{M_{\mathrm{P} 1}} \phi G^{\mu \nu} \tilde{G}_{\mu \nu}$	$\tilde{d}_{g}^{(1)} \lesssim 4[69]$	Oscillating neutron EDM	
$\frac{\left\|d_{m_{N}}^{(1)}\right\|}{M_{\mathrm{Pl}}} \phi m_{N} \psi_{N} \psi_{N}^{c}$	$\left\|d_{m_{N}}^{(1)}\right\| \lesssim 2 \times 10^{-6}[67]$	EP test: MICROSCOPE	
$\left.i \frac{\mid \hat{d}_{d_{N}}^{(1)}}{M_{\mathrm{Pl}}} \right\rvert\, m_{N} m_{N} \psi_{N}^{c}$	$\left\|\tilde{d}_{m_{N}}^{(1)}\right\| \lesssim 4[69]$	Oscillating neutron EDM	

Linear or quadratic axion coupling?

- (Linear) UDM scalar couplings are required to be super-Planckians
- The bounds on UDM scalar couplings are some 12 orders of mag. stronger than axion's one
- Sensitivity to axion would be much better if it had linear scalar coupling (forbidden by CP)

However, quadratic scalar couplings, $a^{2} / f^{2} \times O_{\text {scalar }}^{\mathrm{SM}}$, are allowed by CP
In fact, $\theta \equiv \frac{a}{f} \sim \frac{\sqrt{\rho_{\mathrm{DM}}}}{m_{a} f} \sim 10^{-6} \times \frac{10^{9} \mathrm{GeV}}{f} \times \frac{10^{-15} \mathrm{eV}}{m_{a}}$, could be beneficial to go to $O\left(\theta^{2}\right)$

In passing: bounds on quadratic couplings are sub-Planckians:
$\frac{d_{e}^{(2)}}{8 M_{\mathrm{P}}^{2}} \phi^{2} F^{\mu \nu} F_{\mu \nu}$
$\frac{\mid d_{m_{e}}^{(2)}}{2 M_{\mathrm{Pl}}^{2}} \phi^{2} m_{e} \psi_{e} \psi_{e}^{c}$
$\frac{d_{g}^{(2)} \beta_{g}}{4 M_{\mathrm{P}}^{2} g} \phi^{2} G^{\mu \nu} G_{\mu \nu}$
$\frac{d_{m_{N}}^{(2)} \mid}{2 M_{\mathrm{Pl}}^{2}} \phi^{2} m_{N} \psi_{N} \psi_{N}^{c}$$|$

Banerjee, Perez, Safronova, Savoray \& Shalit (22)

ALP quadratic UV scalar interactions

The linear sigma model of an ALP $\left[\Phi \equiv\left(\frac{\rho+f}{\sqrt{2}}\right)^{\left.e^{\frac{L}{f}}\right]}\right]$ contains the coupling: $\rho \partial_{\mu} a \partial^{\mu} a$

- Thus: $\Phi \overline{f f} \Rightarrow \rho \bar{f} f \Rightarrow \partial_{\mu} a \partial^{\mu} a \bar{f} f$, however it is suppressed by extra m_{a}^{2} / f^{2}, and thus negligibly small, $O\left(\theta^{4}\right) \ldots$

Oscillations of energy levels induced by QCD-axion-like DM

- QCD axion is special and the quadratic coupling are induced by IR effects
- Extracted via pion mass dependence: $m_{\pi}^{2}(\theta) \simeq m_{\pi}^{2}(0)\left(1-\frac{m d m_{u}}{\left(m_{d}+m_{u}\right)^{2}} \theta^{2}\right)$ Brower, Chandrasecharanc, Negegle \& Wise (03)
$\mathrm{MeV} \times \theta^{2} \bar{n} n \Rightarrow \frac{\delta f}{f} \sim \frac{\delta m_{N}}{m_{N}} \sim 10^{-16} \times \cos \left(2 m_{a}\right) \times\left(\frac{10^{-15}}{m_{\phi}} \xrightarrow{\mathrm{eV}} \frac{10^{9} \mathrm{GeV}}{f}\right)^{2}$ vs $m_{N} \frac{a}{f} \bar{n} \gamma^{5} n \Rightarrow\left(f \gtrsim 10^{9} \mathrm{GeV}\right)_{\mathrm{SN}}$

Exciting as we saw that clocks (\& EP tests) are much more precise than magnetometers. Can possibly sense (slow) oscillation of energy levels due to change electron or QCD masses to precision of better than 1:1018

Oscillations of energy levels induced by QCD-axion-like DM

Snapshot terrestrial bounds (see later complete)

$$
\begin{aligned}
& \frac{\delta m_{\pi}^{2}}{m_{\pi}^{2}} \sim \frac{1}{2} \theta^{2} \\
& \frac{\delta m_{N}}{m_{N}} \simeq 0.13 \frac{\delta m_{\pi}}{m_{\pi}} \\
& \frac{\delta f_{\mathrm{Th}}}{f_{\mathrm{Th}}} \simeq 2 \times 10^{5} \frac{\delta m_{\pi}^{2}}{m_{\pi}^{2}}
\end{aligned}
$$

1. Quadratic coupling to hadrons $=>$ quadratic coupling to QED (1-loop) ~ same sensitivity

See also Beadle et. al (23)
2. Due to velocity dispersion, $\theta^{2}(t)=>$ sharp resonance + continuum at lower frequencies

Masia-Roig et. al (23)
To understand the point qualitatively, let's consider first linear coupling, say that changes α : $\delta E(t) \leftrightarrow m_{e} \alpha^{2}(1+\theta(t)) \propto \frac{\rho_{\mathrm{DM}}}{m_{a}} \cos w t$, with $w \approx m_{a}\left(1+\frac{v^{2}}{2}\right)$, and $P(v) \propto \exp \left(\frac{-v^{2}}{\sigma^{2}}\right)$, with $\sigma \sim 10^{-3}$

Frequency transformed: it would result in a sharp signal at $\omega \sim m_{a}$ with width of $O\left(10^{-6}\right)$
However our signal is quadratic $\delta E(t) \leftrightarrow \theta(t)^{2} \sim \cos \left[2 m_{a} t\right]+\cos \left[m_{a}\left(\frac{v_{1}^{2}-v_{2}^{2}}{2}\right)\right]$

Power spec' of signal after integrating over Maxwell-Boltzmann velocity dist', QCD-axion

Bottom line

- We can use noise to bound QCD axion due to quadratic part
- This is not noise, cont' signal is correlated among several detectors, improve sensitivity

Combining everything (on Earth)

For related bounds not shown for simplicity, see e.g- Astro/cosmo: Blum, Tito D’Agnolo, Lisanti \& Safdi (14); Rogers \& Peiris (20);
Density effects: Hook \& Huang (17); Balkin, Serra, Springmann \& Weiler (20)

Simple mechanism for formation of UDM solar halo

One can find stable configuration of UDM bounded to external gravitational potential such as stars or planets.

These objects would lead to very different properties of UDM:
larger densities; different line shape, bigger coherent time; no stochasticity ...

Simple mechanism for formation of UDM solar halo

However, as the escape velocity say at AU is around $30 \mathrm{~km} / \mathrm{s} \&$ the incoming DM is coming to us at $300 \mathrm{~km} / \mathrm{s}$ trapping it seems hard.

- Yet recently understood that quartic interactions in the presence of strong gravitational potential lead to enhanced coupling, in the region that focusing is active:

$$
\begin{aligned}
& \xi_{\mathrm{foc}}=\frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \simeq\left[\frac{m}{1.7 \times 10^{-14} \mathrm{eV}}\right]\left[\frac{M}{M_{\odot}}\right]\left[\frac{240 \mathrm{~km} / \mathrm{s}}{v_{\mathrm{dm}}}\right] \quad R_{\star}=1 \mathrm{AU}\left[\frac{1.3 \cdot 10^{-14} \mathrm{eV}}{m}\right]^{2}\left[\frac{M_{\odot}}{M}\right] \\
& \alpha \equiv G M m
\end{aligned}
$$

Simple mechanism for formation of UDM solar halo

In the red, blue, and brown shaded regions, the DM-velocity parameters are varied from $\mathrm{v}_{\mathrm{dm}}=\sigma / 2=240 \mathrm{~km} / \mathrm{s}$ to $50 \mathrm{~km} / \mathrm{s}$, where σ is the variance of the velocity distribution. The purple and green dashed lines are the density functions for $\mathrm{m}<10^{-14} \mathrm{eV}$, which are only exponentially growing when $\mathrm{v}_{\mathrm{dm}} \ll 240 \mathrm{~km} / \mathrm{sec}$.

2/3rd summary

- Strong CP problem is only marginally a problem
- The simplest ultralight dark matter (UDM) solution is under pressure due to generalized quality argument, due to scalar interactions
- Low-mass QCD axions can be efficiently probed via their quadratic scalar interactions (even at higher masses using the continuum part); in passing: these models suffer from a severe quality problem
- Is there another class of models which addresses the strong CP problem? Maybe of better quality and different pheno?

The other path

- There's a class of models where CP is UV-sym' and at tree level we find:

$$
\bar{\theta}=\theta-\arg \left[\operatorname{det}\left(Y_{u} Y_{d}\right)\right]=0 \quad \& \quad \theta_{\mathrm{KM}}=\arg \left\{\operatorname{det}\left[Y_{u} Y_{u}^{\dagger}, Y_{d} Y_{d}^{\dagger}\right]\right\}=\mathcal{O}(1)
$$

- This is realized if:

1. Yukawas are Hermitian (left-right models or wave function renorm')

Hiller \& Schmaltz (01); Harnik, GP, Schwartz \& Shirman (04); Cheung, Fitzpatrick \& Randall (08)
2. Structure/sym. => det(0), concretely, Nelson-Barr (NB)

- We focus on NB, which are easy to control \& of higher quality

Nelson-Barr (crash course)

$$
\left.\mathscr{L}_{\mathrm{NB}}=\mu q^{c} q+\left(g_{i} \Phi+\tilde{g}_{i} \Phi^{*}\right) d_{i}^{c} q+Y_{d} H Q d^{c}+Y_{u} \tilde{H} Q u^{c} \quad \text { (with } q, q^{c}, \Phi \subset z_{2}-\text { odd }\right)
$$

- Assume that theory is real and only $\Phi=\frac{f+\rho}{\sqrt{2}} \exp \left(\frac{i a}{f}\right) ;\langle a\rangle \neq 0$ breaks CP, then:

1. $\mathscr{M}_{d}=\left(\begin{array}{cc}\mu & B_{i} \\ 0 & m_{d}\end{array}\right) ; m_{d} \equiv Y_{d} v ; B_{i} \equiv\left(g_{i} \Phi+\tilde{g}_{i} \Phi^{*}\right)=>\operatorname{det}\left[\mathscr{M}_{d}\right] \in$ Real
2. At low energy $\left(v \ll \mu, g_{i} f\right)$, effective m_{d} satisfies $m_{d}^{\mathrm{eff}} m_{d}^{\mathrm{eff}}=m_{d}\left(\mathbf{1}_{3}+\frac{B_{i}^{*} B_{j}}{\mu^{2}+B_{f} B_{f}^{\dagger}}\right) m_{d}^{\dagger}$, which if g_{i} isn't parallel to \tilde{g}_{i} and $\mu \lesssim B_{i}$ lead to $\theta_{\mathrm{KM}}=\mathcal{O}(1)$

$$
\mathscr{L}_{\mathrm{NB}}=\mu q^{c} q+\left(g_{i} \Phi+\tilde{g}_{i} \Phi^{*}\right) d_{i}^{c} q+Y_{d} H Q d^{c}+Y_{u} \tilde{H} Q u^{c} \quad\left(\text { with } q, q^{c}, \Phi \subset z_{2}-\text { odd }\right)
$$

\bigcirc Assume approx' flavor sym' such that $g_{i} \propto(1,0,0) \quad \& \quad \tilde{g}_{i} \propto(0,0,1)$

- Then a is a pseudo-Nambu-Goldstone-boson, with suppressed potential, but with $\langle a\rangle=0$

Furthermore, one can show that $\theta_{\mathrm{KM}}=\frac{a}{f}$

$$
\left\{m_{d}^{\text {eif }} m_{d}^{\text {efft }} \sim m_{d}\left[1_{3}+r\left(\begin{array}{ccc}
1 & 0 & e^{\frac{2 u}{T}} \\
0 & 0 & 0 \\
e^{-\frac{2 u}{T}} & 0 & 1
\end{array}\right)\right] m_{d}^{T}\right\}
$$

- Also, mixing angles develop quadratic dependence on a (but not masses)

Nelson-Barr ultralight-DM pheno

- In case another sector breaks the shift sym' (say Planck suppress or other) then the minimum of potential generically would lead to $\langle a\rangle \neq 0$ and spontaneous breaking of $\mathrm{CP}=\bar{\theta}=0 \quad \& \quad \theta_{\mathrm{KM}}=\mathcal{O}(1)$

Relaxion: Graham, Kaplan \& Rajendran (15)
NB-relaxion - Davidi, Gupta, GP, Redigolo, \& Shalit (17)
Now if we tip the NB-axion from it's minimum it'd behave as a new type of ultralight DM (UDM)

New type of pheno: time dependent CKM angles
While the strong CP is always zero

NB-UDM signature \& parameter space

What is the size of the effect? $\delta \theta_{\mathrm{KM}} \sim \frac{\sqrt{\rho_{\mathrm{DM}}}}{m_{\mathrm{NB}} f} \cos \left(m_{\mathrm{NB}} t\right) \sim 10^{-3} \times \frac{10^{10} \mathrm{GeV}}{f} \times \frac{10^{-19} \mathrm{eV}}{m_{\mathrm{NB}}} \times \cos \left(m_{\mathrm{NB}} t\right)$

Currently (PDG): $\quad \theta_{\mathrm{KM}}=1.14 \pm 0.03$

How to search such signal? Need time dependence CP violation, perfect for B-asym

Bound from EP: $\frac{\Delta m_{u}}{m_{u}} \approx \frac{3}{32 \pi^{2}} y_{b}^{2}\left|V_{u b}^{\mathrm{SM}}\right|^{2} \frac{a}{f} \Rightarrow f \gtrsim 10^{10} \mathrm{GeV}$
Minimal misalignment DM bound, can't be satisfied: $f \gtrsim 10^{15} \mathrm{GeV}\left(\frac{10^{-19} \mathrm{eV}}{m_{\phi}}\right)^{\frac{1}{4}}$
Naive naturalness $=>$ sub-MeV cutoff,$\Delta m_{a} \approx \frac{y_{b}\left|V_{u b}\right| m_{u} \Lambda_{\mathrm{UV}}}{16 \pi^{2} f}=>$ current B-factories probe finely tuned region

Backups

Time dependent CP asym.

$$
\left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle, \quad A_{f}=\langle f| \mathcal{H}_{d}\left|B^{0}\right\rangle, \quad \bar{A}_{f}=\langle f| \mathcal{H}_{d}\left|\bar{B}^{0}\right\rangle
$$

$$
a_{f \mathrm{CP}}(t)=\frac{\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f_{\mathrm{CP}}\right)-\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f_{\mathrm{CP}}\right)}{\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow f_{\mathrm{CP}}\right)+\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow f_{\mathrm{CP}}\right)}
$$

$$
a_{f_{\mathrm{CP}}}(t)=-\frac{1-\left|\lambda_{f_{\mathrm{CP}}}\right|^{2}}{1+\left|\lambda_{f_{\mathrm{CP}}}\right|^{2}} \cos \left(\Delta m_{B} t\right)+\frac{2 \operatorname{Im} \lambda_{f_{\mathrm{CP}}}}{1+\left|\lambda_{f_{\mathrm{CP}}}\right|^{2}} \sin \left(\Delta m_{B} t\right) \quad \lambda_{f}=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

$$
a_{f_{\mathrm{CP}}}(t)=\operatorname{Im} \lambda_{f_{\mathrm{CP}}} \sin \left(\Delta m_{B} t\right) \quad\left(\lambda_{B \rightarrow \psi K s / \eta} \simeq 1\right)
$$

Ex. Babar: Measurements of CPV Asymmetries and BFs in B

FIG. 2: Projections onto Δt for $B^{0} \rightarrow \eta^{\prime} K_{S}^{0}$ data (points with errors), the fit function (solid line), and background function (dashed line), for (a) B^{0} and (b) \bar{B}^{0} tagged events, and (c) the asymmetry between B^{0} and \bar{B}^{0} tags.

Naturalness problem ULDM scalars

For this action there's also an issue of naturalness: $d_{m_{e}}<4 \pi m_{\phi} / \Lambda_{e} \times M_{\mathrm{Pl}} / m_{e}$ With $\Lambda_{e} \gtrsim m_{e}($ for mirror model $)=>d_{m_{e}} \lesssim 10^{6,0} \times \frac{m_{\phi}}{10^{-10} \mathrm{eV}} \times \frac{m_{e}, \mathrm{TeV}}{\Lambda_{e}}$ $\mathscr{L}_{\mathrm{Pl}} \in d_{m_{e}} \frac{\phi}{M_{\mathrm{Pl}}} m_{e} \bar{e} e+d_{g} \frac{\phi}{2 g M_{\mathrm{Pl}}} \beta_{g} G G$

However it's not easy to probe the UDM coupling to hadrons Iw clocks

The energy levels are proportional to $E_{\mathrm{Ryd}} \sim m_{\text {reduced }} \alpha^{2} / 2 n^{2}$
\w $m_{\text {reduced }} \simeq m_{e}\left(1+m_{e} / m_{\text {nuc }}\right)$ effect decouple like number of nucleons $\left.A^{-1}\right)$-;
(Molecular) vibrational modes are a bit better, $E_{\mathrm{vib}} \propto \sqrt{\frac{m_{e}}{m_{\mathrm{nuc}}}} \propto A^{-\frac{1}{2}}$

So what else can be done ? (while waiting for the nuclear clock to be built)

Oscillating charge radius

Banerjee, Budker, Filzinger, Huntemann, Paz, GP Porsev \& Safronova (23)

- Finite nucleus size (charge radius): $\Delta E_{\text {radius }} \propto\left\langle r_{\text {nuc }}^{2}\right\rangle \propto A^{\frac{2}{3}}$
- We propose to use optical atomic clock in an heavy atom to search for the QCD axion DM and/or scalar DM-nucleon interaction using the Charge radius effect:

The total electronic energy of an atomic state

$$
E_{\mathrm{tot}}=E_{0}+E_{\mathrm{MS}}+E_{\mathrm{FS}}
$$

dominant Reduced finite nucleus size effect mass effect (charge radius)

For heavy atoms

$$
\left.\frac{\Delta E_{\mathrm{tot}}}{E_{\mathrm{tot}}}\right|_{\mathrm{nuc}} \simeq \frac{E_{\mathrm{FS}}}{E_{\mathrm{tot}}} \frac{\Delta\left\langle r_{N}^{2}\right\rangle}{\left\langle r_{N}^{2}\right\rangle}
$$

$$
E_{\mathrm{FS}}=K_{\mathrm{FS}}\left\langle r_{N}^{2}\right\rangle
$$

The scaling and observable

To understand why it works consider Hydrogen like $n s$ energy level:
$\Delta E_{\mathrm{MS}, n}=\frac{m_{e}^{2} \alpha^{2}}{2 m_{\mathrm{nuc}} n^{2}} \simeq \frac{1}{2 A m_{N} a_{0}^{2} n^{2}} \quad\left[a_{0}=\left(m_{e} \alpha\right)^{-1}\right]$

Field shift dominates over Mass shift for $A \gtrsim 50 n^{\frac{3}{11}}$
$(\Delta E)_{\mathrm{FS}, n}=\frac{2 \pi}{3}\left|\psi_{s}(0)\right|^{2} Z \alpha\left\langle r_{N}^{2}\right\rangle=\frac{2 \pi}{3 n^{3}} \frac{Z^{2} \alpha}{a_{0}^{3}}\left\langle r_{N}^{2}\right\rangle$

- Experimental comparison between two optical clock transition:

$$
\begin{aligned}
\frac{\Delta\left(\nu_{a} / \nu_{b}\right)}{\left(\nu_{a} / \nu_{b}\right)}=\frac{\Delta \nu_{a}}{\nu_{a}}-\frac{\Delta \nu_{b}}{\nu_{b}}= & \left(\frac{K_{\mathrm{FS}}^{\nu_{a}}\left\langle r_{N}^{2}\right\rangle}{\nu_{a}}-\frac{K_{\mathrm{FS}}^{\nu_{b}}\left\langle r_{N}^{2}\right\rangle}{\nu_{b}}\right), \frac{\Delta\left\langle r_{N}^{2}\right\rangle}{\left\langle r_{N}^{2}\right\rangle} \\
& \text { Suppression factor } \sim 10^{-3} \quad \text { (Instead of 10-5) }
\end{aligned}
$$

Now we need to estimate dependence of the charge radius on the DM

- We can write it as follows:

$$
\frac{\Delta\left\langle r_{N}^{2}\right\rangle}{\left\langle r_{N}^{2}\right\rangle} \approx \alpha \frac{\Delta \Lambda_{\mathrm{QCD}}}{\Lambda_{\mathrm{QCD}}}+\beta \frac{\Delta m_{\pi}^{2}}{m_{\pi}^{2}}
$$

It is easy to conclude that $\alpha=2$
For β we have used 2 extreme naive models of the nuclear (puffy and stiff) resulting with $\beta \sim 2,0.02,0.003$, in the plot you see we went for the middle choice

The bounds

Banerjee, Budker, Filzinger, Huntemann, Paz, GP, Porsev \& Safronova (23)

Quality problem, 5th force vs EP violation, electron coupling

EP: Planck suppressed operators are excluded for $m_{\phi} \lesssim 10^{-6} \mathrm{eV}$ 5th force: operators are excluded for $10^{-19} \lesssim m_{\phi} \lesssim 10^{-13} \mathrm{eV}$

Quality problem, 5th force vs EP violation, gluon

EP: Planck suppressed operators are excluded for $m_{\phi} \lesssim 10^{-5} \mathrm{eV}$ 5th force: operators are excluded for $m_{\phi} \lesssim 10^{-3} \mathrm{eV}$

Quality and naturalness of axions

- Example of a quality problem for the QCD axion:
$V=\Lambda_{\mathrm{QCD}}^{4} \cos (a / f+\bar{\theta})+\frac{\Phi^{n}}{M_{\mathrm{Pl}}^{n}}\left(\Phi^{\dagger} \Phi\right)^{2} \stackrel{\left[\sigma=\left(\frac{\rho+f}{\sqrt{2}}\right)^{\frac{i(c]}{c}}\right]}{\Rightarrow} \quad \Lambda_{\mathrm{QCD}}^{4} \sin \delta \theta \sim \epsilon^{\left[c=\frac{f}{M_{\mathrm{P}}}\right]}{ }^{N} f^{4} \Rightarrow{ }_{f \rightarrow 10^{10} \mathrm{GeV}}\left(\frac{\Lambda_{\mathrm{QCD}}}{10^{10} \mathrm{GeV}}\right)^{4} 10^{-10} \sim\left(\frac{10^{10} \mathrm{GeV}}{M_{\mathrm{Pl}}}\right)^{n}$
where with $n<7$ operators, $\delta \theta>10^{-10}$ and the strong CP problem is not solve!
This may be solved if one impose a (gauged) discrete symmetry, respected by gravity
- Even more general axion-like-particles are not immune:

$$
\frac{\Phi^{n}}{M_{\mathrm{P}}^{n}}\left(\Phi^{\dagger} \Phi\right)^{2} \Rightarrow \delta m_{\mathrm{ALP}} \sim \epsilon^{\frac{n}{2}} f \sim 10^{-4 n} \times\left(\frac{f}{10^{10} \mathrm{GeV}}\right)^{\frac{n}{2}} \times 10^{10} \mathrm{GeV}==_{f=10^{10} \mathrm{GeV}} 10^{19-4 n} \mathrm{eV}
$$

natural eV ULDM requires $n>4$ operators

Still reasonable motivation to search for UDM Furthermore, specific models typically yield larger couplings to the SM in particular to its QCD sector

- QCD axion: $\frac{a}{f} G \tilde{G}$
\bigcirc Dilaton: $d_{g} \frac{\phi}{2 g M_{\mathrm{Pl}}} \beta_{g} G G$
\bigcirc Higgs portal: $\sin \theta_{h \phi} g_{h G G} G G$

Claim: all of these

couplings can be probed using oscillation of
energy levels in quantum
sensors, such as clocks

I'll argue that, generically, all ALPs

