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Gaussian or not !
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Slow-roll = Weak coupling = Gaussianity
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Large NG: derivative interactions, multi-field, features, warm inflation, dissipation,
different symmetries, alternatives to inflation...



In-In Perturbation theory

Beyond free theory, correlation functions are calculated in PT
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Bunch-Davies vacuum is obtained by a small deformation in
Euclidean time in far past
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Tails of the distribution

This is ok for correlation functions but
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Motivations

Black-hole formation is sensitive to C ~ 1
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BH mass fraction at formation

Perturbative calculation is ok only for f\ T ~ f\ << |
Ok if one remains in slow-roll, fy,, ~ O(¢e,n), but not in general.

E.g. fu.~ (I-1/c;?) in K-inflation models.

Eternal inflation. Can the tail be relevant?

Surprise in the data on the tails!?

It is the WFU!



Main idea

Since perturbations are proportional to /'/2 looking
at unlikely events corresponds to the semiclassical
limit 7 — 0

In this limit one is able to calculate the WFU
semiclassically




Anharmonic oscillator
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V() = hw [5 (3)2 + A(%ﬂ d= \/h/muw Usual PT is in A
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PT breaks down for )\ (g) = % ~ 1

Consider the ground-state wavefunction (as in inflation)

One could use WKB, but let us look at Euclidean path-integral
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Anharmonic oscillator
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Gaussian WFU

In inflation the wavefunction of
the Universe is

For free theory the saddle solution is

It decays exponentially after i¢
rotation.
It is complex, since BD boundary
condition is not real
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Scale-invariant power spectrum



WFU Beyond Gaussianity

Perturbative recipe for WFU is the same as in AdS/CFT: Witten diagrams

On shell action with prescribed boundary conditions at late times
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Resumming Witten diagrams

Tree level diagrams are dominant since, at a given order in A, they have more G,
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The selection of diagrams makes sense only for large C,




Non-linear WFU

|. Fix boundary conditions at late times Cyand BD in far past
2. Find the classical non-linear solution of the EOM in Euclidean time
3. Calculate the action S and get W
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It corresponds to resumming all tree-level Witten diagrams
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Inflation with CT'% interaction
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Before getting to the numerical solution of PDE, one can get
some intuition reducing to an ODE



comparable modes. Reduction to ODE should be O(l) ok
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ODE

Using this scaling one gets the behaviour at large A
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PDE

Qualitatively similar with the same asymptotic scaling in A

Small A Large A

(One can check to reproduce perturbative result at small A)



WFU for resonant features

A Leblond, Pajer 11
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Three simplifications:

|. Small features, we expand in b

Since the action is stationary around EOM we only need b =  solution
2. @« > 1 Time integral can be done in saddle-point

3. Loops are negligible also for typical fluctuations



Valid also for typical fluctuations
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Loops are constrained to be zero at late times: lack one a enhancement

Suppressed by O‘QPC
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For typical fluctuations the tree-level expansion corresponds to b Inf
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Higher-order terms suppressed



WFU for resonant features
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Explicit: convergent integral + no DE to solve

Euclidean rotation ok, exponentially convergent at early times
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Results for a single Fourier mode

ODE &
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VERY different for C>0and T <0



Future

|. Is it possible some info is hidden in the CMB tails?
For instance features with w/4nf ~ |

2. More realistic applications to PBHs: threshold, spin, clustering...

3. Generalizations:

a. Different interactions (doing DBI...)
b. Slow-roll inflation and eternal inflation

c. Tensor modes (exact solutions of GWs in dS or numerical GR)

4. What is the connection with large number of legs?



