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Gaussian or not ?

|f loc
NL| < 5
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⇤ � V (4) . O(�3, ⇥3)(10�5)2

Slow-roll à Weak coupling à Gaussianity

Higgs λ ∼ 1 

Large NG: derivative interactions, multi-field, features, warm inflation, dissipation, 
different symmetries, alternatives to inflation...

<latexit sha1_base64="51uZc2eFj1VSiX027EKyFjTAI8Q=">AAACHHicbZDLSgMxFIYzXmu9VV26CRbBTctMFXVZdONCpIK9QKctmTTThiaTIckoZToP4sZXceNCETcuBN/GdNqFtv4Q+PjPOZyc3wsZVdq2v62FxaXlldXMWnZ9Y3NrO7ezW1MikphUsWBCNjykCKMBqWqqGWmEkiDuMVL3Bpfjev2eSEVFcKeHIWlx1AuoTzHSxurkjv1O7EoOb66TdgqKiYeCFIwl0FWUw5FLNBpN2LHbcaGUdHJ5u2ingvPgTCEPpqp0cp9uV+CIk0BjhpRqOnaoWzGSmmJGkqwbKRIiPEA90jQYIE5UK06PS+ChcbrQF9K8QMPU/T0RI67UkHumkyPdV7O1sflfrRlp/7wV0yCMNAnwZJEfMagFHCcFu1QSrNnQAMKSmr9C3EcSYW3yzJoQnNmT56FWKjqnRef2JF++mMaRAfvgABwBB5yBMrgCFVAFGDyCZ/AK3qwn68V6tz4mrQvWdGYP/JH19QPQrKEr</latexit>

f slow�roll
NL ⇠ |⌘| ⇠ 10�2



In-In Perturbation theory

Beyond free theory, correlation functions are calculated in PT

Bunch-Davies vacuum is obtained by a small deformation in 
Euclidean time in far past

E.g.

Since field and derivative are ~ 
H, expansion is in λ
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Experimentally (Planck and LSS) . 10�3
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Tails of the distribution

This is ok for correlation functions but
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Abstract

1 Introduction

Primordial fluctuations generated during inflation are approximately Gaussian and deviations from
Gaussianity are calculated in perturbation theory [1]. In this paper we want to point out that there are
(physically interesting) questions whose answer lies beyond perturbation theory and we will explain
how to get non-perturbative results using semiclassical methods.

Let us focus for concreteness on the calculation of the Primordial Black Hole (PBH) abundance.
Roughly, the probability of forming a PBH corresponds to the probability that the primordial curvature
perturbation ⇣(~x), smoothed with a typical scale that depends on the mass of the PBH we are interested
in, exceeds a certain threshold of order unity, ⇣ & 1. The formation of a PBH is a very unlikely event
on the tail of the probability distribution, even taking the power spectrum P⇣ on short scales to be
much larger than the one measured on CMB scales. Let us see what happens in the presence of some
primordial non-Gaussianity, characterised by the a bispectrum h⇣⇣⇣i, trispectrum h⇣⇣⇣⇣i and so on.
Very schematically, in order to get these correlation functions, the probability distribution of ⇣ is of
the form

P [⇣] ⇠ exp

"
� ⇣2

2P⇣
+

h⇣⇣⇣i
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#
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"
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1 +

h⇣⇣⇣i
P 2
⇣

⇣ +
h⇣⇣⇣⇣i
P 3
⇣

⇣2 + . . .

!#
.

(1.1)
The corrections to the Gaussian result are thus

h⇣⇣⇣i
P 2
⇣

⇣ ⇠ fNL⇣
h⇣⇣⇣⇣i
P 3
⇣

⇣2 ⇠ gNL⇣
2 . (1.2)

For typical values of ⇣, ⇣ ⇠ P 1/2
⇣ , these are small corrections (assuming inflation is weakly coupled),

amenable to a perturbative calculation. However, if we are interested in ⇣ ⇠ 1, corrections are large

1

Expansion parameter depends on 
size of ζ 

? ?

⇠ �1/fNL ⇠ 1/fNL

P(⇣)

⇣
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P(⇣)
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Motivations

if fNL & 1 or gNL & 1. For instance in a single-field model of inflation with reduced speed of sound cs
(this will be the main example studied in the rest fo the paper), fNL ⇠ c�2

s � 1 and gNL ⇠ (c�2
s � 1)2.

Therefore in these models the calculation of the PBH abundance cannot be done in perturbation
theory, unless cs is close to unity1.

These calculation however can be done using semiclassical methods, which correspond to ~ ! 0.
In this limit, inflationary perturbations go to zero, so that intuitively this limit should describe rare
events: sending some “threshold” to infinity with ~ constant is equivalent to send ~ ! 0. Therefore the
rare-event limit is semiclassical. Let us make this more concrete. The wavefunction of the Universe
is given by

 [⇣(~x)] =

Z ⇣(~x)

BD
D⇣eiS[⇣]/~ . (1.3)

The functional integral has to be performed with Bunch-Davies boundary conditions at early times
and a given configuration ⇣(~x) at late times. (For simplicity we neglect the other fields in the theory,
like the tensor modes, and assume the action S only depends on ⇣.) To specify what one means with
“rare event”, let us filter ⇣(~x) with an appropriate window function:

⇣̂(~x) =

Z
d3k

(2⇡)3
W (k)⇣(~k)ei

~k·~x . (1.4)

The window function will select a certain range �k, so that in real space the field ⇣̂ is convoluted with
an appropriate filter. A filtered field ⇣̂ is relevant to describe the probability of an overdensity (or
underdensity) in a certain region of the Universe, or the probability of forming a primordial black hole
of a given size. The CMB temperature in each pixel of a map is also a filtered map ⇣̂ (but projected
in 2 dimensions).

By translational invariance ⇣̂(~x) has the same probability P (⇣̂) at any point. The claim is that
P (⇣̂ = ⇣̄) can be calculated semiclassically in the limit ⇣̄ ! 1. Indeed in this limit we are imposing
boundary conditions on the integral of eq. (1.3) that makes the action large compared to ~. In this
limit the functional integral can be calculated in saddle point approximation

 [⇣(~x)] ⇠ eiS[⇣cl]/~ . (1.5)

The action is evaluated on-shell on the classical trajectory ⇣cl that satisfies the boundary condition
⇣cl = ⇣(~x) at late times and the Bunch-Davies conditions at early times. Notice that we are not
linearising the action, so that if we can solve this problem we are resumming all non-linearities that
are enhanced by the large ⇣̄. Corrections to this result come from looking at perturbations around
this classical action and evaluating the functional integral over them. These fluctuations are of order

P 1/2
⇣ and are not enhanced by ⇣̄. They give a subleading contribution provided inflation is a weakly

coupled EFT.

2 The case cs ⌧ 1

• The model cs ⌧ 1 truncated at X2. We are sensitive to large X.

1
For a minimal slow-roll model the non-Gaussian parameters are slow-roll suppressed fNL ⌧ 1 and gNL ⌧ 1, so

that Gaussainity is a good approximation even for ⇣ ⇠ 1. Actually, even if the statistics of the inflaton perturbations

can be taken as Gaussian, one needs to take into account the non-linear relation between inflaton perturbations and

⇣ and may need to resum the out-of-the-horizon evolution with a stochastic approach a la Starobinsky (for a recent

rigorous derivation see [2]). Notice that in this paper the non-perturbative results we get have nothing to do with

stochastic approach, which resums the classical long-wavelength e↵ects. Here we study non-perturbative results at
horizon crossing, and these are fully quantum mechanical.

2

•  Black-hole formation is sensitive to ζ ∼ 1

�(M) =

Z +1

⇣c

P (⇣̂)d⇣̂
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BH mass fraction at formation

Perturbative calculation is ok only for fNL ζ  ~ fNL<< 1

Ok if one remains in slow-roll, fNL ~ O(ε,η), but not in general.

E.g.  fNL ~ (1-1/cs
2) in K-inflation models.

•  Eternal inflation. Can the tail be relevant?

•  Surprise in the data on the tails?

•  It is the WFU! 



Main idea

Since perturbations are proportional to   looking 
at unlikely events corresponds to the semiclassical 

limit

In this limit one is able to calculate the WFU 
semiclassically   

~1/2
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~ ! 0
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Anharmonic oscillator

Usual PT is in λ

Moreover we defined vi and vf as the initial and final velocities on the classical trajectory and N is

a normalization factor. The expression (1.5) is correct up to corrections O(~) and will be a good

approximation in regions where SE � ~.
We can now see explicitly, in a a particular example, how this allows us to obtain a good approxi-

mation for the tail of  0(x) for large x.

1.1 Anharmonic Oscillator

Let us consider the following action, directly in Euclidean space, for an anharmonic oscillator

SE[x(⌧)] =

Z
d⌧

✓
1

2
mẋ

2 + V (x)

◆
. (1.8)

where the potential is given by

V (x) = ~!

1

2

✓
x

d

◆2

+ �

✓
x

d

◆4�
, (1.9)

where d ⌘
p
~/m!. First, let us calculate the exponent of (1.5). The action evaluated on the classical

path is

SE[x(⌧)]

~ =
1

~

Z
d⌧ mẋ

2

=
1

~

Z xf

xi=0
dx

p

2mV

=
1

6�


(1 + x̄

2)3/2 � 1

�
, (1.10)

where in the first line we have used the fact that the total energy vanishes at all times, and the second

line we have changed the integration variable from time to position. Here we define x̄
2
⌘ 2�x2f/d

2.

The classical trajectory with vanishing total energy can be determined by

dx

d⌧
=

r
2V (x)

m
, (1.11)

which gives

⌧ + C =

Z x

1

dx
0

p
2V (x0)/m

= �
1

!
arcsinh

✓
d

p
2� x

◆
, (1.12)

where the integration constant C corresponds to the lower limit of x going to infinity. Inverting this

expression one gets

x(⌧) = �
d

p
2� sinh(!⌧)

, (1.13)

where C has been absorbed into the variable ⌧ . Note that ⌧ 2 (�1, 0). At this point, using the

formula (1.7) and the classical path (1.13) one can easily compute the prefactor. We obtain1

vivf

Z ⌧f

⌧i

d⌧

v2
=

e
!(T�⌧f )

4! tanh(!⌧f ) sinh(!⌧f )
, (1.14)

1
We have changed the integration variable to ⌧ .

3

Moreover we defined vi and vf as the initial and final velocities on the classical trajectory and N is

a normalization factor. The expression (1.5) is correct up to corrections O(~) and will be a good

approximation in regions where SE � ~.
We can now see explicitly, in a a particular example, how this allows us to obtain a good approxi-

mation for the tail of  0(x) for large x.

1.1 Anharmonic Oscillator

Let us consider the following action, directly in Euclidean space, for an anharmonic oscillator

SE[x(⌧)] =

Z
d⌧
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2
mẋ

2 + V (x)

◆
. (1.8)

where the potential is given by

V (x) = ~!

1

2

✓
x

d

◆2

+ �

✓
x

d

◆4�
, (1.9)

where d ⌘
p

~/m!. First, let us calculate the exponent of (1.5). The action evaluated on the classical

path is

SE[x(⌧)]

~ =
1

~

Z
d⌧ mẋ

2

=
1

~

Z xf

xi=0
dx

p

2mV

=
1
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(1 + x̄

2)3/2 � 1

�
, (1.10)

where in the first line we have used the fact that the total energy vanishes at all times, and the second

line we have changed the integration variable from time to position. Here we define x̄
2
⌘ 2�x2f/d

2.

The classical trajectory with vanishing total energy can be determined by

dx

d⌧
=

r
2V (x)

m
, (1.11)

which gives

⌧ + C =

Z x

1

dx
0

p
2V (x0)/m

= �
1

!
arcsinh

✓
d

p
2� x

◆
, (1.12)

where the integration constant C corresponds to the lower limit of x going to infinity. Inverting this

expression one gets

x(⌧) = �
d

p
2� sinh(!⌧)

, (1.13)

where C has been absorbed into the variable ⌧ . Note that ⌧ 2 (�1, 0). At this point, using the

formula (1.7) and the classical path (1.13) one can easily compute the prefactor. We obtain1

vivf

Z ⌧f

⌧i

d⌧

v2
=

e
!(T�⌧f )

4! tanh(!⌧f ) sinh(!⌧f )
, (1.14)

1
We have changed the integration variable to ⌧ .

3

PT breaks down for �
⇣x
d

⌘2
⌘ x̄2

2
⇠ 1
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One could use WKB, but let us look at Euclidean path-integral 

1 Quantum mechanical example

In this section we would like to draw a parallel with a more traditional quantum mechanical example

for the calculation of the ground state wavefunction from a semiclassical expansion. The main feature

of the quantum mechanical case generalize also to the more interesting case of fields in dS.

The path integral formulation of quantum mechanics gives us access to any quantities of interest,

such as the ground-state wavefunction  0(x) and its corresponding energy E0. Let us consider a

particle evolving under the Hamiltonian Ĥ and with action S[x(t)], where x(t) is the trajectory of

the particle. The propagator K(xf , tf ;xi, ti) for going from some initial position xi at time ti to the

position xf at time tf can be written in both operator and path-integral languages

K(xf , tf ;xi, ti) = hxf |e
�i Ĥ(tf�ti)/~|xii =

Z x(tf )=xf

x(ti)=xi

Dx(t) eiS[x(t)]/~ . (1.1)

Assuming we are dealing with a particle bound to a potential, we can insert in the propagator a

complete set of eigenstates |ni of Ĥ with positive eigenvalues En:

hxf |e
�i Ĥ(tf�ti)/~i =

X

n

e
�iEn(tf�ti)/~ n(xi) n(xf ) , (1.2)

where  n(x) ⌘ hn|xi and  n(x) is its complex conjugate.

The ground state can then be extracted by performing a Wick rotation t ! �i⌧ and by then

taking the limit of ⌧f � ⌧i large. In this way, (1.2) is dominated by the ground state. Without loss of

generality we can specify xi = 0 and ⌧i = 0 and we obtain

 0(xf ) 0(0) e
�E0⌧f = lim

⌧f!1

Z x(⌧f )=xf

x(0)=0
Dx(⌧) e�SE[x(⌧)]/~ , (1.3)

where SE is the Euclidean action obtained after Wick rotation and ⌧ is the imaginary time. Let y(⌧)

be a fluctuation around the classical path: x(⌧) = xcl(⌧) + y(⌧). The path integral in (1.3) then

becomes
Z x(⌧f )=xf

x(0)=0
Dx(⌧) e�SE[x(⌧)]/~ = e

�SE[xcl(⌧)]/~
Z x(⌧f )=xf

x(0)=0
Dy(⌧) e

� 1
~

⇣
1
2

�2S
�x2

y2+ 1
3!

�3S
�x3

y3+...
⌘

. (1.4)

Neglecting the higher order terms which capture the interactions of perturbations around xcl(⌧), we

obtain the semiclassical approximation to the path integral (see e.g. [?])

Z x(⌧)=xf

x(0)=0
Dx(⌧) e�SE[x(⌧)]/~ = I(xf )e

�SE[xcl(⌧)]/~ , (1.5)

where xcl(⌧) is the trajectory satisfying the classical equation of motion and with boundary conditions

xcl(0) = 0 , xcl(⌧f ) = xf , (1.6)

and the prefactor I(xf ) is given by
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Consider the ground-state wavefunction (as in inflation)

1 Quantum mechanical example

In this section we would like to draw a parallel with a more traditional quantum mechanical example

for the calculation of the ground state wavefunction from a semiclassical expansion. The main feature

of the quantum mechanical case generalize also to the more interesting case of fields in dS.

The path integral formulation of quantum mechanics gives us access to any quantities of interest,

such as the ground-state wavefunction  0(x) and its corresponding energy E0. Let us consider a

particle evolving under the Hamiltonian Ĥ and with action S[x(t)], where x(t) is the trajectory of

the particle. The propagator K(xf , tf ;xi, ti) for going from some initial position xi at time ti to the

position xf at time tf can be written in both operator and path-integral languages

K(xf , tf ;xi, ti) = hxf |e
�i Ĥ(tf�ti)/~|xii =

Z x(tf )=xf

x(ti)=xi

Dx(t) eiS[x(t)]/~ . (1.1)

Assuming we are dealing with a particle bound to a potential, we can insert in the propagator a

complete set of eigenstates |ni of Ĥ with positive eigenvalues En:
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X

n

e
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where  n(x) ⌘ hn|xi and  n(x) is its complex conjugate.

The ground state can then be extracted by performing a Wick rotation t ! �i⌧ and by then

taking the limit of ⌧f � ⌧i large. In this way, (1.2) is dominated by the ground state. Without loss of

generality we can specify xi = 0 and ⌧i = 0 and we obtain
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where SE is the Euclidean action obtained after Wick rotation and ⌧ is the imaginary time. Let y(⌧)

be a fluctuation around the classical path: x(⌧) = xcl(⌧) + y(⌧). The path integral in (1.3) then

becomes
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Neglecting the higher order terms which capture the interactions of perturbations around xcl(⌧), we

obtain the semiclassical approximation to the path integral (see e.g. [?])
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Anharmonic oscillator

Moreover we defined vi and vf as the initial and final velocities on the classical trajectory and N is

a normalization factor. The expression (1.5) is correct up to corrections O(~) and will be a good

approximation in regions where SE � ~.
We can now see explicitly, in a a particular example, how this allows us to obtain a good approxi-

mation for the tail of  0(x) for large x.

1.1 Anharmonic Oscillator

Let us consider the following action, directly in Euclidean space, for an anharmonic oscillator

SE[x(⌧)] =
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2
mẋ
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. (1.8)

where the potential is given by
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~/m!. First, let us calculate the exponent of (1.5). The action evaluated on the classical
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where in the first line we have used the fact that the total energy vanishes at all times, and the second

line we have changed the integration variable from time to position. Here we define x̄
2
⌘ 2�x2f/d

2.

The classical trajectory with vanishing total energy can be determined by

dx

d⌧
=

r
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where the integration constant C corresponds to the lower limit of x going to infinity. Inverting this

expression one gets

x(⌧) = �
d

p
2� sinh(!⌧)

, (1.13)

where C has been absorbed into the variable ⌧ . Note that ⌧ 2 (�1, 0). At this point, using the

formula (1.7) and the classical path (1.13) one can easily compute the prefactor. We obtain1
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We have changed the integration variable to ⌧ .
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1 Quantum mechanical example

In this section we would like to draw a parallel with a more traditional quantum mechanical example

for the calculation of the ground state wavefunction from a semiclassical expansion. The main feature

of the quantum mechanical case generalize also to the more interesting case of fields in dS.

The path integral formulation of quantum mechanics gives us access to any quantities of interest,

such as the ground-state wavefunction  0(x) and its corresponding energy E0. Let us consider a

particle evolving under the Hamiltonian Ĥ and with action S[x(t)], where x(t) is the trajectory of

the particle. The propagator K(xf , tf ;xi, ti) for going from some initial position xi at time ti to the

position xf at time tf can be written in both operator and path-integral languages

K(xf , tf ;xi, ti) = hxf |e
�i Ĥ(tf�ti)/~|xii =

Z x(tf )=xf

x(ti)=xi

Dx(t) eiS[x(t)]/~ . (1.1)

Assuming we are dealing with a particle bound to a potential, we can insert in the propagator a

complete set of eigenstates |ni of Ĥ with positive eigenvalues En:

hxf |e
�i Ĥ(tf�ti)/~i =

X

n

e
�iEn(tf�ti)/~ n(xi) n(xf ) , (1.2)

where  n(x) ⌘ hn|xi and  n(x) is its complex conjugate.

The ground state can then be extracted by performing a Wick rotation t ! �i⌧ and by then

taking the limit of ⌧f � ⌧i large. In this way, (1.2) is dominated by the ground state. Without loss of

generality we can specify xi = 0 and ⌧i = 0 and we obtain

 0(xf ) 0(0) e
�E0⌧f = lim

⌧f!1

Z x(⌧f )=xf

x(0)=0
Dx(⌧) e�SE[x(⌧)]/~ , (1.3)

where SE is the Euclidean action obtained after Wick rotation and ⌧ is the imaginary time. Let y(⌧)

be a fluctuation around the classical path: x(⌧) = xcl(⌧) + y(⌧). The path integral in (1.3) then

becomes
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Neglecting the higher order terms which capture the interactions of perturbations around xcl(⌧), we

obtain the semiclassical approximation to the path integral (see e.g. [?])

Z x(⌧)=xf

x(0)=0
Dx(⌧) e�SE[x(⌧)]/~ = I(xf )e

�SE[xcl(⌧)]/~ , (1.5)

where xcl(⌧) is the trajectory satisfying the classical equation of motion and with boundary conditions

xcl(0) = 0 , xcl(⌧f ) = xf , (1.6)

and the prefactor I(xf ) is given by

I(xf ) = N
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0
dx0

v3(x0)

. (1.7)
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Moreover we defined vi and vf as the initial and final velocities on the classical trajectory and N is

a normalization factor. The expression (1.5) is correct up to corrections O(~) and will be a good

approximation in regions where SE � ~.
We can now see explicitly, in a a particular example, how this allows us to obtain a good approxi-

mation for the tail of  0(x) for large x.

1.1 Anharmonic Oscillator

Let us consider the following action, directly in Euclidean space, for an anharmonic oscillator
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where d ⌘
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where in the first line we have used the fact that the total energy vanishes at all times, and the second

line we have changed the integration variable from time to position. Here we define x̄
2
⌘ 2�x2f/d

2.

The classical trajectory with vanishing total energy can be determined by
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where the integration constant C corresponds to the lower limit of x going to infinity. Inverting this

expression one gets
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, (1.13)

where C has been absorbed into the variable ⌧ . Note that ⌧ 2 (�1, 0). At this point, using the

formula (1.7) and the classical path (1.13) one can easily compute the prefactor. We obtain1
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where C has been absorbed into the variable ⌧ . Note that ⌧ 2 (�1, 0). At this point, using the
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where in the first line we have used the fact that the total energy vanishes, and in the second line we

have changed the integration variable from time to position. Here we define x̄
2
⌘ 2�x2

f
/d

2. Notice

that to evaluate the action we did not need the explicit trajectory (2.13). As a check, this result (2.14)

is to ensure that our scaling argument (2.10) was indeed correct where the function F is given by the

expression inside the square bracket.

At this point, using the formula (2.8) and the classical path (2.13) one can easily compute the

prefactor. We obtain4

vivf

Z
⌧f

⌧i

d⌧

v2
=

e
!T

4!
(1 +

p
1 + x̄2)

p
1 + x̄2 . (2.15)

where T = ⌧f � ⌧i which is taken to be very large and we have used the solution (2.13). Therefore,

the prefactor is

I(xf ) = N
e
�!T/2

(1 + x̄2)1/4(1 +
p
1 + x̄2)1/2

, (2.16)

where we have absorbed all the xf -independent factors into the normalization factor N. Again, this

prefactor (2.16) is only a function of �x2
f
/d

2 as anticipated from the scaling argument. The expressions

for the Euclidean action (2.14) and for the prefactor (2.16) can now be inserted in eq. (2.7) to obtain

the ground-state wavefunction5 as

 0(x̄) = N
exp

n
�

1

6�

h�
1 + x̄

2
�
3/2

� 1
i
�

!T

2

o

(1 + x̄2)1/4
⇣
1 +

p
1 + x̄2

⌘
1/2

. (2.17)

We can also read o↵ the ground-state energy as E0 =
~!
2
. This corresponds to the ground-state energy

of the harmonic oscillator, and is consistent with the fact that � corrections to E0 appear only at

order ~2 (corresponding to a two-loop e↵ect, which we neglected). Note that the result we obtained

agrees with the one imposing periodic boundary condition xi = xf in [9].

Two comments on the limits of x̄ in eq. (2.17) are in order. For small x̄ (both xf and � are

small), as expected, the expression above reduces to the usual result of harmonic oscillator, which is

 0(x̄) ⇠ exp[�x
2

f
/(2d2)]. On the other hand, in the limit of large x̄ keeping � small one obtains

 0(x̄) ⇠ exp

✓
� �

1/2
x
3

f

d3

◆
. (2.18)

This expression shows how in the semiclassical approximation the tails of the distribution for xf get

modified. Moreover, it makes manifest the non-perturbative nature of this approximation, since we

obtain a non-analytic expression in the coupling �.

This result for the ground-state wavefunction can be obtained also in the more standard WKB

approximation. As a consistency check for our procedure, in App. A we show that indeed the WKB

wavefunction matches with eq. (2.17).

4We have changed the integration variable to ⌧ .
5It is worth mentioning that within the regime of perturbation theory the exponent of the wavefunction (2.17) gives

us exactly what one would obtain from computing the connected diagrams e.g. hX̂4i � 3hX̂2i2 with X̂ being the usual

position operator in harmonic oscillator.

9

+ O(�)F (x̄)
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Van Vleck, Pauli, Morette formula:

We are now going to study the ground-state wavefunction  0(x) using functional methods (see

e.g. [12] for an introduction to path-integral methods in QM). Let us consider a particle evolving under

the Hamiltonian Ĥ. The real-time (Lorentzian) action S[x(t)] is

S[x(t)] =

Z
tf

ti

dt

"
1

2
m

✓
dx

dt

◆
2

� V (x)

#
. (2.2)

The propagator K(xf , tf ;xi, ti) for going from some initial position xi at time ti to the position xf at

time tf can be written in both operator and path-integral languages

K(xf , tf ;xi, ti) = hxf |e
�i Ĥ(tf�ti)/~|xii =

Z
x(tf)=xf

x(ti)=xi

Dx(t) eiS[x(t)]/~ . (2.3)

We can insert in the propagator a complete set of eigenstates |ni of Ĥ with eigenvalues En that we

assume positive:

hxf |e
�i Ĥ(tf�ti)/~|xii =

X

n

e
�iEn(tf�ti)/~ n(xf) 

⇤
n(xi) , (2.4)

where  n(x) ⌘ hx|ni and  ⇤
n(x) is its complex conjugate.

The ground state can then be extracted by performing a Wick rotation t ! �i⌧ and by then

taking the limit of T ⌘ ⌧f �⌧i large. In this way, (2.4) is dominated by the ground state and we obtain

 0(xf) 
⇤
0(xi) e

�E0T = lim
T!1

Z
x(⌧f)=xf

x(⌧i)=xi

Dx(⌧) e�SE[x(⌧)]/~ , (2.5)

where SE is the Euclidean action obtained after Wick rotation and ⌧ is the imaginary time. Notice

that the point xi can be chosen arbitrarily if our goal is to extract  0(xf) (the dependence on xi will

end up in a normalization factor).

Let y(⌧) be a fluctuation around the classical path xcl: x(⌧) = xcl(⌧) + y(⌧). xcl(⌧) satisfies the

Euclidean equation of motion (without any expansion in �). The path integral in (2.5) then becomes

Z
x(⌧f)=xf

x(⌧i)=xi

Dx(⌧) e�SE[x(⌧)]/~ = e
�SE[xcl(⌧)]/~

Z
y(⌧f)=0

y(⌧i)=0

Dy(⌧) e
� 1

~

✓
1

2

�2SE

�x2
y
2
+

1

3!

�3SE

�x3
y
3
+...

◆

. (2.6)

Neglecting the higher-order terms which capture the interactions of perturbations around xcl(⌧), we

obtain the semiclassical approximation for the ground-state wavefunction  0(xf),

 0(xf) = I(xf)e
�SE[xcl(⌧)]/~ , (2.7)

where the path integral of the quadratic action of y(⌧) gives rise to the prefactor I(xf). Let us

emphasize that the higher-order terms we have neglected in (2.6) correspond to higher-order corrections

in � in perturbation theory, which are equivalent to loop diagrams, see [12]. The on-shell action in

(2.7) only captures all the tree-level diagrams with many external legs x. Moreover, following the

standard derivation in [12] one arrives to the VanVleck-Pauli-Morette formula of the prefactor I(xf),

I(xf) = N

s
m

2⇡i~vivf
R
xf

xi

dx0

v3(x0)

, (2.8)
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Gaussian WFU

In inflation the wavefunction of 
the Universe is

⇣k(⌘) = ⇣0k
(1� ik⌘)eik⌘

(1� ik⌘c)eik⌘c
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For free theory the saddle solution is

It decays exponentially after iε 
rotation. 

It is complex, since BD boundary 
condition is not real 

⇣�~k 6= ⇣⇤~k
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WFU Beyond Gaussianity

After we understood the relation between two point functions of operators and expec-

tation values of the corresponding fluctuations we can similarly understand the relation

between three point functions. The wavefunction has the form

Ψ =Exp

[

1

2

∫

d3xd3x′⟨O(x)O(x′)⟩f(x)f(x′)+

1

6

∫

d3xd3x′d3x′′⟨O(x)O(x′)O(x′′)⟩f(x)f(x′)f(x′′)

] (5.12)

where we emphasized that derivatives of Ψ give correlation functions for the corresponding

operators. The expectation values in momentum space are related by

⟨fk⃗f−k⃗⟩
′ = −

1

2Re⟨Ok⃗O−k⃗⟩′

⟨f
k⃗1

f
k⃗2

f
k⃗3
⟩′ =

2Re⟨O
k⃗1
O

k⃗2
O

k⃗3
⟩′

∏

i(−2Re⟨Ok⃗i
O−k⃗i

⟩′)

(5.13)

where the prime means that we dropped a factor of (2π)3δ(
∑

k⃗). And Re indicates the

real part. The factors of two come from the fact that we are squaring the wavefunction

(5.12). Notice that this explains why ⟨TT ⟩ ∼ c while ⟨γγ⟩ ∼ 1/c where c ∼ −R2
dSM2

pl.

Now consider three point functions. For example, consider the three point function of

the traceless part of the stress tensor. This can be computed directly in dS4 by inserting

the classical solutions (5.7) into the cubic terms in the action. This gives

⟨T s1

k⃗1

T s2

k⃗2

T s3

k⃗3

⟩ = (2π)3δ3(
∑

k⃗i)
M2

pl

ρ̇2
∗

(−
1

32
)(ϵs1

ii′ϵ
s2

jj′ϵ
s3

ll′ tijlti′j′l′)I (5.14)

where I is defined in (4.11). The result in EAdS4 is the same as above except for a minus

sign, which can be understood as coming from (5.9). When we perform this computation

we need to drop a local divergent term which is proportional to −i
2ηc

√
hR(3). We did not

have any divergence in (4.17) due to the fact that we were computing the square of the

wavefunction while in (5.14) we are computing the third derivative of the wavefunction.

Of course, we can compute directly (5.14) from (4.17) using (5.13). So in order to compute

three point functions of the stress tensor in the hypothetical three dimensional field theory

corresponding to a nearly dS4 spacetime all we need to do is apply formula (5.13) to our

results in section four. To go to the corresponding expectation values in EAdS4 we just

need to multiply all dS4 results by a minus sign which comes from R2
dS → −R2

AdS and

31
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Perturbative recipe for WFU is the same as in AdS/CFT:  Witten diagrams
1.6.2 Graviton Exchange

A universal amount of non-Gaussianity in slow-roll inflation comes from gravi-
ton exchange:

This was computed by Maldacena in 2002. The result is

B(k1, k2, k3)

P 2
=

"

k1k2k3

2

4
X

n 6=m

knk
2
m
+

8

K

X

n>m

k2
n
k2

m

3

5+
ns � 1

k1k2k3

X

n

k3
n
, (1.13)

where " = �Ḣ/H2. Note that the signal is still analytic in the squeezed limit.

1.6.3 Massive Particles

Non-analyticity in the squeezed limit arises from massive particles:

F =

⇠ �g2

Z
d⌘

⌘2

d⌘0

⌘02
ei(k1+k2)⌘ei(k3+k4)⌘0

G(|k1 + k2|, ⌘, ⌘
0) . (1.14)

" "

written for conformally
coupled scalars

complicated function
of Hankel functions

Instead of trying to compute the integral, we note that G satisfies

�
⌘2@2

⌘
� 2⌘@⌘ + k2

I
⌘2 +m2

�
G(kI , ⌘, ⌘

0) = �i⌘2⌘02 �(⌘ � ⌘0) . (1.15)

Since k3
I
G depends only on kI⌘ and kI⌘0, we can trade ⌘-derivatives for kI-

derivatives. This gives

1

kI

�
k2

I
@2

kI
� 2kI@kI � k2

I
@2

k1+k2
+m2

� 2
�
(k2

I
F ) = g2kI

E
. (1.16)
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On shell action with prescribed boundary conditions at late times

hO(x)O(x0) . . .i
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are the “CFT” correlators

Cosmological correlators:



Resumming Witten diagrams

Tree level diagrams are dominant since, at a given order in λ, they have more ζ0
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� �
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(c)

Figure 4 In the first row (Figure 4a) tree-level Witten diagrams; these are captured by the semi-classical method.

In the second row (Figure 4b) one-loop diagrams; these would be captured by the (one-loop) prefactor in the

semi-classical method. In the third row (Figure 4c) higher-loop diagrams; these are only captured at subleading

order in the semi-classical calculation.

would be interested in evaluating the WFU for all functions that are above a certain threshold6. More

specifically, as we discussed in the introduction, one would consider a filtered field ⇣̂0(x) and require

that this field exceeds a certain numerical threshold at a point of interest. In the limit of a very high

threshold all configurations ⇣0(x) that are above threshold have a “large ⇣0” and as such the WFU

can be calculated semiclassically. Of course, to get to the final answer one should eventually sum over

all ⇣0(x) that are above threshold. This final integral can also be done in saddle-point approximation:

since the probability of all interesting configurations is small, the integral will be dominated by the

least unlikely. In this paper we do not want to commit to a very specific question, which would require

the details of the window function and the threshold. We are going simply to choose a given ⇣0(x)

and take it large enough for our approach to be applicable. Since the question we are addressing is

not completely specified, we will be mostly interested in the behaviour of the probability as a function

of the parameter �⇣2
0
/P⇣ , especially once this becomes large. We leave the actual implementation of

these techniques to the calculation of the PBH abundance to future work.

6The threshold is of course an approximate concept: one should know the precise boundary in the functional space

⇣0(x) that separates the configurations giving rise to a PBH from the ones that do not.
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The selection of diagrams makes sense only for large ζ0 



Non-linear WFU

1.  Fix boundary conditions at late times ζ0 and BD in far past
2.  Find the classical non-linear solution of the EOM in Euclidean time
3.  Calculate the action S and get Ψ

⇣(x, z) ⇠ e�kz

z = 0
⇣0(x)

Free

Non-linear

z ! 1

3

 [⇣0(~x)] ⇠ e�S/~
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It corresponds to resumming all tree-level Witten diagrams 

Derivative interactions

No evolution outside H 

Exponential decay



Inflation with ζ’4 interaction

Before getting to the numerical solution of PDE, one can get 
some intuition reducing to an ODE

Euclidean EOM

4 Single-field inflation with ⇣̇4 interaction

Let us now apply our methods to a realistic scenario. We focus on a specific model of single-field

inflation with a large quartic interaction ⇣̇
4 [11]. With a single interaction it will be easier and more

transparent to explore the semiclassical limit and derive analytical estimates. We leave to future

work the generalisation to other interactions. In the next subsection we will review this model in the

context of the E↵ective Field Theory of Inflation (EFTI) and explain why it is consistent to focus on

the non-linearities induced by the single operator ⇣̇
4 and treat the geometry as an unperturbed de

Sitter space. After that, we will concentrate on the calculations of the ⇣ probability distribution for

large values of ⇣, using both analytical and numerical methods.

4.1 Large 4-point function in single-field inflation

The model we would like to discuss is naturally described within the EFTI [12], which we briefly

review below. In single-field inflation, the rolling of the inflaton �(t) in a quasi-dS background leads

to the spontaneous breaking of time di↵eomorphisms. In unitary gauge, ��(x) = 0, the scalar mode

is hidden inside the metric and the e↵ective action for perturbations can be written as (see [12])

S =

Z
d4x

p
�g


1

2
M

2

Pl
R+M

2

Pl
Ḣg

00
�M

2

Pl
(3H2 + Ḣ) +

+
1

2
M2(t)

4(�g00)2 +
1

3!
M3(t)

4(�g00)3 +
1

4!
M4(t)

4(�g00)4 + . . .

�
,

(4.1)

where gµ⌫ is the metric, R is the Ricci scalar, �g00 ⌘ g
00 + 1 and Mi(t) are functions of time with

dimensions of a mass. The operators in the first line, expanded around the inflationary background,

start linear in perturbations while those in the second line start at second and higher order. The dots

stand for operators starting at even higher order in perturbations or containing more derivatives.

The scalar mode ⇡ can be reintroduced by performing a broken time di↵eomorphism t ! t+ ⇠
0(x)

and then promoting ⇠
0 to a field, �⇡, that transforms non-linearly under the broken time di↵s.

⇡(x) ! ⇡̃(x̃(x)) = ⇡(x)� ⇠
0(x). In this way the resulting action is fully di↵-invariant. As an example,

under this Stueckelberg procedure the g
00 component of the metric transforms (neglecting the mixing

with metric perturbations) as

g
00

! �1� 2⇡̇ + (@µ⇡)
2
. (4.2)

This will be the only transformation we will need in our discussion. If one further assumes an ap-

proximate shift symmetry for ⇡, then operators without at least one derivative acting on ⇡ will be

suppressed. This assumption allows us to neglect terms coming for instance from the time dependence

of the functions Mi(t) in the action (4.1). Notice that the Goldstone boson ⇡ is related to the curvature

perturbation ⇣ through the relation ⇣ = �H⇡.

We want to explore a region of parameters where the ⇡ non-linearities are dominated by a single

quartic operator. Following [11] let us start with M4 6= 0 while all the other Mi’s in the action (4.1)

are zero. We are going to come back to discuss the radiative stability of this choice momentarily. The
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for instance we do it in General Relativity all the times, when we study the full Einstein equations

to obtain for example the Schwartzschild solution. Of course there is no guarantee that the solution

remains healthy: perturbations around the solution may become pathological signalling that the EFT

is actually breaking down (see Sec. 4 of [13]). Thus one should always check that the non-linear

solution remains healthy. Another point of concern is the knowledge of the EFT: to find a reliable

solution one should have control of all the terms in EFT with the minimum number of derivatives, but

this looks challenging. In some cases the symmetries of the problem are such that the whole non-linear

structure of the theory is fixed. Again GR is the prototypical example: the Ricci scalar contains an

infinite series of non-linearities of the graviton, all terms with two derivatives. In the case of scalars,

one can consider symmetries that enforce a complete non-linear structure. For instance the scalars

that describe the embedding of a brane in an extra dimensional space have an action fixed by the

(non-linear realisation of) geometrical symmetries: the DBI action [14]. Another example is the one of

Galileons [15]: at leading order in derivatives there are only three possible interaction terms (in 3+1

dimensions). Even in cases in which symmetries are not powerful enough, some assumption about the

UV completion may fix the full non-linear structure of EFT. We already gave above the example of the

Abelian Higgs model, while another example is the Euler-Heisenberg Lagrangian obtained integrating

out the electron from QED. The necessity to know the whole non-linear action is therefore a feature

more than a pathology, not that di↵erent from the necessity of knowing the full scalar potential V (�)

to describe inflation from observable scales to reheating.

Before moving to the actual calculation with the ⇣̇
4 interaction, let us comment on another ap-

proximation: we are going to neglect metric perturbations, considering a scalar field in exact de Sitter

space. This corresponds to the usual “decoupling limit”: the e↵ect of ⇡ perturbations on the metric

is suppressed by the slow-roll parameter ✏ ⌘ �Ḣ/H
2, which also described the deviation of the un-

perturbed background from de Sitter. This is not changed by the fact that we are taking large values

of ⇣; the leading interaction can be read looking at ⇡ only and treating the metric as unperturbed.

4.2 ⇣̇4 beyond perturbation theory

We can now apply the main ideas of this paper to the model introduced in the previous Section, with

the discussed approximations. The action for ⇣ using conformal time is

S =

Z
d3xd⌘

(
1

2⌘2P⇣


⇣
02
� (@i⇣)

2

�
+

�⇣
04

4!P 2

⇣

)
, (4.9)

where P⇣ ⌘ H
2
/(2✏M2

Pl
) and � ⌘ (H/⇤U)

4
⌧ 1. The standard in-in perturbation theory for ⇣

corresponds to an expansion of the various correlators in powers of �. From now we call ⇣0 the late-time

value of ⇣. Comparing the free action with the quartic interaction, one sees that the relevant expansion

parameter is �⇣
2

0
/P⇣ . The semiclassical expansion corresponds to an expansion in � ⌧ 1 keeping

�⇣
2

0
/P⇣ finite and not necessarily small. The wavefunction of the universe is calculated evaluating the

action on-shell

 [⇣0(~x)] ⇠ e
iS[⇣cl]/~ . (4.10)
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Figure 5 All the tree-level Witten diagrams of the interaction ⇣
04, which are captured by the semi-classical

method. Permutations of each order are denoted by dots.

The field ⇣cl is a solution of the equation of motion one can derive from the action (4.9)

�⇣
00 +

2

⌘
⇣
0
� @

2

i ⇣ �
�

2P⇣

⌘
2
⇣
02
⇣
00 = 0 . (4.11)

[[[Window function and Sybiriakov’s saddle]]]

[[[Euclidean]]]

As we argued in eq. (1.2), this expansion eventually breaks down for late-time values of ⇣ larger

than ⇠ g
�1/2

NL , so that one needs to go beyond perturbation theory. In our semiclassical approach, it

is easy to identify the semiclassical scaling for the action S as a function of � and of the late-time

configuration ⇣0. The on-shell action scales as12

Son�shell ⇠
1

�
F (�⇣20 ) , (4.12)

where F is a function to be determined, as in the case of the anharmonic oscillator in eq. (2.14). We

can appreciate from eq. (4.12) that the semiclassical approach is reliable provided that � ⌧ 1 while

�̃ ⌘ �⇣
2

0
is left finite.

Before moving to the analytical and numerical estimates for the wavefunction of the universe, let us

comment on which diagrams our semiclassical calculation is able to capture and re-sum. In dS space,

 [⇣0(x)] can be conveniently computed in perturbation theory as a sum of Witten diagrams where

one imposes Dirichlet boundary conditions for ⇣ at late times (see for example [16]). The tree-level

Witten diagrams of Fig. 5 have the same scaling as the lowest-order term in the semiclassical expansion

(that corresponds to the on-shell action (4.12)). This is immediate to realize since for any additional

vertex we add we increase the number of boundary legs by two. Thus, a tree-level diagram with V

vertices scales as ⇠
1

�
(�⇣2

0
)V+1. The subleading order in � in the semiclassical expansion is instead

obtained through a one-loop calculation around a non-trivial background for ⇣ (this corresponds to

the calculation of the prefactor in eq. (2.8) in our quantum mechanical example). The scaling of this

factor is �0
G(�⇣2

0
), which corresponds to the scaling of the one-loop Witten diagrams of Fig. 6, while

the diagrams of Fig. 7 are campured by two- or higher- loop calculations around the semiclassical

profile for ⇣.

12To see this, just rescale ⇣ ! 1p
�
⇣̃ in eq. (4.9).
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ODE
Once you fix a scale in ζ0 derivative interactions will only affect 

comparable modes. Reduction to ODE should be O(1) ok

are normalized so to have the same value at ⌘out and can be easily compared. The limit where the

semiclassical approximation holds (�⇣2
0
/P⇣ � 1, � ⌧ 1) now corresponds to the limit of large �̃.

The numerical solutions are shown in figure 8a, setting ⇣(⌘out) = 1, H⌘in = �80 and H⌘out =

�0.001. Note that one needs to make sure that by increasing the value of �̃ the solution decays

(a) (b)

Figure 8 Left panel (figure 8a): the numerical solutions for � = {0, 100, 200, 500}. Right panel (figure 8b): the

rescaling solutions for � = {0, 100, 200, 500}. The amplitude ⇣0 at late times is set to unity.

exponentially at early times, so to approach the Bunch Davies vacuum. This means that one has to

use larger values (in modulus) of ⌘in while increasing �̃.

We notice that the solutions approach an universal behaviour for large �̃, that can be obtained by

rescaling ⌘ !

p
�̃⌘. The rescaled solutions are illustrated in Fig. 8b.

Now let us evaluate the on-shell action. First we note that, as in the case of a free field in dS, the

action still presents a singularity for ⌘ ! 0 which can be completely removed since its contribution

to the wavefunction is purely imaginary. Moreover, note that our interaction �⇣
04 peaks at horizon

crossing and the solution becomes eventually free for ⌘ ! 0. This means that the divergence in the

action is the same as in the free case and it can be easily subtracted. The regularized action (after

the rescaling) is

�SODE = �
⇣
2

0

P⇣

Z
⌘out

⌘in

d⌘

(
1

2⌘2


⇣
02 + (⇣2 � 1)

�
+

�̃

4!
⇣
04

)
. (4.15)

The behaviour of the on-shell action evaluated on the numerical solutions are presented in Fig. 9. It

shows that the on-shell action �SODE ⇠ �̃
�1/4 for large �̃. The wavefunction of the Universe therefore

behaves as

 [⇣0] ⇠ exp


�
1

�
�̃
3/4

�
, (4.16)

where here we have kept the dependence on the late-times amplitude ⇣0 and on P⇣ obtained in

eq. (4.15).
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Figure 6 All the loop-level Witten diagrams of the interaction ⇣
04, which are captured by the (one-loop) prefactor

in the semi-classical method.

⇣0⇣0 ⇣0⇣0

�
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+
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+ . . . +
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� �
� �

+ . . .

Figure 7 Examples of higher-loop Witten diagrams of the interaction ⇣
04, which are only captured at subleading

orders in the semi-classical calculation.

4.3 ODE approximation

The general behaviour of the action as a function of the boundary values of ⇣ can be understood, at

least qualitatively, by neglecting the x-dependence in the equation of motion for ⇣. To motivate this

approximation let us consider our problem with boundary condition at late times given by ⇣(⌘out,x) =

⇣0(x), with the Fourier transform of ⇣0(x) peaked around some momentum k. The interaction term

in the EoM (4.11) will couple di↵erent modes of similar wavelength, so that modes far from k will

remain suppressed. Because of this expectation we can approximatively take @
2

i
⇣ ⇠ �k2

⇣, so that

eq. (4.11) reduces to the following ordinary di↵erential equation

�⇣
00 +

2

⌘
⇣
0 +H

2
⇣ �

�

2P⇣

⌘
2
⇣
02
⇣
00 = 0 , (4.13)

where we have set |k|/H = 1. The boundary conditions we are using are

⇣
0(⌘in) =

H⌘in

H⌘in � 1
⇣(⌘in) , ⇣(⌘out) = ⇣0 , (4.14)

where ⌘in and ⌘out are respectively the initial and final (conformal) times of integration. Note that

the boundary condition at ⌘in is the usual Bunch Davies vacuum condition. This approximation, as

we are going to argue, is useful in order to obtain an analytic understanding for the scaling of S as

a function of � and ⇣0. In Sec. 4.5 and 4.6 we will instead solve the full PDE without making any

assumptions and we will compare with the results from the ODE approximation.

In order to solve eq. (4.13) numerically it is convenient to rescale ⇣ ! ⇣0⇣, with now ⇣(⌘out) = 1,

and define �̃ ⌘ �⇣
2

0
/P⇣ . In this way the EoM (4.13) keeps the same form whilst the action rescales

as S ! (⇣2
0
/P⇣)S, with � replaced by �̃ and P⇣ set to 1. After this replacement all solutions ⇣(⌘)
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Figure 9 SODE as a function of the amplitude ⇣0.

4.4 Analytic understanding of ODE result

Here we would like to check the numerical results for the ODE with some analytic estimates for

the solution ⇣(⌘) in the limit of large �̃. First we notice that there are three regimes for the ODE,

summarized in Fig. 10. At very early times �H⌘ � 1, the field approaches the BD vacuum so its

amplitude is exponentially small. Therefore, in this regime the interaction term becomes negligible

and we approach a free evolution. We define ⌘1 as the earliest time at which the interaction term is

comparable with the free time kinetic term. For ⌘ < ⌘1 the solution is approximatively free (region I

of the Figure), while for ⌘ > ⌘1 we enter the non-linear regime (region II).

I: Free III: FreeII: Non-linear

⌘1 ⇠ ��̃
1/4

⌘2 ⇠ �1/�̃1/4 ⌘ = 0

⌘

Figure 10: Three regimes of the solution.

At very late times ⌘ ! 0 the interaction term becomes subdominant once again since the time

derivative of ⇣ approaches a constant. Thus, the solution becomes free (region III) for times ⌘ > ⌘2.

In region III the solution is approximatively given by

⇣III ⇠ (1�H⌘)eH⌘
, (4.17)

since our boundary condition after rescaling is ⇣(⌘out) = 1. From this we can estimate ⌘2 as the time

when ⇣
00 and the non-linear term in eq. (4.13) are of the same order

�̃⌘
2

2⇣
0
III
(⌘2)

2
⇠ 1 . (4.18)
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Figure 9 The function F (�̃) = � ·�SPDE for the sinusoidal case. The blue curve shows the best fit of � ·�SPDE

(red points), proportional to �̃
3/4.

Let us now come to the study of the PDE with a Gaussian, spherically symmetric profile of ⇣ at

late times. This is similar to what one should do for a proper calculation of PBH formation, where the

assumption of spherical symmetry should be reasonably accurate. Notice that one should eventually

sum over all the radial profiles exceeding a certain threshold. Here we simply choose a certain profile,

leaving a proper investigation about PBH formation to future work.

We simply impose the conditions

⇣(⌧f , r) = ⇣0 exp(�k
2
r
2) , (4.37)

and @r⇣(⌘, ri) = 0 = ⇣(⌘, rf) where r 2 [ri, rf ]. As usual the condition (4.21) at early times has been

imposed. Following the same rescaling procedure as before, we have ⇣ ! ⇣0⇣, so that the condition

above becomes ⇣(⌧f , r) = exp(�k
2
r
2).

Now let us proceed with the PDE. Given spherical symmetry eq. (4.12) takes the form,

�⇣
00 +

2

⌧
⇣
0
�

1

r2

@

@r

✓
r
2
@⇣

@r

◆
�

�̃

2
⌧
2
⇣
02
⇣
00 = 0 . (4.38)

The numerical solutions are shown in Figures 10a and 10b for �̃ = 0 and �̃ = 200, respectively. (We

chose H⌧i = �80, H⌧f = �0.001. The value of rf has to be su�ciently large to capture the decay of

the Gaussian far from the center.)

Like in the previous case, the finite part of the action �SPDE reads

�SPDE = �
⇣
2

0

P⇣

Z
⌧f

⌧i

d⌧

Z
rf

ri

dr r
2

⇢
1

2⌧2


⇣
02 + (@r⇣)

2
� 4k4r2e�2k

2
r
2

�
+

�̃

4!
⇣
04
�

=
1

�
F (�̃) . (4.39)

As before, we subtracted the late-time value of (@r⇣)2, i.e. 4k4r2e�2k
2
r
2

, from the full action to get rid

of the divergent piece at late times. We now perform the integral in (4.39) numerically on the solutions
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Qualitatively similar with the same asymptotic scaling in λ

Small λ Large λ

(One can check to reproduce perturbative result at small λ)



WFU for resonant features

Three simplifications:

1. Small features, we expand in 
 
Since the action is stationary around EOM we only need  solution

2. Time integral can be done in saddle-point

3. Loops are negligible also for typical fluctuations 
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K�tπ
2 ≤ ϵ2K�tH

4
BMBπ

2- r?2`2 r2 mb2/ i?�i H Bb /2+`2�bBM;
BM i?2 H�bi bi2T- b?Qrb i?�i i?2 }`bi i2`K Bb BM/22/ M2;HB;B#H2 +QKT�`2/ iQ i?2 b2+QM/ QM2 Q7 Q`/2` ϵH2(∂µπ)

2- (a_S, �i
H2�bi r?2M (∂µπ)

2 ! H2π2X U�//BiBQM +QKT�`2/ iQ #27Q`2- `2H�i2/ iQ bm#iH2iB2b- KBMQ` �//BiBQM- +�M #2 /Bb+mbb2/ HBp2V)

9

Ai Bb MQi2rQ`i?v i?�i i?2 �+iBQM UkXdV Bb MQi 7Q`KmH�i2/ T2`im`#�iBp2Hv, i?2 MQMHBM2�`BiB2b i?�i Bi
+QMi�BMb �`2 2tT`2bb2/ BM � `2bmKK2/ K�MM2`- r?B+? Bb +`m+B�H r?2M /2�HBM; rBi? MQM@T2`im`#�iBp2
T?2MQK2M� �M/ `�`2 H�`;2 ~m+im�iBQMbX 1p2Mim�HHv- Qm` �+iBQM +�M #2 mb2/ 7Q` �Mv bBM;H2@+HQ+F KQ/2H
Q7 BM~�iBQM- T`QpB/2/ QM2 Bb MQi BMi2`2bi2/ BM O(ϵ2) i2`KbX A7 QM2 Bb �;MQbiB+ �#Qmi i?2 mM/2`HvBM;
/vM�KB+b /`BpBM; BM~�iBQM- i?2 /vM�KB+b Q7 π +�M #2 i?2M Q#i�BM2/ Dmbi #v T�`�K2i`BxBM; i?2 iBK2
2pQHmiBQM Q7 i?2 >m##H2 `�i2 /m`BM; BM~�iBQM- rBi? MQM@HBM2�`BiB2b bBKTHv 2M+Q/2/ BM i?2 7mM+iBQM
Ḣ(t+ π)X

h?2 +H�bbB+�H bQHmiBQMb Q7 i?2 7mHHv MQM@HBM2�` �+iBQM UkXdV +�M #2 mb2/- 7QHHQrBM; (9)- iQ �M�Hvb2
i?2 q6l BM i?2 H�`;2 ζ HBKBiX h?2 bQHmiBQM Q7 i?2 +Q``2bTQM/BM; T�`iB�H /Bz2`2MiB�H 2[m�iBQM US.1V-
?Qr2p2`- +�M QMHv #2 �+?B2p2/ MmK2`B+�HHvX AM i?Bb T�T2` r2 +QM+2Mi`�i2 QM i?2 +�b2 BM r?B+? QM2
?�b � 72�im`2- HQ+�HBb2/ Q` T2`BQ/B+- bmT2`BKTQb2/ iQ � bKQQi? bHQr@`QHH TQi2MiB�HX AM i?Bb +�b2 QM2
?�b �MQi?2` 2tT�MbBQM T�`�K2i2`- i?2 �KTHBim/2 Q7 i?2 72�im`2- �M/ BM i?Bb +�b2 r2 rBHH #2 �#H2 iQ
;2i �M�HviB+ `2bmHibX 6Q` +QM+`2i2M2bb r2 7Q+mb QM T2`BQ/B+ 72�im`2b- BX2X i?2 +�b2 Q7 `2bQM�Mi MQM@
:�mbbB�MBivX

j q�p27mM+iBQM Q7 i?2 mMBp2`b2 7Q` `2bQM�Mi 72�im`2b

jXR _2bQM�Mi 72�im`2b

AM i?2 7QHHQrBM;- r2 rBHH +QKTmi2 i?2 r�p27mM+iBQM Q7 i?2 mMBp2`b2 r?2M i?2 iBK2@/2T2M/2M+2 Q7 i?2
>m##H2 `�i2 Bb �bbmK2/ iQ p2`B7v

Ḣ(t) = Ḣ⋆

(
1− b̃ cos(ωt+ δ)

)
, UjXRV

r?2`2 �HH T�`�K2i2`b Ḣ⋆, b̃,ω, δ �`2 +QMbi�Mi- �M/ r?2M i`2�iBM; i?2 Qb+BHH�iQ`v T�`i �b � T2`im`#�iBQM-
BX2X �i }`bi Q`/2` BM i?2 T�`�K2i2` b̃X �b r2 bi`2bb2/- Qm` K2i?Q/ Bb `2�/BHv �TTHB+�#H2 #2vQM/ i?2b2
�bbmKTiBQMb- #mi i?Bb bBKTH2 7Q`K rBHH 2M�#H2 mb iQ /2`Bp2 �M�HviB+�H `2bmHibX

q?BH2 i?2 7Q`K UjXRV Bb � T2`72+iHv H2;BiBK�i2 bi�`iBM; TQBMi 7`QK �M 16h TQBMi Q7 pB2r- r2 MQr
2tTH�BM i?�i Bi Bb BM/22/ � ;QQ/ �TT`QtBK�iBQM iQ i?2 /vM�KB+b Q7 i?2 >m##H2 `�i2 BM KQiBp�i2/ KQ/2Hb-
�M/ /Bb+mbb Bib `2;BK2 Q7 p�HB/Biv BM i?Bb +QMi2tiX 1tTHB+BiHv- H2i mb +QMbB/2` KQ/2Hb Q7 BM~�iBQM /`Bp2M
#v � +�MQMB+�H b+�H�` }2H/ rBi? TQi2MiB�H

V (φ) = Vsr(φ) + Λ4 cos (φ/f) , UjXkV

r?2`2 Vsr(φ) Bb � ;2M2`B+ bHQr@`QHH TQi2MiB�H- f Bb i?2 �M�HQ;Qmb Q7 i?2 �tBQM /2+�v +QMbi�Mi �M/ Λ

Bb i?2 b+�H2 i?�i +QMi`QHb i?2 �KTHBim/2 Q7 i?2 Qb+BHH�iBQMb Q7 i?2 TQi2MiB�HX h?2 bT2+B}+ KQ/2H rBi?
Vsr(φ) = µ3φ ?�b #22M bim/B2/ BM /2i�BH BM (8) #mi r2 F22T Vsr ;2M2`B+ �b BM (e- d)X �b i?2 �M�HvbBb
rBHH b?Qr- r2 +QmH/ �HbQ �HHQr Λ iQ /2T2M/ QM i?2 b+�H�` }2H/ BM � bHQr@`QHH K�MM2` �M/ `2bmHib rQmH/
2[m�HHv ?QH/- #mi r2 +QMbB/2` Λ +QMbi�Mi 7Q` bBKTHB+Biv Q7 T`2b2Mi�iBQMX
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Focus on

For ε à 0

<latexit sha1_base64="xSqCaVxnPwPnf+9aHEPdX5SboqU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthbaUDabTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYnuBNRwKRRvoUDJO6nmNA4kfwhGN1P/4YlrIxJ1j+OU+zEdKBEJRtFKnR4KGXIS9Ks1t+7OQJaJV5AaFGj2q1+9MGFZzBUySY3pem6Kfk41Cib5pNLLDE8pG9EB71qqaMyNn8/unZATq4QkSrQthWSm/p7IaWzMOA5sZ0xxaBa9qfif180wuvJzodIMuWLzRVEmCSZk+jwJheYM5dgSyrSwtxI2pJoytBFVbAje4svLpH1W9y7q3t15rXFdxFGGIziGU/DgEhpwC01oAQMJz/AKb86j8+K8Ox/z1pJTzBzCHzifP7PRj8A=</latexit>

b̃

<latexit sha1_base64="9Q1WCygeHYpSSmvOitdUHlbpilY=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE1ItQ9OKxgrWFJpTNZtIu3WzC7kQopX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMCzMpDLrut1NaWV1b3yhvVra2d3b3qvsHjybNNYcWT2WqOyEzIIWCFgqU0Mk0sCSU0A6Ht1O//QTaiFQ94CiDIGF9JWLBGVrJ91HICGhIr6nbq9bcujsDXSZeQWqkQLNX/fKjlOcJKOSSGdP13AyDMdMouIRJxc8NZIwPWR+6liqWgAnGs5sn9MQqEY1TbUshnam/J8YsMWaUhLYzYTgwi95U/M/r5hhfBWOhshxB8fmiOJcUUzoNgEZCA0c5soRxLeytlA+YZhxtTBUbgrf48jJ5PKt7F3Xv/rzWuCniKJMjckxOiUcuSYPckSZpEU4y8kxeyZuTOy/Ou/Mxby05xcwh+QPn8wdasZCV</latexit>

b̃ = 0

<latexit sha1_base64="TdbRrrFVzmcRb0eWX5XlPMsvdSw=">AAACD3icbVC7TsMwFHV4lvIKMLJYVKCyVEmFgAWpgoWxSPQhNaG6cZ3WqvOQ7SCVqH/Awq+wMIAQKysbf4PbZICWI1k+PudeXd/jxZxJZVnfxsLi0vLKamGtuL6xubVt7uw2ZZQIQhsk4pFoeyApZyFtKKY4bceCQuBx2vKGVxO/dU+FZFF4q0YxdQPoh8xnBJSWuuaRAzweAC7nt/NAFRzjC5y976qZ0jVLVsWaAs8TOycllKPeNb+cXkSSgIaKcJCyY1uxclMQihFOx0UnkTQGMoQ+7WgaQkClm073GeNDrfSwHwl9QoWn6u+OFAIpR4GnKwNQAznrTcT/vE6i/HM3ZWGcKBqSbJCfcKwiPAkH95igRPGRJkAE03/FZAACiNIRFnUI9uzK86RZrdinFfvmpFS7zOMooH10gMrIRmeohq5RHTUQQY/oGb2iN+PJeDHejY+sdMHIe/bQHxifP7PTmzE=</latexit>

↵(↵⇣) = ↵2⇣

<latexit sha1_base64="RNl2ZthAhZ1ghA3EJRqdZaZfC+g=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOaUCbbTbp0kyy7G6GU/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvlIJr47rfTmltfWNzq7xd2dnd2z+oHh61dZYrylo0E5nqhqiZ4ClrGW4E60rFMAkF64Sju5nfeWJK8yx9NGPJggTjlEecorGS76OQQyR+HBOvX625dXcOskq8gtSgQLNf/fIHGc0TlhoqUOue50oTTFAZTgWbVvxcM4l0hDHrWZpiwnQwmd88JWdWGZAoU7ZSQ+bq74kJJlqPk9B2JmiGetmbif95vdxEN8GEpzI3LKWLRVEuiMnILAAy4IpRI8aWIFXc3kroEBVSY2Oq2BC85ZdXSfui7l3VvYfLWuO2iKMMJ3AK5+DBNTTgHprQAgoSnuEV3pzceXHenY9Fa8kpZo7hD5zPH+zDkPU=</latexit>

↵ � 1

Non-linearity parameter is
<latexit sha1_base64="YXMXeweIZqtzyEL1JiDP/mxk5e4=">AAACCXicbVA9SwNBEN2LXzF+RS1tFoMgFuFORC2DNikjmA/IhTC3mUuW7H24uxcIR1ob/4qNhSK2/gM7/42b5ApNfDDweG+GmXleLLjStv1t5VZW19Y38puFre2d3b3i/kFDRYlkWGeRiGTLA4WCh1jXXAtsxRIh8AQ2veHt1G+OUCoehfd6HGMngH7Ifc5AG6lbpC6IeADUxYeEj6jrS2CpGwXYh0la7Z5NusWSXbZnoMvEyUiJZKh1i19uL2JJgKFmApRqO3asOylIzZnAScFNFMbAhtDHtqEhBKg66eyTCT0xSo/6kTQVajpTf0+kECg1DjzTGYAeqEVvKv7ntRPtX3dSHsaJxpDNF/mJoDqi01hoj0tkWowNASa5uZWyAZgwtAmvYEJwFl9eJo3zsnNZdu4uSpWbLI48OSLH5JQ45IpUSJXUSJ0w8kieySt5s56sF+vd+pi35qxs5pD8gfX5A3+5mjc=</latexit>

↵ ⌘ !
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Valid also for typical fluctuations

  Loops are constrained to be zero at late times: lack one α enhancement
Suppressed by 
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6B;m`2 R qBii2M /B�;`�Kb +QMi`B#miBM; iQ }`bi Q`/2` BM b̃- rBi? +Q``2bTQM/BM; b+�HBM;b rBi? α- ζc �M/ Pζ -
BM+Hm/BM; i?2 2z2+i Q7 i?2 `2bQM�M+2X hQT, h`22@H2p2H /B�;`�KbX h?2 }`bi /B�;`�K QM i?2 H27i +Q``2bTQM/b iQ
i?2 +Q``2+iBQM iQ i?2 TQr2` bT2+i`mKX h?2 b2+QM/ Bb i?2 +QMi`B#miBQM 7`QK i?2 +m#B+ T�`i Q7 i?2 �+iBQM �M/ bQ
QMX "QiiQK, PM2@HQQT /B�;`�Kb �i }`bi Q`/2` BM b̃X �i �Mv ;Bp2M Q`/2` BM ζc- QM2@HQQT /B�;`�Kb �`2 bmTT`2bb2/
#v α2Pζ X

r?2`2 r2 bm#i`�+i2/ i?2 /Bp2`;2Mi +QMi`B#miBQM �i H�i2 iBK2b- �bbmKBM; i?�i h Bb #QmM/2/ BM i?Bb
HBKBi- �M/ r2 `2TH�+2/ π rBi? ζ �b #27Q`2X 6Q`KmH� UjXkkV `2T`2b2Mib QM2 Q7 i?2 K�BM `2bmHib Q7 Qm`
T�T2`X Ai +�M #2 mb2/ iQ +QKTmi2 i?2 q6l BM KQ/2Hb rBi? � bK�HH 72�im`2 BM H(t)- �i }`bi Q`/2` BM
i?2 �KTHBim/2 Q7 i?2 72�im`2- #mi MQMT2`im`#�iBp2Hv BM ζ̄X LQi2 i?�i i?2 `Qi�iBQM iQ 1m+HB/2�M iBK2
τ +�M ?Qr2p2` #2 KQ`2 bm#iH2 �M/ M22/b iQ #2 bim/B2/ +�b2@#v@+�b2, i?2 7mM+iBQM h +QmH/ 72�im`2
bBM;mH�`BiB2b BM i?2 +QKTH2t TH�M2X

�MQi?2` +`m+B�H �bT2+i 7Q` Qm` �M�HvbBb +QM+2`Mb i?2 `2;BQM BM ζ r?2`2 ∆SE,1 MQM@T2`im`#�iBp2Hv
+�Tim`2b i?2 H2�/BM; +Q``2+iBQM Q7 i?2 q6lX AM i?2 K2i?Q/QHQ;v 2KTHQv2/ BM (9)- i?2 b2KB+H�bbB+�H
�TT`QtBK�iBQM T`Qp2b `2HB�#H2 BM i?2 i�BHb Q7 Ψ- bT2+B}+�HHv r?2M ζ ≫ P 1/2

ζ X PM i?2 i�BHb- i`22@H2p2H
/B�;`�Kb �`2 2M?�M+2/ `2H�iBp2 iQ HQQTb U7Q` /B�;`�Kb 72�im`BM; � }t2/ MmK#2` Q7 2ti2`M�H ζ H2;b-
i`22 /B�;`�Kb 2tT2`B2M+2 � 1/λ 2M?�M+2K2Mi +QKT�`2/ iQ HQQTb- r?2`2 λ `2T`2b2Mib � bK�HH +QmTHBM;
+QMbi�MiVX h?Bb +QM+HmbBQM ?QH/b 2p2M BM i?2 T`2b2M+2 Q7 72�im`2bc ?Qr2p2`- i?2 b+2M�`BQ #2+QK2b KQ`2
7�pQm`�#H2 BM i?Bb +�b2X AM/22/- �b r2 b?�HH /2KQMbi`�i2 H�i2`- HQQTb #2+QK2 M2;HB;B#H2 �i H2�/BM; Q`/2`
BM b̃- 2p2M 7Q` ivTB+�H ζ p�Hm2bX 8

h?2 QM@b?2HH �+iBQM 7Q` ζ̄- �i }`bi Q`/2` BM b̃- r�b ;Bp2M BM 1[X UjXRjVX 6`QK i?Bb 7Q`K- QM2 +�M
Q#i�BM i?2 b+�HBM; 7Q` i?2 qBii2M /B�;`�Kb +QMi`B#miBM; iQ i?2 +Q2{+B2Mib Q7 i?2 r�p27mM+iBQM 7Q` ζ̄X
6`QK bm+? b+�HBM;b QM2 +�M #2ii2` mM/2`bi�M/ r?2M i?2 b2KB+H�bbB+�H +�H+mH�iBQM Bb `2HB�#H2X aBM+2 r2
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For typical fluctuations the tree-level expansion corresponds to
       Higher-order terms suppressed 
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7Q` i?2 q6l Bb `2HB�#H2X AM bmKK�`v- r2 KQiBp�i2/ i?�i HQQT +Q``2+iBQMb �`2 bK�HH B7 α2Pζ ≪ 1 �M/
i?�i i`22@H2p2H +Q``2H�iQ`b M22/ iQ #2 `2bmKK2/ B7 α2ζ ! 1X AM i?2 +�b2 Q7 i?2 2tTHB+Bi b+�H�`@}2H/
KQ/2H- bBM+2 i?2 mM/2`HvBM; TQi2MiB�H 7Q` i?2 b+�H�`@}2H/ φ- 1[X UjXkV- Bb MQM@`2MQ`K�HBx�#H2- r2 �HbQ
M22/ iQ 2bi�#HBb? i?2 `2;BK2 Q7 p�HB/Biv Q7 i?2 +Q``2bTQM/BM; 16hX h?2 2z2+iBp2 i?2Q`v Kmbi �HbQ
72�im`2 QT2`�iQ`b rBi? /2`Bp�iBp2 BMi2`�+iBQMb- bmTT`2bb2/ #v i?2 b+�H2 f - Q7 i?2 7Q`K L (∂/f,φ/f)X
h?Bb b+�HBM; Bb KQiBp�i2/ #v i2+?MB+�H M�im`�HM2bb, φ HQQTb ;2M2`�i2 QT2`�iQ`b bmTT`2bb2/ #v f - BM i?2
HBKBi Q7 H�`;2 MmK#2` Q7 2ti2`M�H H2;bX

PM2 +QmH/ rQM/2` r?2i?2` i?2 +QM/BiBQM `2[mB`BM; `2bmKK�iBQM- α2ζ ! 1- +�M #2 b�iBb}2/ 7Q`
ivTB+�H ~m+im�iBQMb, α2P 1/2

ζ ! 1X LQiB+2 i?�i BM i?Bb `2;BK2 HQQTb �`2 biBHH bmTT`2bb2/X S?2MQK2MQHQ;@
B+�HHv- i?Bb rQmH/ #2 �M BMi2`2biBM; bBim�iBQM bBM+2 �HH +Q``2H�iQ`b rQmH/ ;Bp2 +QKT�`�#H2 +QMi`B#miBQMb
iQ i?2 bB;M�H BM 2X;X i?2 *J" K�TX >Qr2p2`- r2 +�M �`;m2 i?�i i?Bb `2;BK2 HB2b #2vQM/ i?2 p�HB/Biv Q7
i?2 16h- �b `2[mB`2/ #v T2`im`#�iBp2 mMBi�`BivX lbBM; i?2 /2}MBiBQMb Q7 α �M/ Pζ - i?2 +QM/BiBQM 7Q`
`2[mB`BM; `2bmKK�iBQM 7Q` ivTB+�H ~m+im�iBQMb +�M #2 r`Bii2M BM i2`Kb Q7 ω �M/ f �M/ Bb 2[mBp�H2Mi iQ
ω/(4πf) ! 1X >2`2- r2 �`2 �HbQ i�FBM; BMiQ �++QmMi i?2 7�+iQ`b Q7 π Q`B;BM�iBM; 7`QK i?2 KQK2MimK
BMi2;`�Hb BM i?2 +Q``2H�iQ`b- b22 (k)X AM i2`Kb Q7 φ- b+?2K�iB+�HHv- i?2 b+�ii2`BM; Q7 n [m�Mi� BM ~�i
bT�+2 H2�/b iQ � pBQH�iBQM Q7 T2`im`#�iBp2 mMBi�`Biv r?2M

b̃

(
ω

4πf

)n

> 1 . UjXk9V

6Q` n bm{+B2MiHv H�`;2 i?Bb +QM/BiBQM +Q``2bTQM/b iQ ω ! 4πf X h?2`27Q`2- M2r T?vbB+b Bb `2[mB`2/ iQ
2Mi2` �M/ +?�M;2 i?2 #2?�pBQm` Q7 i?2 �KTHBim/2b #27Q`2- Q` �i KQbi �i- 4πf X q2 i?mb +QM+Hm/2 i?�i
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WFU for resonant features

with

Here we define

�S0 ⌘

Z
d⌘ d3x

1

2⌘2P⇣

⇥
⇣
02

� (@i⇣)
2 + (@i⇣̄)

2
⇤
, (3.19)

and

�S1 ⌘ �

Z
d⌘ d3x

1

2⌘2P⇣

⇢⇥
⇣
02

� (@i⇣)
2
⇤
cos

⇣
↵ (log(⌘/⌘?) + ⇣) � �̃

⌘

+ (@i⇣̄)
2 cos

⇣
↵
�
log(⌘/⌘?) + ⇣̄

�
� �̃

⌘�
, (3.20)

where, as above, the subscripts 0 and 1 refer to the actions at zeroth and first order in b̃ respectively.

Since we know that the term �S0 gives rise to a Gaussian wavefunction, we will only focus on the

term �S1. This term, in particular, gives contributions to the wavefunction at order b̃, which leads

to a non-perturbative feature of the distribution of ⇣̄. Our main goal in the rest of the paper, is to

evaluate the action (3.20) using analytical and numerical methods.

In order to perform the computation, it is more convenient to go to Euclidean space, where ⇣ is

real and exponentially decaying at early time. Since the action (3.18) is analytic everywhere in the

upper-left quadrant of the complex ⌘ plane, and the integrand decays su�ciently fast at infinity, one

can indeed perform a rotation to Euclidean space: ⌘ ! �i⌧ where ⌧ denotes the Euclidean time.

Notice that it was necessary to make the integrals in (3.19)–(3.20) convergent at ⌘ ! 0 before doing

the rotation. We write the exponent of the WFU as i�S1 = ��SE,1, where we define �SE,1 as the

Euclidean action. After the analytical continuation to Euclidean time, (3.20) leads to
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where a prime now refers to a derivative with respect to ⌧ , and explicitly the real variable ⇣(⌧,x) =R
d3k
(2⇡)3 ⇣̄(k)e

ik·x(1 � k⌧)ek⌧ . Note that the imaginary component appearing inside the trigonometric

function in Eq. (3.21) originates from the analytic continuation of the logarithmic term. Due to this,

we see that in general �SE,1 is complex and not purely real.

3.3 TBD, SRP:? Regime of validity

After having obtained the action in the specific case of resonant features, let us summarize our results

so far, generalizing to the more general case of bounded features in H(t). In situations where Ḣ(t) =

Ḣ0+ b̃Ḣ1(t), with the feature assumed to be controlled by the small parameter b̃, most of the steps of

the previous section still hold, so that we can write down the leading correction to the on-shell action.

If we define the dimensionless function h(t) ⌘ Ḣ1(t)/Ḣ0, then the correction to the action is
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The second term on the right-hand side gives a finite contribution in the action since the ⌘
2 factor

cancels the same factor at the denominator of Eq. (3.13). The divergent term in the action is thus
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(@i⇣̄)2/⌘2. This again contributes to a pure phase in the WFU that can be

dropped. Therefore, the finite action at first order in b̃ is

�S = �S0 + b̃�S1 . (3.18)
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where, as above, the subscripts 0 and 1 refer to the actions at zeroth and first order in b̃ respectively.

�S0 gives the Gaussian wavefunction, while �S1 gives all the deviations from Gaussianity of the

probability distribution of ⇣̄.

In order to perform the computation, it is more convenient to go to Euclidean space, where ⇣ is

real and exponentially decaying at early time, instead of oscillating. Since the action (3.18) is analytic

everywhere in the upper-left quadrant of the complex ⌘ plane, and the integrand decays su�ciently

fast at infinity, one can indeed perform a rotation to Euclidean space: ⌘ ! �i⌧ where ⌧ denotes

the Euclidean time. Notice that it was necessary to make the integrals in (3.19)–(3.20) convergent

at ⌘ ! 0 before doing the rotation5. We write the exponent of the WFU as i�S1 = ��SE,1, where

we define �SE,1 as the Euclidean action. After the analytical continuation to Euclidean time, (3.20)

leads to
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5Some more details about the rotation. ⇣ is an analytic function of ⌘ and also the logarithm is analytic in the quadrant

of interest, except at the origin. Since also the cosine is analytic, one has only to worry about the arc at infinity and

the origin. Regarding the arc at infinity, notice that the imaginary part of the logarithm is bounded in the quadrant

of interest: this makes the modulus of the cosine bounded and the convergence is guaranteed by the 1/⌘
2 term (notice

that ⇣, but not ⇣̄, is exponentially decaying at infinity). Regarding the origin: one can neglect the integration along the

infinitesimal quarter of the circle close to the origin since the modulus of the integrand is bounded.
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 [⇣̄] = e�Sg · e�b̃�SE,1

Explicit: convergent integral + no DE to solve
 
Euclidean rotation ok, exponentially convergent at early times



Results for a single Fourier mode

Saddle 
evolution

VERY different for ζ > 0 and ζ < 0  



Future

1.  Is it possible some info is hidden in the CMB tails? 
For instance features with ω/4πf ~ 1

2.  More realistic applications to PBHs: threshold, spin, clustering...

3.  Generalizations: 

a.  Different interactions (doing DBI...)
b.  Slow-roll inflation and eternal inflation 
c.  Tensor modes (exact solutions of GWs in dS or numerical GR)

4.  What is the connection with large number of legs?


