Paolo Creminelli, ICTP (Trieste)

Beyond Perturbation Theory in Inflation

with M. Celoria, G.Tambalo and V. Yingcharoenrat, 2103.09244 (JCAP) with S. Renaux-Petel, G.Tambalo and V. Yingcharoenrat in progress

Beyond BSM, Monte Verità: I 6.8 .23

Gaussian or not ?

$$
\left|f_{\mathrm{NL}}^{\text {loc }}\right|<5 \quad\left|f_{\mathrm{NL}}^{\text {equil }}\right|<40 \quad \times 10^{-4}!!
$$

Slow-roll \rightarrow Weak coupling \rightarrow Gaussianity

Large NG: derivative interactions, multi-field, features, warm inflation, dissipation, different symmetries, alternatives to inflation...

In-In Perturbation theory

Beyond free theory, correlation functions are calculated in PT

$$
\langle Q(\eta)\rangle=\left\langle 0 \mid \bar{T} e^{i \int_{-\infty(1-i \epsilon)}^{\eta} H_{\mathrm{int}}\left(\eta^{\prime}\right) \mathrm{d} \eta^{\prime}} Q^{I}(\eta) T e^{-i \int_{-\infty(1+i \epsilon)}^{\eta} H_{\mathrm{int}}\left(\eta^{\prime \prime}\right) \mathrm{d} \eta^{\prime \prime}}\right\rangle
$$

Bunch-Davies vacuum is obtained by a small deformation in Euclidean time in far past
E.g.

$$
\frac{1}{2 H^{2} \eta^{2}}\left[\zeta_{c}^{\prime 2}-\left(\partial_{i} \zeta_{c}\right)^{2}\right]+\frac{\lambda}{H^{4}} \zeta_{c}^{\prime 4}
$$

Since field and derivative are ~ H , expansion is in λ

$$
\frac{\langle\zeta \zeta \zeta\rangle}{P_{\zeta}^{3 / 2}} \sim f_{\mathrm{NL}} P_{\zeta}^{1 / 2} \ll 1 \quad \frac{\langle\zeta \zeta \zeta \zeta\rangle}{P_{\zeta}^{2}} \sim g_{\mathrm{NL}} P_{\zeta} \sim \lambda \ll 1
$$

Experimentally (Planck and LSS) $\lesssim 10^{-3}$

Tails of the distribution

This is ok for correlation functions but

$$
\begin{aligned}
& P[\zeta] \sim \exp \left[-\frac{\zeta^{2}}{2 P_{\zeta}}+\frac{\langle\zeta \zeta \zeta\rangle}{P_{\zeta}^{3}} \zeta^{3}+\frac{\langle\zeta \zeta \zeta \zeta\rangle}{P_{\zeta}^{4}} \zeta^{4}+\ldots\right] \sim \exp \left[-\frac{\zeta^{2}}{2 P_{\zeta}}\left(1+\frac{\langle\zeta \zeta \zeta\rangle}{P_{\zeta}^{2}} \zeta+\frac{\langle\zeta \zeta \zeta \zeta\rangle}{P_{\zeta}^{3}} \zeta^{2}+\ldots\right)\right] \\
& \frac{\langle\zeta \zeta \zeta\rangle}{P_{\zeta}^{2}} \zeta \sim f_{\mathrm{NL}} \zeta \quad \frac{\langle\zeta \zeta \zeta \zeta\rangle}{P_{\zeta}^{3}} \zeta^{2} \sim g_{\mathrm{NL}} \zeta^{2} . \\
& \text { Expansion parameter depends on } \\
& \text { size of } \zeta
\end{aligned}
$$

Motivations

- Black-hole formation is sensitive to $\zeta \sim 1$

$$
\hat{\zeta}(\vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} W(k) \zeta(\vec{k}) e^{i \vec{k} \cdot \vec{x}} \quad \beta(M)=\int_{\zeta_{c}}^{+\infty} P(\hat{\zeta}) d \hat{\zeta}
$$

BH mass fraction at formation
Perturbative calculation is ok only for $f_{N L} \zeta \sim f_{N L} \ll l$
Ok if one remains in slow-roll, $f_{N L} \sim O(\varepsilon, \eta)$, but not in general.

$$
\text { E.g. } f_{N L} \sim\left(I-I / c_{s}^{2}\right) \text { in K-inflation models. }
$$

- Eternal inflation. Can the tail be relevant?
- Surprise in the data on the tails?
- It is the WFU!

Main idea

Since perturbations are proportional to $\hbar^{1 / 2}$ looking at unlikely events corresponds to the semiclassical limit $\hbar \rightarrow 0$

In this limit one is able to calculate the WFU semiclassically

Anharmonic oscillator

$$
V(x)=\hbar \omega\left[\frac{1}{2}\left(\frac{x}{d}\right)^{2}+\lambda\left(\frac{x}{d}\right)^{4}\right] \quad d \equiv \sqrt{\hbar / m \omega}
$$

Usual PT is in λ
PT breaks down for $\lambda\left(\frac{x}{d}\right)^{2} \equiv \frac{\bar{x}^{2}}{2} \sim 1$

Consider the ground-state wavefunction (as in inflation)

One could use WKB, but let us look at Euclidean path-integral

$$
\begin{gathered}
\left\langle x_{f}\right| e^{-H \tau / \hbar}\left|x_{i}\right\rangle=\sum_{n} e^{-E_{n} \tau / \hbar} \Psi_{n}\left(x_{f}\right) \Psi_{n}^{*}\left(x_{i}\right) \\
\Psi_{0}\left(x_{f}\right) \bar{\Psi}_{0}(0) e^{-E_{0} \tau_{f}}=\lim _{\tau_{f} \rightarrow \infty} \int_{x(0)=0}^{x\left(\tau_{f}\right)=x_{f}} \mathcal{D} x(\tau) e^{-S_{\mathrm{E}}[x(\tau)] / \hbar} \\
=e^{-S_{\mathrm{E}}\left[x_{\mathrm{cl}}(\tau)\right] / \hbar} \int_{x(0)=0}^{x\left(\tau_{f}\right)=x_{f}} \mathcal{D} y(\tau) e^{-\frac{1}{\hbar}\left(\frac{1}{2} \frac{\delta^{2} S}{\delta x^{2}} y^{2}+\frac{1}{3!} \frac{\delta^{3} S}{\delta x^{3}} y^{3}+\ldots\right)}
\end{gathered}
$$

Anharmonic oscillator

$$
\begin{aligned}
& S_{\mathrm{E}}[x(\tau)]=\int d \tau\left(\frac{1}{2} m \dot{x}^{2}+V(x)\right) \\
& \frac{S_{\mathrm{E}}[x(\tau)]}{\hbar}=\frac{1}{\hbar} \int d \tau m \dot{x}^{2}=\frac{1}{\hbar} \int_{x_{i}=0}^{x_{f}} d x \sqrt{2 m V}=\frac{1}{6 \lambda}\left[\left(1+\bar{x}^{2}\right)^{3 / 2}-1\right] \quad \lambda\left(\frac{x}{d}\right)^{2} \equiv \frac{\bar{x}^{2}}{2} \\
& \Psi_{0}\left(x_{\mathrm{f}}\right)=\mathcal{I}\left(x_{\mathrm{f}}\right) e^{-S_{\mathrm{E}}\left[x_{\mathrm{cl}}(\tau)\right] / \hbar} \\
& x(\tau)=-\frac{d}{\sqrt{2 \lambda} \sinh (\omega \tau)} \\
& \mathcal{I}\left(x_{f}\right)=\mathcal{N} \sqrt{\frac{m}{2 \pi i \hbar v_{i} v_{f} \int_{0}^{x_{f}} \frac{\mathrm{~d} x^{\prime}}{v^{3}\left(x^{\prime}\right)}}} \\
& \Psi_{0}(\bar{x})=\mathcal{N} \frac{\exp \left\{-\frac{1}{6 \lambda}\left[\left(1+\bar{x}^{2}\right)^{3 / 2}-1\right]-\frac{\omega T}{2}\right\}}{\left(1+\bar{x}^{2}\right)^{1 / 4}\left(1+\sqrt{1+\bar{x}^{2}}\right)^{1 / 2}}+\mathcal{O}(\lambda) F(\bar{x})
\end{aligned}
$$

Gaussian WFU

In inflation the wavefunction of the Universe is

$$
\Psi\left[\zeta_{0}(\vec{x})\right]=\int_{\mathrm{BD}}^{\zeta_{0}(\vec{x})} \mathcal{D} \zeta e^{i S[\zeta] / \hbar}
$$

For free theory the saddle solution is $\quad \zeta_{k}(\eta)=\zeta_{k}^{0} \frac{(1-i k \eta) e^{i k \eta}}{\left(1-i k \eta_{c}\right) e^{i k \eta_{c}}}$

It decays exponentially after is rotation.
It is complex, since BD boundary condition is not real

$$
\zeta_{-\vec{k}} \neq \zeta_{\vec{k}}^{*}
$$

$i S=\left.i \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 H^{2}} \frac{1}{\eta_{c}^{2}} \zeta_{-\vec{k}}^{0} \partial_{\eta} \zeta_{\vec{k}}^{0}\right|_{\eta=\eta_{c}} \sim \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 H^{2}}\left[i \frac{k^{2}}{\eta_{c}}-k^{3}+\ldots\right] \zeta_{-\vec{k}}^{0} \zeta_{\vec{k}}^{0}$
Scale-invariant power spectrum

WFU Beyond Gaussianity

Perturbative recipe for WFU is the same as in AdS/CFT: Witten diagrams

On shell action with prescribed boundary conditions at late times

$$
\begin{gathered}
\Psi=\operatorname{Exp}\left[\frac{1}{2} \int d^{3} x d^{3} x^{\prime}\left\langle\mathcal{O}(x) \mathcal{O}\left(x^{\prime}\right)\right\rangle f(x) f\left(x^{\prime}\right)+\right. \\
\left.\frac{1}{6} \int d^{3} x d^{3} x^{\prime} d^{3} x^{\prime \prime}\left\langle\mathcal{O}(x) \mathcal{O}\left(x^{\prime}\right) \mathcal{O}\left(x^{\prime \prime}\right)\right\rangle f(x) f\left(x^{\prime}\right) f\left(x^{\prime \prime}\right)\right] \quad \text { are the "CFT" correlators } \\
\text { Cosmological correlators: } \quad\left\langle f_{\vec{k}} f_{-\vec{k}}\right\rangle^{\prime}=-\frac{1}{2 \operatorname{Re}\left\langle\mathcal{O}_{\vec{k}} \mathcal{O}_{-\vec{k}}\right\rangle^{\prime}} \\
\left\langle f_{\vec{k}_{1}} f_{\vec{k}_{2}} f_{\vec{k}_{3}}\right\rangle^{\prime}=\frac{2 R e\left\langle\mathcal{O}_{\vec{k}_{1}} \mathcal{O}_{\vec{k}_{2}} \mathcal{O}_{\vec{k}_{3}}\right\rangle^{\prime}}{\prod_{i}\left(-2 \operatorname{Re}^{\prime}\left\langle\mathcal{O}_{\vec{k}_{i}} \mathcal{O}_{-\vec{k}_{i}}\right\rangle^{\prime}\right)}
\end{gathered}
$$

Resumming Witten diagrams

Tree level diagrams are dominant since, at a given order in λ, they have more ζ_{0}

The selection of diagrams makes sense only for large ζ_{0}

Non-linear WFU

I. Fix boundary conditions at late times ζ_{0} and BD in far past
2. Find the classical non-linear solution of the EOM in Euclidean time
3. Calculate the action S and get Ψ

$$
\Psi\left[\zeta_{0}(\vec{x})\right] \sim e^{-S / \hbar}
$$

It corresponds to resumming all tree-level Witten diagrams

No evolution outside H

Exponential decay

Inflation with $\xi^{\prime 4}$ interaction

$$
\begin{gathered}
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2} M_{\mathrm{Pl}}^{2} R+M_{\mathrm{Pl}}^{2} \dot{H} g^{00}-M_{\mathrm{Pl}}^{2}\left(3 H^{2}+\dot{H}\right)+\quad\right. \text { Particular limit of EFTI } \\
\left.+\frac{1}{2} M_{2}(t)^{4}\left(\delta g^{00}\right)^{2}+\frac{1}{3!} M_{3}(t)^{4}\left(\delta g^{00}\right)^{3}+\frac{1}{4!} M_{4}(t)^{4}\left(\delta g^{00}\right)^{4}+\ldots\right] \\
\text { Senatore, Zaldarriaga Io } \\
S=\int \mathrm{d}^{3} x \mathrm{~d} \eta\left\{\frac{1}{2 \eta^{2} P_{\zeta}}\left[\zeta^{\prime 2}-\left(\partial_{i} \zeta\right)^{2}\right]+\frac{\lambda \zeta^{\prime 4}}{4!P_{\zeta}^{2}}\right\}
\end{gathered}
$$

Euclidean EOM $-\zeta^{\prime \prime}+\frac{2}{\eta} \zeta^{\prime}-\partial_{i}^{2} \zeta-\frac{\lambda}{2 P_{\zeta}} \eta^{2} \zeta^{\prime 2} \zeta^{\prime \prime}=0$

Before getting to the numerical solution of PDE, one can get some intuition reducing to an ODE

ODE

Once you fix a scale in ζ_{0} derivative interactions will only affect comparable modes. Reduction to ODE should be O(I) ok

ODE

Using this scaling one gets the behaviour at large λ
$S_{\mathrm{ODE}}=-\frac{\zeta_{0}^{2}}{P_{\zeta}} \int_{-\infty}^{\eta_{\text {out }}} d \eta\left\{\frac{1}{2 \eta^{2}}\left[\zeta^{\prime 2}+\zeta^{2}\right]+\frac{\tilde{\lambda}}{4!} \zeta^{\prime 4}\right\}$
Subtract free part to avoid late time divergence

> For large ζ_{0}
> $\Psi \simeq \exp \left[-\frac{1}{\lambda}\left(\frac{\lambda \zeta_{0}^{2}}{P_{\zeta}}\right)^{3 / 4}\right]$

Not analytic in λ
compared with

$$
\Psi \simeq \exp \left[-\frac{\zeta_{0}^{2}}{2 P_{\zeta}}\right]
$$

PDE

Qualitatively similar with the same asymptotic scaling in λ

(One can check to reproduce perturbative result at small λ)

WFU for resonant features

Focus on $\quad V(\phi)=V_{\text {sr }}(\phi)+\Lambda^{4} \cos (\phi / f)$
For $\varepsilon \rightarrow 0 \quad S=\int \mathrm{d}^{4} x a(t)^{3} M_{\mathrm{Pl}}^{2} \dot{H}(t+\pi)\left(\partial_{\mu} \pi\right)^{2} \quad \dot{H}(t)=\dot{H}_{\star}(1-\tilde{b} \cos (\omega t+\delta))$
$\alpha \equiv \frac{\omega}{H_{*}} \quad$ Non-linearity parameter is $\alpha(\alpha \zeta)=\alpha^{2} \zeta$

Three simplifications:
I. Small features, we expand in \tilde{b}

Since the action is stationary around EOM we only need $\tilde{b}=0$ solution
2. $\alpha \gg 1$ Time integral can be done in saddle-point
3. Loops are negligible also for typical fluctuations

Valid also for typical fluctuations

Loops are constrained to be zero at late times: lack one α enhancement Suppressed by $\alpha^{2} P_{\zeta}$

For typical fluctuations the tree-level expansion corresponds to $\tilde{b}\left(\frac{\omega}{4 \pi f}\right)^{n}$
Higher-order terms suppressed

WFU for resonant features

$$
\begin{gathered}
\Psi[\bar{\zeta}]= \\
e^{-S_{g}} \cdot e^{-\tilde{b} \Delta S_{E, 1}} \\
\Delta S_{\mathrm{E}, 1}[\bar{\zeta}]=\int_{-\infty}^{0} \mathrm{~d} \tau \int \mathrm{~d}^{3} \boldsymbol{x} \frac{1}{2 \tau^{2} P_{\zeta}}\left\{\left[\zeta^{\prime 2}+\left(\partial_{i} \zeta\right)^{2}\right] \cos \left(\alpha\left(\log \left(\tau / \eta_{\star}\right)+\zeta\right)-\tilde{\delta}-i \alpha \pi / 2\right)\right. \\
\\
\left.-\left(\partial_{i} \bar{\zeta}\right)^{2} \cos \left(\alpha\left(\log \left(\tau / \eta_{\star}\right)+\bar{\zeta}\right)-\tilde{\delta}-i \alpha \pi / 2\right)\right\}
\end{gathered}
$$

with $\quad \zeta(\tau, \boldsymbol{x})=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}} \bar{\zeta}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}(1-k \tau) e^{k \tau}$

Explicit: convergent integral + no DE to solve
Euclidean rotation ok, exponentially convergent at early times

Results for a single Fourier mode

VERY different for $\zeta>0$ and $\zeta<0$

Future

I. Is it possible some info is hidden in the CMB tails?

For instance features with $\omega / 4 \pi f \sim$ I
2. More realistic applications to PBHs: threshold, spin, clustering...
3. Generalizations:
a. Different interactions (doing DBI...)
b. Slow-roll inflation and eternal inflation
c. Tensor modes (exact solutions of GWs in dS or numerical GR)
4. What is the connection with large number of legs?

