

Beyond Perturbation Theory in Inflation

with M. Celoria, G. Tambalo and V. Yingcharoenrat, 2103.09244 (JCAP) with S. Renaux-Petel, G. Tambalo and V. Yingcharoenrat in progress

Beyond BSM, Monte Verità: 16.8.23

Gaussian or not?

$$|f_{\mathrm{NL}}^{\mathrm{loc}}| < 5$$

$$|f_{
m NL}^{
m loc}| < 5$$
 $|f_{
m NL}^{
m equil}| < 40$ x 10-4!!

Slow-roll → Weak coupling → Gaussianity

$$\epsilon = \frac{1}{2} M_P^2 \left(\frac{V'}{V}\right)^2$$

$$\eta = M_P^2 \frac{V''}{V}$$

$$\epsilon, \eta, \ldots \ll 1$$

$$\lambda \equiv V^{(4)} \lesssim \mathcal{O}(\epsilon^3, \eta^3) (10^{-5})^2$$

Higgs
$$\lambda \sim 1$$

$$f_{\rm NL}^{\rm slow-roll} \sim |\eta| \sim 10^{-2}$$

Large NG: derivative interactions, multi-field, features, warm inflation, dissipation, different symmetries, alternatives to inflation...

In-In Perturbation theory

Beyond free theory, correlation functions are calculated in PT

$$\langle Q(\eta) \rangle = \langle 0 | \bar{T}e^{i\int_{-\infty(1-i\epsilon)}^{\eta} H_{\rm int}(\eta') d\eta'} Q^{I}(\eta) Te^{-i\int_{-\infty(1+i\epsilon)}^{\eta} H_{\rm int}(\eta'') d\eta''} \rangle$$

Bunch-Davies vacuum is obtained by a small deformation in Euclidean time in far past

E.g.

$$\frac{1}{2H^2\eta^2}\left[\zeta_c'^2 - (\partial_i\zeta_c)^2\right] + \frac{\lambda}{H^4}\zeta_c'^4$$
 Since field and derivative are ~ H, expansion is in λ

H, expansion is in λ

$$\frac{\langle \zeta \zeta \zeta \rangle}{P_{\zeta}^{3/2}} \sim f_{\rm NL} P_{\zeta}^{1/2} \ll 1 \qquad \frac{\langle \zeta \zeta \zeta \zeta \rangle}{P_{\zeta}^{2}} \sim g_{\rm NL} P_{\zeta} \sim \lambda \ll 1 .$$

Experimentally (Planck and LSS) $\lesssim 10^{-3}$

Tails of the distribution

This is ok for correlation functions but

$$P[\zeta] \sim \exp\left[-\frac{\zeta^2}{2P_{\zeta}} + \frac{\langle\zeta\zeta\zeta\zeta\rangle}{P_{\zeta}^3}\zeta^3 + \frac{\langle\zeta\zeta\zeta\zeta\zeta\rangle}{P_{\zeta}^4}\zeta^4 + \ldots\right] \sim \exp\left[-\frac{\zeta^2}{2P_{\zeta}}\left(1 + \frac{\langle\zeta\zeta\zeta\zeta\rangle}{P_{\zeta}^2}\zeta + \frac{\langle\zeta\zeta\zeta\zeta\rangle}{P_{\zeta}^3}\zeta^2 + \ldots\right)\right]$$

$$\frac{\langle \zeta \zeta \zeta \rangle}{P_{\zeta}^{2}} \zeta \sim f_{\rm NL} \zeta \qquad \frac{\langle \zeta \zeta \zeta \zeta \rangle}{P_{\zeta}^{3}} \zeta^{2} \sim g_{\rm NL} \zeta^{2} .$$

Expansion parameter depends on size of ζ

Motivations

• Black-hole formation is sensitive to $\zeta \sim 1$

$$\hat{\zeta}(\vec{x}) = \int \frac{d^3k}{(2\pi)^3} W(k)\zeta(\vec{k})e^{i\vec{k}\cdot\vec{x}} \qquad \beta(M) = \int_{\zeta_c}^{+\infty} P(\hat{\zeta})d\hat{\zeta}$$

BH mass fraction at formation

Perturbative calculation is ok only for $f_{NL} \zeta \sim f_{NL} << 1$

Ok if one remains in slow-roll, $f_{NL} \sim O(\epsilon, \eta)$, but not in general.

E.g.
$$f_{NL} \sim (1-1/c_s^2)$$
 in K-inflation models.

- Eternal inflation. Can the tail be relevant?
- Surprise in the data on the tails?
- It is the WFU!

Main idea

Since perturbations are proportional to $\hbar^{1/2}$ looking at unlikely events corresponds to the semiclassical limit $\hbar \to 0$

In this limit one is able to calculate the WFU semiclassically

Anharmonic oscillator

$$V(x) = \hbar\omega \left[\frac{1}{2} \left(\frac{x}{d}\right)^2 + \lambda \left(\frac{x}{d}\right)^4\right] \qquad \qquad d \equiv \sqrt{\hbar/m\omega} \qquad \qquad \text{Usual PT is in } \lambda$$

PT breaks down for
$$\lambda \left(\frac{x}{d}\right)^2 \equiv \frac{\bar{x}^2}{2} \sim 1$$

Consider the ground-state wavefunction (as in inflation)

One could use WKB, but let us look at Euclidean path-integral

$$\langle x_f | e^{-H\tau/\hbar} | x_i \rangle = \sum_n e^{-E_n \tau/\hbar} \Psi_n(x_f) \Psi_n^*(x_i)$$

$$\Psi_0(x_f)\overline{\Psi}_0(0) e^{-E_0\tau_f} = \lim_{\tau_f \to \infty} \int_{x(0)=0}^{x(\tau_f)=x_f} \mathfrak{D}x(\tau) e^{-S_{\mathbf{E}}[x(\tau)]/\hbar}$$

$$= e^{-S_{\rm E}[x_{\rm cl}(\tau)]/\hbar} \int_{x(0)=0}^{x(\tau_f)=x_f} \mathcal{D}y(\tau) e^{-\frac{1}{\hbar} \left(\frac{1}{2} \frac{\delta^2 S}{\delta x^2} y^2 + \frac{1}{3!} \frac{\delta^3 S}{\delta x^3} y^3 + \dots\right)}$$

Anharmonic oscillator

$$S_{\rm E}[x(\tau)] = \int d\tau \left(\frac{1}{2}m\dot{x}^2 + V(x)\right)$$

$$\frac{S_{\rm E}[x(\tau)]}{\hbar} = \frac{1}{\hbar} \int d\tau \ m\dot{x}^2 \ = \frac{1}{\hbar} \int_{x_i=0}^{x_f} dx \ \sqrt{2mV} \ = \frac{1}{6\lambda} \left[(1+\bar{x}^2)^{3/2} - 1 \right] \qquad \qquad \lambda \left(\frac{x}{d}\right)^2 \equiv \frac{\bar{x}^2}{2}$$

$$\Psi_{0}(x_{\rm f}) = \mathcal{I}(x_{\rm f})e^{-S_{\rm E}[x_{\rm cl}(\tau)]/\hbar}$$

$$x(\tau) = -\frac{d}{\sqrt{2\lambda}\sinh(\omega\tau)}$$

$$(x_{\rm f}) = -\frac{1}{\sqrt{2\lambda}\sinh(\omega\tau)}$$

Van Vleck, Pauli, Morette formula:

$$\mathcal{I}(x_f) = \mathcal{N}\sqrt{\frac{m}{2\pi i\hbar v_i v_f \int_0^{x_f} \frac{\mathrm{d}x'}{v^3(x')}}}$$

$$\Psi_0(\bar{x}) = \mathcal{N} \frac{\exp\left\{-\frac{1}{6\lambda} \left[\left(1 + \bar{x}^2\right)^{3/2} - 1 \right] - \frac{\omega T}{2} \right\}}{\left(1 + \bar{x}^2\right)^{1/4} \left(1 + \sqrt{1 + \bar{x}^2}\right)^{1/2}} + \mathcal{O}(\lambda) F(\bar{x})$$

Gaussian WFU

Maldacena 02

In inflation the wavefunction of the Universe is

$$\Psi[\zeta_0(\vec{x})] = \int_{\text{BD}}^{\zeta_0(\vec{x})} \mathcal{D}\zeta e^{iS[\zeta]/\hbar}$$

For free theory the saddle solution is $\zeta_k(\eta) = \zeta_k^0 \frac{(1-ik\eta)e^{ik\eta}}{(1-ik\eta_c)e^{ik\eta_c}}$

$$\zeta_k(\eta) = \zeta_k^0 \frac{(1 - ik\eta)e^{ik\eta}}{(1 - ik\eta_c)e^{ik\eta_c}}$$

It decays exponentially after is rotation.

It is complex, since BD boundary condition is not real

$$\zeta_{-\vec{k}} \neq \zeta_{\vec{k}}^*$$

$$iS = i \int \frac{d^3k}{(2\pi)^3} \left. \frac{1}{2H^2} \frac{1}{\eta_c^2} \zeta_{-\vec{k}}^0 \partial_{\eta} \zeta_{\vec{k}}^0 \right|_{\eta = \eta_c} \sim \int \frac{d^3k}{(2\pi)^3} \frac{1}{2H^2} \left[i \frac{k^2}{\eta_c} - k^3 + \dots \right] \zeta_{-\vec{k}}^0 \zeta_{\vec{k}}^0$$

Scale-invariant power spectrum

WFU Beyond Gaussianity

Perturbative recipe for WFU is the same as in AdS/CFT: Witten diagrams

On shell action with prescribed boundary conditions at late times

$$\begin{split} \Psi = & Exp \left[\frac{1}{2} \int d^3x d^3x' \langle \mathcal{O}(x) \mathcal{O}(x') \rangle f(x) f(x') + \\ & \left. \frac{1}{6} \int d^3x d^3x' d^3x'' \langle \mathcal{O}(x) \mathcal{O}(x') \mathcal{O}(x'') \rangle f(x) f(x') f(x'') \right] \qquad \text{are the "CFT" correlators} \end{split}$$

Cosmological correlators:

$$\langle f_{\vec{k}} f_{-\vec{k}} \rangle' = -\frac{1}{2Re \langle \mathcal{O}_{\vec{k}} \mathcal{O}_{-\vec{k}} \rangle'}$$

$$\langle f_{\vec{k}_1} f_{\vec{k}_2} f_{\vec{k}_3} \rangle' = \frac{2Re \langle \mathcal{O}_{\vec{k}_1} \mathcal{O}_{\vec{k}_2} \mathcal{O}_{\vec{k}_3} \rangle'}{\prod_i (-2Re \langle \mathcal{O}_{\vec{k}_i} \mathcal{O}_{-\vec{k}_i} \rangle')}$$

Resumming Witten diagrams

Tree level diagrams are dominant since, at a given order in λ , they have more ζ_0

The selection of diagrams makes sense only for large ζ_0

Non-linear WFU

- I. Fix boundary conditions at late times ζ_0 and BD in far past
- 2. Find the classical non-linear solution of the EOM in Euclidean time
- 3. Calculate the action S and get Ψ

$$\Psi[\zeta_0(\vec{x})] \sim e^{-S/\hbar}$$

It corresponds to resumming all tree-level Witten diagrams

Inflation with ζ^{4} interaction

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{1}{2} M_{\rm Pl}^2 R + M_{\rm Pl}^2 \dot{H} g^{00} - M_{\rm Pl}^2 (3H^2 + \dot{H}) + \right.$$
 Particular limit of EFTI
$$+ \frac{1}{2} M_2(t)^4 (\delta g^{00})^2 + \frac{1}{3!} M_3(t)^4 (\delta g^{00})^3 + \frac{1}{4!} M_4(t)^4 (\delta g^{00})^4 + \dots \right]$$

Senatore, Zaldarriaga 10

$$S = \int d^3x d\eta \left\{ \frac{1}{2\eta^2 P_{\zeta}} \left[\zeta'^2 - (\partial_i \zeta)^2 \right] + \frac{\lambda \zeta'^4}{4! P_{\zeta}^2} \right\}$$

Euclidean EOM
$$-\zeta'' + \frac{2}{\eta}\zeta' - \partial_i^2 \zeta - \frac{\lambda}{2P_{\zeta}}\eta^2 \zeta'^2 \zeta'' = 0$$

Before getting to the numerical solution of PDE, one can get some intuition reducing to an ODE

ODE

Once you fix a scale in ζ_0 derivative interactions will only affect comparable modes. Reduction to ODE should be O(1) ok

$$-\zeta'' + \frac{2}{\eta}\zeta' + H^2\zeta - \frac{\lambda}{2P_{\zeta}}\eta^2\zeta'^2\zeta'' = 0$$

 η

 η

ODE

Using this scaling one gets the behaviour at large λ

$$S_{\text{ODE}} = -\frac{\zeta_0^2}{P_{\zeta}} \int_{-\infty}^{\eta_{\text{out}}} d\eta \left\{ \frac{1}{2\eta^2} \left[\zeta'^2 + \zeta^2 \right] + \frac{\tilde{\lambda}}{4!} \zeta'^4 \right\}$$

Subtract free part to avoid late time divergence

For large ζ_0

$$\Psi \simeq \exp \left[-\frac{1}{\lambda} \left(\frac{\lambda \zeta_0^2}{P_{\zeta}} \right)^{3/4} \right]$$

Not analytic in λ

compared with

$$\Psi \simeq \exp\left[-\frac{\zeta_0^2}{2P_\zeta}\right]$$

PDE

Qualitatively similar with the same asymptotic scaling in λ

(One can check to reproduce perturbative result at small λ)

WFU for resonant features

Focus on
$$V(\phi) = V_{\rm sr}(\phi) + \Lambda^4 \cos{(\phi/f)}$$

Leblond, Pajer II
Behbahani, Dymarsky, Mirbabayi, Senatore II

For
$$\varepsilon \to 0$$
 $S = \int d^4x \, a(t)^3 M_{\rm Pl}^2 \dot{H}(t+\pi) (\partial_\mu \pi)^2$ $\dot{H}(t) = \dot{H}_\star \left(1 - \tilde{b}\cos(\omega t + \delta)\right)$

$$\alpha \equiv \frac{\omega}{H_{*}}$$
 Non-linearity parameter is $\alpha(\alpha\zeta) = \alpha^{2}\zeta$

Three simplifications:

I. Small features, we expand in \tilde{b}

Since the action is stationary around EOM we only need $\,\tilde{b}=0\,$ solution

- 2. $\alpha\gg 1$ Time integral can be done in saddle-point
- 3. Loops are negligible also for typical fluctuations

Valid also for typical fluctuations

Loops are constrained to be zero at late times: lack one α enhancement Suppressed by $\alpha^2 P_\zeta$

For typical fluctuations the tree-level expansion corresponds to $\tilde{b}\left(\frac{\omega}{4\pi f}\right)^n$ Higher-order terms suppressed

WFU for resonant features

$$\Psi[\bar{\zeta}] = e^{-S_g} \cdot e^{-\tilde{b}\Delta S_{E,1}}$$

$$\Delta S_{\mathrm{E},1}[\bar{\zeta}] = \int_{-\infty}^{0} d\tau \int d^{3}x \, \frac{1}{2\tau^{2}P_{\zeta}} \left\{ \left[\zeta'^{2} + (\partial_{i}\zeta)^{2} \right] \cos\left(\alpha \left(\log(\tau/\eta_{\star}) + \zeta\right) - \tilde{\delta} - i\alpha\pi/2\right) - (\partial_{i}\bar{\zeta})^{2} \cos\left(\alpha \left(\log(\tau/\eta_{\star}) + \bar{\zeta}\right) - \tilde{\delta} - i\alpha\pi/2\right) \right\},\,$$

with
$$\zeta(\tau, \boldsymbol{x}) = \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \bar{\zeta}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} (1 - k\tau) e^{k\tau}$$

Explicit: convergent integral + no DE to solve

Euclidean rotation ok, exponentially convergent at early times

Results for a single Fourier mode

VERY different for $\zeta > 0$ and $\zeta < 0$

Future

- I. Is it possible some info is hidden in the CMB tails? For instance features with $\omega/4\pi f \sim 1$
- 2. More realistic applications to PBHs: threshold, spin, clustering...
- 3. Generalizations:
 - a. Different interactions (doing DBI...)
 - b. Slow-roll inflation and eternal inflation
 - c. Tensor modes (exact solutions of GWs in dS or numerical GR)
- 4. What is the connection with large number of legs?