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–EFT’s are the common framework to describe phenomena below a certain energy.

–Given a set of DOF, write down all operators allowed by the symmetries

–Is every operator possible? With arbitrary prefactor?

–The seminal work of                                 showed that, by assuming unitarity, locality 
and Lorentz invariance of the UV completion, there are bounds on some coefficients.

–This is very interesting theoretically and experimentally.

–Much much work has followed since then, and is happening today.

EFT’s & Positivity bounds

Allan Adams et al, 2006 

e.g. Caron Hout and Van Duong 2020



–Is it possible to extend such a program to theories with Lorentz invariance, and in 
particular boosts, are spontaneously broken?

–Typical regime for Cosmology and Condensed matter

–Why that would be interesting?

–Cosmology:

• Not so many data

• Peculiar looking theories:

– Galileons, Ghost Condensate

» While strange behaviors in Lorentz invariant limit, not clear the broken 
phase can be ruled out.

–Condensed Matter

• One could perhaps argue that these kinds of Lagrangians are much more numerous to 
probe experimentally.

EFT’s & Positivity bounds



–Using that the Lorentz-breaking EFT is originating from a Lorentz preserving one is 
not easy.

–Normal bounds are based on                 scattering. But in Lorentz breaking background 
operators with many legs become relevant. 

–not much is known about scattering 

–Sometimes it is very hard to connect the Lorentz preserving and Lorentz breaking 
theories: e.g. fluids. There is no straightforward limit.

–Therefore, try to study directly the broken phase.

EFT’s & Positivity bounds
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–Useful/needed properties. The S-matrix:
Review of Lorentz Invariant case



–The S-matrix in an EFT, in the forward limit, will take the following form

–Then

–Deform contour by analyticity

–Circle at infinity negligible

–Integral along negative cut

• =along positive cut

–integral along positive cut=

–          

Review of Lorentz Invariant case
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–Many difficulties

–Most important: with boosts, the in and out states, no matter how energetic, can be 
mapped to the same state. So, they are defined no matter what the center of mass 
energy       is. So S-matrix is defined at all       . 

• Without boosts, this cannot be done. It is clearly impossible to scatter a 1 TeV 
phonon, because it simply does not exists (as there is a privileged reference 
frame).

– Other difficulties relate to analyticity, crossing, etc.. But the one above seems just a 
show stopper.

–Explorations with assumptions made in e.g. 

• Let us try to find the same ingredients that we use for the S-matrix, but controlled.

Doing the same for Lorentz breaking EFT’s
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–Something that we control both in the UV and IR

–Idea: correlation functions of conserved currents (or the stress tensor), as they are 
defined at all energies.

– In the UV, we assume the theory goes to a conformal fixed point, a CFT. Currents are 
primary operators and their 2-point function is fixed:

– Also, they are field-redefinition independent

• Which correlation function to study?

–Since we expect causality to play a role, choose ret. or adv. Green’s functions:

UV/IR control
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–           Integration region restricted to 

–Consider complex four-momentum       :  convergence for 

–or: 

–So, for                              ,                                is analytic. 

–Analogously,                             is analytic in backward light cone. 

Analyticity
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–We explore this region by choosing:

–where                                   ,                                   , and  

–Let us now define:

–This function is analytic on 

Analiticity



– .

–Consider                   :

–Assuming a mass gap:                               , the difference vanish in                          , so 
function is analytic except for the two cuts.

–Analiticity ok 

Analiticity



–Since we aim for a contour argument similar to S-matrix one, we need positivity along 
the cuts.

–Contract with a real              , divide by        and  integrate along the positive cut. Only 
one                             contributes: 

–this is

• Similarly for negative cut:

•  for odd       , this is                                  .    Positivity ok.  

Positivity along cut
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Now for simplicity we shall assume there is a mass gap, so P
0
n > m > 0 (we will relax this

assumption momentarily). Since p
0 = !, if |!| < m the arguments of the delta functions

never vanish and G̃
µ⌫ is continuous as we cross the imaginary axis here. For ! > m, only the

first term contributes, while for ! < �m only the second term contributes. We conclude that
the function G̃

µ⌫(!) is analytic on the doubly-cut plane C \ {(�1,�m) [ (m,1)}.7

Positivity of cut contributions. We will use a contour argument similar to the Lorentz-
invariant case, see Fig. 1. We therefore need to understand if the contribution from the
discontinuity across the cut has a definite sign.

Integrating G̃
µ⌫ around the (m,1) cut in the clockwise direction (i.e. integrating (8) from

m to +1), with some arbitrary powers of ! inserted in the integration measure, we get a
contribution only from the �

(d)(p � Pn) terms. It will be useful to contract G̃
µ⌫ with two

copies of a constant real vector Vµ.8 We obtain
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6Here and in the following we are using the unbroken low-energy spacetime translations, in general a linear
combination of the original translations and some internal generator. For the U(1) case we are going to discuss
in this paper, the current Jµ commutes with the internal generator.

7This can be shown using Morera’s theorem.
8More generally one can take the V µ as polynomials in !, in which case one should contract with

Vµ(!)V⌫(!⇤)⇤. One needs V µ(!) entire so as not to change the analytic properties of G̃µ⌫ and polynomially
bounded in order to be able to neglect the contribution from infinity: again, a polynomially bounded entire
function is a polynomial. Since we obtain no new bounds in this paper by considering non-constant or complex
polarization vectors, we restrict ourselves to constants V µ

2 R here. In §3.2 non-constant polynomials with
real coefficients are briefly considered, and in Appendix C the more general case is treated.
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–Useful, though not necessary, property:

– In particular: 

–Reality of Green’s function:

–Combining: 

Crossing Symmetry

copies of a constant real vector Vµ.8 We obtain
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which is i ⇥ (positive) for odd ` and i ⇥ (negative) for even `. We will be interested in odd
`’s where we know that the sum of contributions from both cuts is of the form i⇥ (positive).
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The functions G̃
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8More generally one can take the V µ as polynomials in !, in which case one should contract with
Vµ(!)V⌫(!⇤)⇤. One needs V µ(!) entire so as not to change the analytic properties of G̃µ⌫ and polynomially
bounded in order to be able to neglect the contribution from infinity: again, a polynomially bounded entire
function is a polynomial. Since we obtain no new bounds in this paper by considering non-constant or complex
polarization vectors, we restrict ourselves to constants V µ

2 R here. In §3.2 non-constant polynomials with
real coefficients are briefly considered, and in Appendix C the more general case is treated.

9Obviously we are assuming that the theory is unitary: when discussing Euclidean theories, we are assuming
reflection positivity, see for instance [?].
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–UV-IR connection

–Need to be sure we are computing, in the IR, with EFT, the same quantity that in the 
UV has the CFT scaling. 

–Integrated-out heavy modes generate contact terms at low energies. These are not 
encoded in the Noether current constructed from the EFT. Therefore, neglecting 
them would give IR-UV mismatch.

• To keep track of contact terms: gauge the symmetry & interpret the correlation 
functions of currents as functional derivatives with respect to the non-dynamical gauge 
bosons.

• Let us be explicit. Notice

–The last term does not produce contact terms, as only low-energy states contribute:

–but time-ordering has a convolution and so they contribute

Gauging the symmetry

EFT contact terms and gauging the symmetry. So far we have discussed the properties
of G̃µ⌫ in the full UV theory. Since our purpose is to put constraints on the coefficients of
the operators of the low-energy EFT, we have now to discuss the calculation of G̃µ⌫ in the
EFT. One can think of the EFT as the theory after the heavy degrees of freedom have been
integrated out. In the procedure of integrating out heavy modes one generates contact terms:
for example, a heavy propagator / (p2+m

2)�1 expanded at low energy gives a polynomial in
p
2. This polynomial is the Fourier transform of a sum of contact terms, i.e. derivatives of a

delta function. It is crucial to keep track of all these contact terms, since they are part of the
low-energy expansion of G̃µ⌫ , the function with the nice analytic properties and UV behavior
we discussed above.

It is often useful to calculate correlation functions of a given operator by coupling it to an
external source. In the case of a conserved current this is a non-dynamical gauge field Aµ (and
a non-dynamical metric gµ⌫ in the case of the stress-energy tensor). Notice that this U(1)

symmetry implies that one has a gauge symmetry for Aµ (when the U(1) is spontaneously
broken, the case of interest below, this gauge symmetry is spontaneously broken). Instead
of computing correlation functions of J

µ, one computes functional derivatives in the path
integral of the gauged theory.10

Let us be more explicit. First, let us write the retarded Green’s function in terms of the
time-ordered product of operators:

G
µ⌫
R (x� y) = i✓(x0

� y
0) h0|[Jµ(x), J⌫(y)]|0i = i h0|T{Jµ(x)J⌫(y)}|0i � i h0|J⌫(y)Jµ(x)|0i .

(19)
It is easy to argue that the contact terms generated by integrating out the heavy modes will
only appear in the time-ordered product and not in the last term of the equation above.
Indeed one can do exactly as in Eq. (8) to obtain

i
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This shows that the value of the second term on the right-hand-side (RHS) in (19) at low
energies and momenta is only affected by the low-energy states, i.e. the states in the EFT;
the heavy states do not contribute. On the contrary, the first term on the RHS of (19)
involves a convolution in Fourier space, because of the product with the ✓-function in real
space. Therefore also heavy modes contribute to the time-ordered correlation function at low
energy.

It is useful to see this in terms of path integrals. The first term is simple since it is
time-ordered:

h0|T{Jµ(x)J⌫(y)}|0i =
1

Z
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D� e
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where Z is the normalization
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. (22)

10This is also the way to deal with anomalous contact terms in the CFT, see [?].
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It is often useful to calculate correlation functions of a given operator by coupling it to an
external source. In the case of a conserved current this is a non-dynamical gauge field Aµ (and
a non-dynamical metric gµ⌫ in the case of the stress-energy tensor). Notice that this U(1)

symmetry implies that one has a gauge symmetry for Aµ (when the U(1) is spontaneously
broken, the case of interest below, this gauge symmetry is spontaneously broken). Instead
of computing correlation functions of J

µ, one computes functional derivatives in the path
integral of the gauged theory.10

Let us be more explicit. First, let us write the retarded Green’s function in terms of the
time-ordered product of operators:
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µ⌫
R (x� y) = i✓(x0

� y
0) h0|[Jµ(x), J⌫(y)]|0i = i h0|T{Jµ(x)J⌫(y)}|0i � i h0|J⌫(y)Jµ(x)|0i .

(19)
It is easy to argue that the contact terms generated by integrating out the heavy modes will
only appear in the time-ordered product and not in the last term of the equation above.
Indeed one can do exactly as in Eq. (8) to obtain

i

ˆ
Rd

dd
x e

�ip·x
h0|J⌫(0)Jµ(x)|0i = i(2⇡)d

X

n

�
(d)(p+ Pn) h0|J

⌫(0)|Pni hPn|J
µ(0)|0i . (20)

This shows that the value of the second term on the right-hand-side (RHS) in (19) at low
energies and momenta is only affected by the low-energy states, i.e. the states in the EFT;
the heavy states do not contribute. On the contrary, the first term on the RHS of (19)
involves a convolution in Fourier space, because of the product with the ✓-function in real
space. Therefore also heavy modes contribute to the time-ordered correlation function at low
energy.

It is useful to see this in terms of path integrals. The first term is simple since it is
time-ordered:

h0|T{Jµ(x)J⌫(y)}|0i =
1

Z

ˆ
D� e

i
´
Rd ddx L(�)

J
µ(x)J⌫(y) , (21)

where Z is the normalization
Z =

ˆ
D� e

i
´
Rd ddx L(�)

. (22)

10This is also the way to deal with anomalous contact terms in the CFT, see [?].
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Here � denotes the whole set of dynamical fields in the theory, both heavy and light. (For ease
of notation, we have assumed that we can write the path integral in terms of the Lagrangian, as
nothing would change if we were to work with the Hamiltonian.) The second term in (19) is a
correlation function without any ordering prescription. It is less common to express this term
using path integrals, which in their usual form give a time ordering of the inserted operators as
in (21). However, correlation functions which are not ordered, or with all possible orderings,
are relevant when one is interested in observables different from the flat space S-matrix (in
cosmology for instance); see [?] for a comprehensive treatment. Using the time-evolution
operator U(t, t0) from t0 ! t one can write the correlator in terms of Schrödinger-picture
operators

h0|J⌫(y)Jµ(x)|0i = h0|U(+1, y
0)J⌫

(s)(y)U(y0, x0)Jµ
(s)(x)U(x0

,�1)|0i . (23)

Inserting twice the identity at fixed time

1 =

ˆ
D�(x̃) |�(x̃)i h�(x̃)| , (24)

at t = x
0 and t = y

0, and then expressing each of the time-evolution operators by a path
integral with appropriate boundary conditions,

h�(y0, ỹ)|U(y0, x0)|�(x0
, x̃)i =

ˆ �(ỹ)

�(x̃)

D� e
i
´ y0
x0

ddx L(�)
, (25)

we can write

h0|J⌫(y)Jµ(x)|0i =
1

Z

ˆ
D�(x̃)

ˆ
D�(ỹ) J⌫(�(y0,y))Jµ(�(x0

,x))

ˆ
�(ỹ)

D�3 e
i
´+1
y0

ddx L(�3)
⇥

ˆ �(ỹ)

�(x̃)

D�2 e
i
´ y0
x0

ddx L(�2)

ˆ �(x̃)

D�1 e
i
´ x0
�1 ddx L(�1) . (26)

Notice that �(x0
,x) is fixed in terms of �(x̃): �(x0

,x) = �(x̃)|x̃=x (similarly for y
0). The

selection of the interacting vacuum works in the same way as in the standard T-ordered case,
with an evolution in Euclidean time in the asymptotic past and future. One could also choose
an in-in prescription defining the vacuum only at early times, as is mandatory in cosmology,
with straightforward changes.

Now that we have written the retarded Green’s function in terms of a path integral, we can
introduce the external sources coupled to J

µ, which effectively gauge the symmetry, and write
correlation functions of currents as functional derivatives with respect to the gauge bosons.
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–So we can write, gauging the symmetry:

–or equivalently as functional derivative:

Gauging the symmetry
Each L(�i) gets replaced by a L

⇣
�i, A

(i)
µ

⌘
and we can write

G
µ⌫
R (x, y) = (27)

=
i

Z

 ˆ
D�0 e

i
´
Rd ddx L

⇣
�0,A

(0)
µ

⌘

J
µ (�0(x)) J

⌫ (�0(y))

����
A

(0)
µ =0

+

ˆ
D�(x̃)

ˆ
D�(ỹ) J⌫(�(y0,y))Jµ(�(x0

,x))

ˆ
�(ỹ)

D�3 e
i
´+1
y0

ddx L
⇣
�3,A

(3)
µ

⌘

⇥

ˆ �(ỹ)

�(x̃)

D�2 e
i
´ y0
x0

ddx L
⇣
�2,A

(2)
µ

⌘ ˆ �(ỹ)

D�1 e
i
´ x0
�1 ddx L

⇣
�1,A

(1)
µ

⌘
�����
A

(1,2,3)
µ =0

1

A .

Rewriting the currents as derivatives with respect to Aµ one gets

G
µ⌫
R (x, y) =

i

Z

0

@�
�
2

�A
(0)
µ (x)�A(0)

⌫ (y)

ˆ
D� e

i
´
Rd ddx L

⇣
�0,A

(0)
µ

⌘
�����
A

(0)
µ =0

� (28)

�
2

�A
(1)
µ (x) �A(3)

⌫ (y)

ˆ
D�(x̃)

ˆ
D�(ỹ)

ˆ
�(ỹ)

D�3 e
i
´+1
y0

ddx L
⇣
�3,A

(3)
µ

⌘

⇥

ˆ �(ỹ)

�(x̃)

D�2 e
i
´ y0
x0

ddx L
⇣
�2,A

(2)
µ

⌘ ˆ �(x̃)

D�1 e
i
´ x0
�1 ddx L

⇣
�1,A

(1)
µ

⌘
�����
A

(1,2,3)
µ =0

1

A .

This is an expression in the full UV theory. The low-energy EFT can be obtained integrating
out the heavy fields: splitting the fields in heavy, �h, and light, �`, one has

e
iSEFT(�`,Aµ) =

ˆ
D�h e

iSEFT(�h,�`,Aµ) . (29)

The resulting action is gauge invariant and thus contains all the “minimal” couplings of �`

with Aµ induced by gauging. On top of this, additional local operators depending on Aµ and
�` will be generated when integrating out the heavy fields �h. In particular operators which
are quadratic in Aµ will contribute contact terms to the hJJi-correlators, when taking the
functional derivatives with respect to Aµ. It is important to notice that only the time-ordered
correlator will contain contact terms: indeed this is the only one in Eq. (27) that contains
second derivatives with respect to the same Aµ. This is consistent with our discussion above.
Notice that one would have missed these contact terms calculating the correlators of the
Noether current of the light fields in the EFT.

Contour argument. We now come to the general argument that gives bounds on the coef-
ficients of operators in theories where boosts are spontaneously broken. In this introductory
discussion we set k0 = 0 for simplicity; we will come back to the general case later. Given
a low-energy EFT, characterized by a cutoff ⇤, we can compute G̃

µ⌫(!) at low energies:
schematically for the 00 component one gets

G̃
00(!) = µ

d�2


c1

1

1� c2s⇠
2
+

!
2

⇤2

✓
c2

(1� c2s⇠
2)2

+ d1

◆
+O

✓
!
4

⇤4

◆�
. (30)
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– .

–This is the expression in the UV. In the IR, 

–and we generate contact terms. They are captured by the gauge bosons dependence and 
therefore by the functional derivatives:

–only from the T-ordered part, because contain the same gauge boson.

• UV and analyticity control.
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This is an expression in the full UV theory. The low-energy EFT can be obtained integrating
out the heavy fields: splitting the fields in heavy, �h, and light, �`, one has

e
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iSEFT(�h,�`,Aµ) . (29)

The resulting action is gauge invariant and thus contains all the “minimal” couplings of �`

with Aµ induced by gauging. On top of this, additional local operators depending on Aµ and
�` will be generated when integrating out the heavy fields �h. In particular operators which
are quadratic in Aµ will contribute contact terms to the hJJi-correlators, when taking the
functional derivatives with respect to Aµ. It is important to notice that only the time-ordered
correlator will contain contact terms: indeed this is the only one in Eq. (27) that contains
second derivatives with respect to the same Aµ. This is consistent with our discussion above.
Notice that one would have missed these contact terms calculating the correlators of the
Noether current of the light fields in the EFT.

Contour argument. We now come to the general argument that gives bounds on the coef-
ficients of operators in theories where boosts are spontaneously broken. In this introductory
discussion we set k0 = 0 for simplicity; we will come back to the general case later. Given
a low-energy EFT, characterized by a cutoff ⇤, we can compute G̃

µ⌫(!) at low energies:
schematically for the 00 component one gets

G̃
00(!) = µ

d�2


c1

1

1� c2s⇠
2
+

!
2

⇤2

✓
c2

(1� c2s⇠
2)2

+ d1

◆
+O

✓
!
4

⇤4

◆�
. (30)

13

Each L(�i) gets replaced by a L

⇣
�i, A

(i)
µ

⌘
and we can write

G
µ⌫
R (x, y) = (27)

=
i

Z

 ˆ
D�0 e

i
´
Rd ddx L

⇣
�0,A

(0)
µ

⌘

J
µ (�0(x)) J

⌫ (�0(y))

����
A

(0)
µ =0

+

ˆ
D�(x̃)

ˆ
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�` will be generated when integrating out the heavy fields �h. In particular operators which
are quadratic in Aµ will contribute contact terms to the hJJi-correlators, when taking the
functional derivatives with respect to Aµ. It is important to notice that only the time-ordered
correlator will contain contact terms: indeed this is the only one in Eq. (27) that contains
second derivatives with respect to the same Aµ. This is consistent with our discussion above.
Notice that one would have missed these contact terms calculating the correlators of the
Noether current of the light fields in the EFT.

Contour argument. We now come to the general argument that gives bounds on the coef-
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�` will be generated when integrating out the heavy fields �h. In particular operators which
are quadratic in Aµ will contribute contact terms to the hJJi-correlators, when taking the
functional derivatives with respect to Aµ. It is important to notice that only the time-ordered
correlator will contain contact terms: indeed this is the only one in Eq. (27) that contains
second derivatives with respect to the same Aµ. This is consistent with our discussion above.
Notice that one would have missed these contact terms calculating the correlators of the
Noether current of the light fields in the EFT.

Contour argument. We now come to the general argument that gives bounds on the coef-
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ˆ
�(ỹ)
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This is an expression in the full UV theory. The low-energy EFT can be obtained integrating
out the heavy fields: splitting the fields in heavy, �h, and light, �`, one has
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The resulting action is gauge invariant and thus contains all the “minimal” couplings of �`

with Aµ induced by gauging. On top of this, additional local operators depending on Aµ and
�` will be generated when integrating out the heavy fields �h. In particular operators which
are quadratic in Aµ will contribute contact terms to the hJJi-correlators, when taking the
functional derivatives with respect to Aµ. It is important to notice that only the time-ordered
correlator will contain contact terms: indeed this is the only one in Eq. (27) that contains
second derivatives with respect to the same Aµ. This is consistent with our discussion above.
Notice that one would have missed these contact terms calculating the correlators of the
Noether current of the light fields in the EFT.

Contour argument. We now come to the general argument that gives bounds on the coef-
ficients of operators in theories where boosts are spontaneously broken. In this introductory
discussion we set k0 = 0 for simplicity; we will come back to the general case later. Given
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This is an expression in the full UV theory. The low-energy EFT can be obtained integrating
out the heavy fields: splitting the fields in heavy, �h, and light, �`, one has
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iSEFT(�`,Aµ) =

ˆ
D�h e

iSEFT(�h,�`,Aµ) . (29)

The resulting action is gauge invariant and thus contains all the “minimal” couplings of �`

with Aµ induced by gauging. On top of this, additional local operators depending on Aµ and
�` will be generated when integrating out the heavy fields �h. In particular operators which
are quadratic in Aµ will contribute contact terms to the hJJi-correlators, when taking the
functional derivatives with respect to Aµ. It is important to notice that only the time-ordered
correlator will contain contact terms: indeed this is the only one in Eq. (27) that contains
second derivatives with respect to the same Aµ. This is consistent with our discussion above.
Notice that one would have missed these contact terms calculating the correlators of the
Noether current of the light fields in the EFT.

Contour argument. We now come to the general argument that gives bounds on the coef-
ficients of operators in theories where boosts are spontaneously broken. In this introductory
discussion we set k0 = 0 for simplicity; we will come back to the general case later. Given
a low-energy EFT, characterized by a cutoff ⇤, we can compute G̃
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The denominators come from the propagators of the low-energy degree of freedom, with speed
of propagation cs. Here µ is some overall scale, while c1, c2, . . . , d1, d2, . . . are coefficients of
operators of the low-energy EFT, including terms quadratic in the gauge fields, which give
rise to contact terms. The parameter ⇠, defined in Eq. (6) (0  ⇠ < 1), allows to explore the
region of analiticity of G̃.

Now the argument is similar to the S-matrix one (see Fig. 1). One can select the coefficient
of a given power of ! in (30) using the residue theorem
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The contour of integration can then be moved far away from the origin as in Fig. 1. The
contribution of the circle at infinity can be estimated using the CFT correlator, Eq. (3), which
is appropriate for the |!| ! 1 limit.11 For example in d = 3, G̃00(!) ⇠ ! in this limit and
the contribution from the circle at infinity is negligible. Thus the integral around the origin
is equal to the integral along the cuts, which is i⇥ (positive). We therefore conclude:

c2

(1� c2s⇠
2)2

+ d1 � 0 . (35)

The most general inequalities can be obtained varying ⇠ in the interval 0  ⇠ < 1 and
contracting G̃

µ⌫ with a generic vector V
µ.

11One might be worried that the CFT limit is reached for large real momenta, while the contour at infinity
needs large |!| in the complex plane. Let us show that the knowledge of the UV limit of the Green’s functions
in position space for real arguments gives us control in Fourier space for complex !. Let us consider

G̃R(!,!⇠) =

ˆ
Rd

ddx e�ip·xGR(x) , (32)

where we dropped k0, which is negligible for large |!|, and suppressed for simplicity the indices of the Green’s
function. (We focus on the retarded Green’s function in the upper half plane, the same holds for GA in the
lower half.) We want to study the limit of large |!| for a fixed direction in the complex plane, i.e. the limit
� ! +1 (� is real and we assume � � 1) of

G̃R(�!,�!⇠) =
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ddx e�i�p·xGR(x) = ��d
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where in the last step we redefined the variables of integration. We are assuming that the Green’s functions
are polynomially bounded in position space: |GR(x)|  A|x|n for |x| above a certain value and for suitable
A > 0 and positive integer n. This implies that the integral above converges exponentially for pIm

2 FLC
and one can neglect, for any � � 1, large values of |x|. More precisely, once one fixes a small " one can find a
sufficiently large, �-independent, x⇤ such that
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In the compact region |x| < x⇤, one has GR(x/�) ! GCFT
R (x/�) for � ! +1 and the convergence is uniform

in x. Given the uniform convergence, in Eq. (33) one can exchange the � limit with the integral and conclude
that the result converges to the CFT result for all complex ! in the upper half plane.
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In the compact region |x| < x⇤, one has GR(x/�) ! GCFT
R (x/�) for � ! +1 and the convergence is uniform

in x. Given the uniform convergence, in Eq. (33) one can exchange the � limit with the integral and conclude
that the result converges to the CFT result for all complex ! in the upper half plane.
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The denominators come from the propagators of the low-energy degree of freedom, with speed
of propagation cs. Here µ is some overall scale, while c1, c2, . . . , d1, d2, . . . are coefficients of
operators of the low-energy EFT, including terms quadratic in the gauge fields, which give
rise to contact terms. The parameter ⇠, defined in Eq. (6) (0  ⇠ < 1), allows to explore the
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The contour of integration can then be moved far away from the origin as in Fig. 1. The
contribution of the circle at infinity can be estimated using the CFT correlator, Eq. (3), which
is appropriate for the |!| ! 1 limit.11 For example in d = 3, G̃00(!) ⇠ ! for ! ! 1 in this
limit and the contribution from the circle at infinity is negligible. Thus the integral around
the origin is equal to the integral along the cuts, which is i⇥(positive). We therefore conclude:
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The most general inequalities can be obtained varying ⇠ in the interval 0  ⇠ < 1 and
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µ.
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–At loop level, the cut extends all the way to origin. One can use this contour (or, using 
crossing symmetry, just the upper contour)

–So, no mass gap needed.

Without mass gap

Getting rid of the mass-gap assumption. The contour argument above assumes that
one can stick to the tree-level approximation in the EFT, so that at low energy one has only
poles. In general, however, in the absence of a mass gap, loops of the low-energy excitation
will open a cut in the !-plane all along the real axis. In this case one can use the two contours
of Fig. 2. One gets the same result as with the contour of Fig. 1, but now this can be applied
even in the presence of a cut running all along the real axis. In Appendix C we will see that
the positivity arguments can also be derived remaining in the upper half plane, i.e. using only
the upper contour of Fig. 2

!

"

Figure 2: Different contours that give the same result as in Fig. 1. This choice is suitable
when a cut is running all along the real axis.

In the remainder of the paper we will apply the above ideas to the interesting case of an
EFT where boosts are non-linearly realized: a CFT at finite chemical potential.

3 Conformal superfluids
CFT’s are of fundamental interest in physics and any technique to get extra information
about them is precious. A way to understand analytically the general properties of operators
at large charge Q was developed in [?, ?] and in many subsequent papers, for a review see [?].
By the state/operator correspondence, a charged operator is mapped into a charged state.
Generically this charge induces the spontaneous breaking of the U(1) symmetry (for simplicity
we focus on a U(1)). We are therefore lead to study CFT’s at finite chemical potential µ: one
can think about this as a state that evolves in time around the U(1). Lorentz invariance is thus
spontaneously broken and this connects to the topic of the present paper. The breaking of
the symmetry leads to a Goldstone boson: this is the only degree of freedom at energies much
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An example



–Apply setup to example of the EFT by 

–Motivated by CFT studies, they match an operator at large charge with a state (at large 
charge): correlation functions of large charge operators can be computed with an EFT 
around this state. This state spontaneously breaks the symmetry, and also breaks, due to 
finite chemical potential, also time translations.

–An EFT can be constructed, using the non-linear realization of symmetries. The full 
symmetry is (could be an inflationary model!)

–Simplest construction:

–Write diff. invariant action with Wyel invariant metric:

–and 

–(we will Gauge it)

• Leading operator: 

Conformal Superfluids
Hellerman et al, 2015

Monin et al, 2017 

smaller than µ. As we will discuss below the action for this Goldstone is very constrained
by the symmetry breaking pattern. The original symmetry, SO(d, 2) ⇥ U(1), is broken to
rotations and spacetime translations, with the time translation being a diagonal combination
of the original time translation and a U(1) rotation. One can think about this symmetry-
breaking pattern considering a charged scalar � evolving linearly in time

�(x) = µt+ ⇡(x) , (36)

where ⇡ is the Goldstone boson. The most general action can be obtained through a coset
construction [?] or, maybe more simply, using an effective metric as we discuss in detail in
Appendix A.

This EFT contains all the information about the large Q sector of the theory, and the
derivative expansion can be identified with the large charge expansion. The simplest object
one can calculate is the energy of the system as a function of Q, which gives the lowest scaling
dimension of operators of charge Q. In general CFT correlation functions involving at least
two operators with large charge can be calculated using the EFT.12 All the details about
the specific CFT at hand are encoded in the coefficients of the operators of the EFT: our
positivity constraints will thus carve out a region of possible CFT data.

Besides its intrinsic interest, this EFT is the perfect example to apply our methods to.
The UV CFT, which is a crucial step for our argument, is here broken only by µ, which is
also responsible for the breaking of the Lorentz symmetry. In some sense this is the minimal
setup where our arguments can be tested and applied. Notice that the EFT only makes sense
as Lorentz-breaking: the cut-off of the theory is µ, the only scale in the problem, and it goes
to zero as one tries to switch off the Lorentz-breaking.

Although our arguments are general we are going from now on to work in d = 3. One
reason is that most of the CFT literature concentrates on this example, since d = 3 CFT’s are
the key objects to study second-order phase transitions. Another reason is that in d = 3 we
are able to constrain the NLO operators of the theory, while in d = 4 the contour at infinity
would not converge and one would have to go to higher order.

3.1 hJJi calculation

The EFT Lagrangian for ⇡ coupled to Aµ in d = 3 reads, to NLO in derivatives (see [?] and
Appendix A),

L =
c1

6
|r�|

3
� 2c2

(@|r�|)2

|r�|
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b

4

Fµ⌫F
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|r�|
+

d

2

F
µ
iF

⌫i

|r�|3
rµ�r⌫� , (37)

12If one is interested in operators which are not close to the bottom of the spectrum, one has to consider a
very excited quasi-thermal state of the superfluid: in this case dissipative hydrodynamics is a better description
[?].
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P. Romatschke, L. Santoni, S. Shenker, E. Silverstein, M. Serone and G. Villadoro for useful
discussions.

A EFT operators
In this appendix we aim to obtain the independent operators of the EFT at each order in the
derivative expansion. The simplest way to write operators that non-linearly realize the full
conformal group is to use the modified metric ĝµ⌫ ⌘ gµ⌫ |g

↵�
@↵�@��| [?], where � = µt+⇡(t, x).

The metric ĝµ⌫ is Weyl invariant so that any diffeomorphism invariant action built using this
metric, instead of gµ⌫ , will automatically non-linearly realize the whole conformal group.18

At leading order in derivatives we have only the term

S
(1) =

c1

6

ˆ
d3
x

p
�ĝ =

c1

6

ˆ
d3
x
p
�g|@�|

3
. (118)

At next order we have to add two derivatives to the action.19 One can write two operators
using the Ricci tensor:

S
(2) =

ˆ
d3
x

p
�ĝ

⇣
�c2R̂ + c3R̂

µ⌫
@̂µ�@̂⌫�

⌘
. (119)

(There is no difference between @µ and @̂µ, but we use this notation to emphasize that indices
are raised and contracted with ĝµ⌫ .) These two are the only operators at this order, as we are
now going to show. The only other operator one has to consider is

´
d3
x
p
�ĝ2̂�2̂�. (One can

get rid of terms with three derivatives acting on a single � integrating by parts, so that one
can focus on operators of the schematic form (r̂r̂�)2, besides the terms with Ricci written
above. One cannot contract indices with @̂� since r̂µr̂

↵
�@̂↵� = 1

2 @̂µ(@̂
↵
�@̂↵�) = 0, so one is

left with
´
d3
x
p
�ĝ2̂�2̂� and

´
d3
x
p
�ĝr̂µr̂⌫�r̂

µ
r̂

⌫
�, which are equivalent integrating by

parts.) One can dispose of this additional operator by a field redefinition. Indeed consider a
perturbative field redefinition

�̃ = �+ " 2̂� . (120)

Since 2̂� is Weyl invariant � and �̃ have the same transformation properties: one could use
�̃ instead of � to build the metric ĝµ⌫ and construct out of it the operators in the action. One
can thus use this field redefinition in the leading action Eq. (118) to get rid of an operator.
The field redefinition will generate a term proportional to the equation of motion:
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d3
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p
�ĝ2̂�2̂� . (121)

18In fact, a conformal transformation combined with a suitable diffeomorphism amounts to a Weyl rescaling
of the metric. The conformal group is non-linearly realized because � has a vev.

19We assume parity invariance, otherwise one could write a term with a single extra derivative [?].
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–The EFT action reads, at NLO:

–Gauge symmetry:

–Several contact terms.

–Expanding to quadratic order:

JJ calculation

smaller than µ. As we will discuss below the action for this Goldstone is very constrained
by the symmetry breaking pattern. The original symmetry, SO(d, 2) ⇥ U(1), is broken to
rotations and spacetime translations, with the time translation being a diagonal combination
of the original time translation and a U(1) rotation. One can think about this symmetry-
breaking pattern considering a charged scalar � evolving linearly in time

�(x) = µt+ ⇡(x) , (36)

where ⇡ is the Goldstone boson. The most general action can be obtained through a coset
construction [?] or, maybe more simply, using an effective metric as we discuss in detail in
Appendix A.

This EFT contains all the information about the large Q sector of the theory, and the
derivative expansion can be identified with the large charge expansion. The simplest object
one can calculate is the energy of the system as a function of Q, which gives the lowest scaling
dimension of operators of charge Q. In general CFT correlation functions involving at least
two operators with large charge can be calculated using the EFT.12 All the details about
the specific CFT at hand are encoded in the coefficients of the operators of the EFT: our
positivity constraints will thus carve out a region of possible CFT data.

Besides its intrinsic interest, this EFT is the perfect example to apply our methods to.
The UV CFT, which is a crucial step for our argument, is here broken only by µ, which is
also responsible for the breaking of the Lorentz symmetry. In some sense this is the minimal
setup where our arguments can be tested and applied. Notice that the EFT only makes sense
as Lorentz-breaking: the cut-off of the theory is µ, the only scale in the problem, and it goes
to zero as one tries to switch off the Lorentz-breaking.

Although our arguments are general we are going from now on to work in d = 3. One
reason is that most of the CFT literature concentrates on this example, since d = 3 CFT’s are
the key objects to study second-order phase transitions. Another reason is that in d = 3 we
are able to constrain the NLO operators of the theory, while in d = 4 the contour at infinity
would not converge and one would have to go to higher order.

3.1 hJJi calculation

The EFT Lagrangian for ⇡ coupled to Aµ in d = 3 reads, to NLO in derivatives (see [?] and
Appendix A),
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12If one is interested in operators which are not close to the bottom of the spectrum, one has to consider a
very excited quasi-thermal state of the superfluid: in this case dissipative hydrodynamics is a better description
[?].

16

where � is expressed in terms of ⇡ as in (36) and

rµ� ⌘ @µ�� Aµ , (38)
|v| ⌘

p
�vµv

µ . (39)

The leading order term, the one proportional to c1, makes sense only when � is expanded
around the time-dependent background of Eq. (36): the EFT cutoff is set by the only scale
in the problem, µ, so the EFT loses sense if one tries to extrapolate to the Lorentz-invariant
vacuum µ = 0. Around the background (36), ⇡ has a speed of propagation c

2
s = 1/2, fixed by

the conformal symmetry (it would be c
2
s = 1/3 in d = 4).

Notice the gauge symmetry ⇡(x) ! ⇡(x) + ⇤(x), Aµ(x) ! Aµ(x) + @µ⇤(x) since � only
appears in the combination (38), and also the two quadratic kinetic terms for Aµ which are
compatible with the spontaneous breaking of Lorentz invariance. We argued in §2 that these
terms produce contact terms in the two-point function of Jµ that one may not neglect since
they will be generated when integrating out the heavy fields. As such they appear with the
unknown coefficients b and d in the EFT.13 These operators were not discussed in the CFT
literature (see for instance [?, ?]) because they did not study correlators involving the U(1)

current. Finally, notice one needs c1 > 0 to have a healthy kinetic term for ⇡. We will now
constrain the other coefficients c2, c3, b and d by using the methods outlined above.

Expanding to second order in ⇡, A we have, after integration by parts,
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which may be derived from the Noether procedure writing L = L(A = 0) + AµJ
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N +O(A2).

To calculate the two-point function of Jµ
N in the EFT we will require the propagator of ⇡.

We obtain it from the quadratic action with A = 0,
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13If we were to make Aµ dynamical these operators would encode the modification of the “photon” propa-
gator inside the material, inducing in particular a modification of the speed of light.
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where � is expressed in terms of ⇡ as in (36) and
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The leading order term, the one proportional to c1, makes sense only when � is expanded
around the time-dependent background of Eq. (36): the EFT cutoff is set by the only scale
in the problem, µ, so the EFT loses sense if one tries to extrapolate to the Lorentz-invariant
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s = 1/2, fixed by
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Notice the gauge symmetry ⇡(x) ! ⇡(x) + ⇤(x), Aµ(x) ! Aµ(x) + @µ⇤(x) since � only
appears in the combination (38), and also the two quadratic kinetic terms for Aµ which are
compatible with the spontaneous breaking of Lorentz invariance. We argued in §2 that these
terms produce contact terms in the two-point function of Jµ that one may not neglect since
they will be generated when integrating out the heavy fields. As such they appear with the
unknown coefficients b and d in the EFT.13 These operators were not discussed in the CFT
literature (see for instance [?, ?]) because they did not study correlators involving the U(1)

current. Finally, notice one needs c1 > 0 to have a healthy kinetic term for ⇡. We will now
constrain the other coefficients c2, c3, b and d by using the methods outlined above.
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which may be derived from the Noether procedure writing L = L(A = 0) + AµJ
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N +O(A2).

To calculate the two-point function of Jµ
N in the EFT we will require the propagator of ⇡.

We obtain it from the quadratic action with A = 0,
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13If we were to make Aµ dynamical these operators would encode the modification of the “photon” propa-
gator inside the material, inducing in particular a modification of the speed of light.
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around the time-dependent background of Eq. (36): the EFT cutoff is set by the only scale
in the problem, µ, so the EFT loses sense if one tries to extrapolate to the Lorentz-invariant
vacuum µ = 0. Around the background (36), ⇡ has a speed of propagation c

2
s = 1/2, fixed by

the conformal symmetry (it would be c
2
s = 1/3 in d = 4).

Notice the gauge symmetry ⇡(x) ! ⇡(x) + ⇤(x), Aµ(x) ! Aµ(x) + @µ⇤(x) since � only
appears in the combination (38), and also the two quadratic kinetic terms for Aµ which are
compatible with the spontaneous breaking of Lorentz invariance. We argued in §2 that these
terms produce contact terms in the two-point function of Jµ that one may not neglect since
they will be generated when integrating out the heavy fields. As such they appear with the
unknown coefficients b and d in the EFT.13 These operators were not discussed in the CFT
literature (see for instance [?, ?]) because they did not study correlators involving the U(1)

current. Finally, notice one needs c1 > 0 to have a healthy kinetic term for ⇡. We will now
constrain the other coefficients c2, c3, b and d by using the methods outlined above.
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which may be derived from the Noether procedure writing L = L(A = 0) + AµJ
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N +O(A2).

To calculate the two-point function of Jµ
N in the EFT we will require the propagator of ⇡.

We obtain it from the quadratic action with A = 0,
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13If we were to make Aµ dynamical these operators would encode the modification of the “photon” propa-
gator inside the material, inducing in particular a modification of the speed of light.
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–Noether current:

–We compute the correlation functions of the Noether currents, using 

–and add the contact terms, as prescribed by the path integral formula:

JJ calculation
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The leading order term, the one proportional to c1, makes sense only when � is expanded
around the time-dependent background of Eq. (36): the EFT cutoff is set by the only scale
in the problem, µ, so the EFT loses sense if one tries to extrapolate to the Lorentz-invariant
vacuum µ = 0. Around the background (36), ⇡ has a speed of propagation c
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s = 1/2, fixed by
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2
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appears in the combination (38), and also the two quadratic kinetic terms for Aµ which are
compatible with the spontaneous breaking of Lorentz invariance. We argued in §2 that these
terms produce contact terms in the two-point function of Jµ that one may not neglect since
they will be generated when integrating out the heavy fields. As such they appear with the
unknown coefficients b and d in the EFT.13 These operators were not discussed in the CFT
literature (see for instance [?, ?]) because they did not study correlators involving the U(1)

current. Finally, notice one needs c1 > 0 to have a healthy kinetic term for ⇡. We will now
constrain the other coefficients c2, c3, b and d by using the methods outlined above.

Expanding to second order in ⇡, A we have, after integration by parts,
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which may be derived from the Noether procedure writing L = L(A = 0) + AµJ
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N +O(A2).

To calculate the two-point function of Jµ
N in the EFT we will require the propagator of ⇡.

We obtain it from the quadratic action with A = 0,
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13If we were to make Aµ dynamical these operators would encode the modification of the “photon” propa-
gator inside the material, inducing in particular a modification of the speed of light.
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where we have defined a canonical field ⇡c ⌘
p
µc1⇡. In Fourier space this is

L(2),A=0(k) =
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(Recall our Fourier convention f(x) = (2⇡)�3
´
d3
k e

ik·x
f̃(k).) The ⇡̃⇡̃ propagator is then, to

first subleading order in derivatives,
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Here and in the following we are removing a (2⇡)3�(3)(k + k
0) of conservation of energy and

momentum, and when we suppress the external states we will always consider expectation
values in the interacting vacuum. We did not specify the prescription for the poles: the
analytic structure is the one discussed in §2 corresponding to retarded Green’s functions as
we approach from the upper half !-plane and advanced approaching from below.

Let us now proceed to calculate the current-current correlator. The retarded Green’s
function is written as the difference of the T-ordered and the unordered correlator in Eq. (19).
Let us start with the T-ordered piece, whose functional representation is the first line of
Eq. (28). This piece, as discussed in §2, will not only contain the T-ordered correlator of the
Noether currents, but also contact terms, which are crucial in order to match with the UV
calculation. These contact terms are given in Eq. (28) when one takes the derivatives to act
twice on the Lagrangian:

1

Z

ˆ
D� e

i
´
R3 d3x L

⇣
�0,A

(0)
µ

⌘ �
2
L

⇣
�0, A
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µ (x)�A(0)

⌫ (x)

������
A

(0)
µ =0

. (45)

(When the functional derivatives act on two different L’s, one gets the correlation functions
of the Noether currents.) Equation (46), at tree level, simply takes the terms in the ac-
tion Eq. (40) which are quadratic in A

µ and contributes to G
µ⌫
R contact terms in real space

(derivatives of the delta function), i.e. polynomials in ! and k in Fourier space. Now let’s
consider the unordered correlator, the second line of Eq. (28). We discussed above that this
does not contribute to contact terms. In general, this is a quite complicated object: since
it is not T-ordered, one should develop the proper Feynman rules. However, in this paper
we will stick to tree-level two-point function calculations in the EFT and one expects the
unordered term to combine with T-ordered correlator of currents to give the retarded Green’s
function of currents, see Eq. (19). Indeed one can see that the unordered term just changes
the prescription of the ! < 0 poles to make them retarded. Eq. (20) shows that the unordered
correlator at a given ! and k just receives contribution from states of the theory with same
! and k: at tree level, this implies that its Fourier transform is localized on the poles of the
propagator. Indeed the sum over n in Eq. (20) is actually an integral over the one-particle
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where � is expressed in terms of ⇡ as in (36) and
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The leading order term, the one proportional to c1, makes sense only when � is expanded
around the time-dependent background of Eq. (36): the EFT cutoff is set by the only scale
in the problem, µ, so the EFT loses sense if one tries to extrapolate to the Lorentz-invariant
vacuum µ = 0. Around the background (36), ⇡ has a speed of propagation c
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2
s = 1/3 in d = 4).

Notice the gauge symmetry ⇡(x) ! ⇡(x) + ⇤(x), Aµ(x) ! Aµ(x) + @µ⇤(x) since � only
appears in the combination (38), and also the two quadratic kinetic terms for Aµ which are
compatible with the spontaneous breaking of Lorentz invariance. We argued in §2 that these
terms produce contact terms in the two-point function of Jµ that one may not neglect since
they will be generated when integrating out the heavy fields. As such they appear with the
unknown coefficients b and d in the EFT.13 These operators were not discussed in the CFT
literature (see for instance [?, ?]) because they did not study correlators involving the U(1)

current. Finally, notice one needs c1 > 0 to have a healthy kinetic term for ⇡. We will now
constrain the other coefficients c2, c3, b and d by using the methods outlined above.
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which may be derived from the Noether procedure writing L = L(A = 0) + AµJ
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N +O(A2).

To calculate the two-point function of Jµ
N in the EFT we will require the propagator of ⇡.

We obtain it from the quadratic action with A = 0,
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13If we were to make Aµ dynamical these operators would encode the modification of the “photon” propa-
gator inside the material, inducing in particular a modification of the speed of light.
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–We notice that it is true that

–without any contact terms. 

• Proof: consider                                                     and change variables                            , 
and use                         , to get

• Gauge invariance 

• So:

JJ conservation

states dk̃/(2⇡)d�1
· 1/(2!(k0)): this integral eats the spatial delta function and gives

i h0|J⌫(�!,�k)Jµ(!,k)|0i = i(2⇡)
1

2!(k)
�(! + !(k)) h0|J⌫(0)|!(k),ki h!(k),k|Jµ(0)|0i ,

(46)
where !(k) is the dispersion relation of the Goldstone (including the corrections due to higher-
dimension operators). Notice that this contribution is only for ! < 0: one can check that this
term changes the prescription of the poles, exactly in the same way it does for the standard
relativistic propagator of a massive scalar field.

The structure of hJµ(�k)J⌫(k)i is severely constrained by current conservation,

kµhJ
µ(�k)J⌫(k)i = 0 . (47)

This equality is exact, without contact terms on the RHS, given our definition of the correlator:
we show this precisely in Appendix B. In the absence of Lorentz invariance one has two possible
tensor structures that guarantee conservation,

ihJ
µ(�k)J⌫(k)i = A

�
k
µ
k
⌫
� ⌘

µ⌫
k
2
�
+ B

�
k
i
k
j
� �

ijk2
�
, (48)

where A and B are general functions of ! and |k|.
In our EFT, calculating the Noether current correlator14 and adding the contact terms

one gets
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The prescription for the poles is retarded for !
Im

> 0 and advanced for !
Im

< 0.

3.2 Positivity bounds from hJJi

To derive positivity bounds on c2, c3, b and d we follow the general logic outlined in §2 (see
also Appendix C). For the time being, we focus on the tree-level approximation in the EFT
and we will discuss loops in §3.6. Consider the function

f̃(!) = G̃
µ⌫(k)Vµ(k)V⌫(k)

���
k=(!,k0+!⇠)

, (51)

where
G̃

µ⌫(k) = ihJ
µ(�k)J⌫(k)i . (52)

Its EFT low-energy approximation is given by Eqns. (49), (50) and (51). The vector V (k =

(!,k0 + !⇠)) ⌘ V (!) has components which are arbitrary polynomials in !. Initially we set
14Notice that the constant term in J0

N drops out from the Green’s function, since it involves a commutator.
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were studied above. The last two terms can be disposed of, using the contracted Bianchi
identity: rµ(Rµ

⌫ �
1
2Rgµ⌫) = 0. For instance, integrating by parts,

R̂
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r̂µr̂
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0
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1

2
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0
r̂

0
r̂

0
� , (124)

so that the fourth operator becomes proportional to the second. The same holds for the
third one, which gives rise to a term that contains 2̂�. (Notice that in doing integration by
parts, sometimes the derivative acts on the “hidden” @̂� which is implicit when we have upper
index 0 in our notation. In this case, however, one generates terms of the schematic form
R̂r̂r̂�r̂r̂�, and these start cubic as we discussed.)

We now want to show that the object r̂
0
r̂

0
r̂

0
� is actually quadratic in perturbations

and this will imply that the the first two terms in Eq. (124) are cubic and we can also discard
them. Explicitly

r̂
0
r̂

0
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0
� =
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�
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�
�

⌘
@̂↵�@̂��@̂�� . (125)

If @̂�� were inside the r̂
↵
r̂

�, it would contract to give @̂
�
�@̂�� = 1, so that the whole term

would vanish. The difference between this and the expression (126) involves derivatives acting
on @̂��, but these extra terms are quadratic: we conclude that r̂

0
r̂

0
r̂

0
� is quadratic. In

conclusion we can dispose of all terms in Eq. (124).
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�ĝ

⇣
c4R̂

2 + c5R̂µ⌫R̂
µ⌫ + c6R̂

0
µR̂

µ0
⌘
. (126)

B Conservation laws for J
µ and T

µ⌫

It is interesting to review if and how the conservation laws of currents are satisfied within
correlation functions. We shall focus on the retarded Green’s functions as defined through
the functional derivative of the path integral in Eq. (28). We will review that contact terms
and the fact that currents take a vev make the discussion quite subtle.

Let us start with the U(1) current and consider the following path integral:

K =

ˆ
D� e

i
´
ddx L(�,Aµ) . (127)

34

Now, we can change variables to a gauge-transformed field �
0 = e

�i↵(x)
�. Since the measure

of integration is invariant (assuming a non-anomalous symmetry), D�
0 = D�, we have

K =

ˆ
D� e

i
´
ddx L(�0(�),Aµ) . (128)

The fact that the Lagrangian is gauge invariant gives L (�0(�), Aµ � @µ↵) = L (�, Aµ), which
we can also write as L (�0(�), Aµ) = L (�, Aµ + @µ↵). So, assuming infinitesimal ↵, we can
write

K =

ˆ
D� e

i
´
ddx L(�,Aµ+@µ↵) =

ˆ
D� e

i
´
ddx L(�,Aµ)

✓
1 + i

ˆ
dd
x @µ↵(x)

�S

�Aµ(x)

◆
. (129)

Equating this to (128), we get, upon integration by parts,

0 =

ˆ
D� e

i
´
ddx L(�,Aµ)

ˆ
dd
x @µ↵(x)

�S

�Aµ(x)

= �

ˆ
dd
x ↵(x) @xµ

ˆ
D� e

i
´
ddx0 L(�(x0),A⌫(x0)) �S

�Aµ(x)

= i

ˆ
dd
x ↵(x) @xµ

�

�Aµ(x)

ˆ
D� e

i
´
ddx0 L(�(x0),A⌫(x0))

. (130)

Since this must be true for every ↵(x), we obtain

0 = @xµ
�

�Aµ(x)

ˆ
D� e

i
´
ddx0 L(�(x0),A⌫(x0))

. (131)

We can take a second derivative with respect to A⌫(y), and then set Aµ = 0, to get

0 = @xµ
�
2

�Aµ(x)�A⌫(y)

ˆ
D� e

i
´
ddx0 L(�(x0),A⇢(x0))

����
A�=0

. (132)

Eq. (132) (evaluated at Aµ = 0) and (133) are exactly the functional derivatives that enter
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–So:

–Take a second derivative:

–This is our functional form. But notice that it includes the contact terms.

JJ conservation
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in (28) (which is not to be confused with correlation functions of Noether currents, with
respect to which it differs by contact terms). We therefore conclude that hJ

µ(�k)J⌫(k)i is
exactly conserved, without the presence, on the RHS, of any �-function term. This justifies
the tensorial structure that we assumed (and verified) in (48).
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Now, we can change variables to a gauge-transformed field �
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–So:

–            it has 2 tensorial structures (non relativistic theory):

–Wordking in d=3:

JJ conservation

states dk̃/(2⇡)d�1
· 1/(2!(k0)): this integral eats the spatial delta function and gives
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where !(k) is the dispersion relation of the Goldstone (including the corrections due to higher-
dimension operators). Notice that this contribution is only for ! < 0: one can check that this
term changes the prescription of the poles, exactly in the same way it does for the standard
relativistic propagator of a massive scalar field.

The structure of hJµ(�k)J⌫(k)i is severely constrained by current conservation,

kµhJ
µ(�k)J⌫(k)i = 0 . (47)

This equality is exact, without contact terms on the RHS, given our definition of the correlator:
we show this precisely in Appendix B. In the absence of Lorentz invariance one has two possible
tensor structures that guarantee conservation,
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where A and B are general functions of ! and |k|.
In our EFT, calculating the Noether current correlator14 and adding the contact terms
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The prescription for the poles is retarded for !
Im

> 0 and advanced for !
Im

< 0.

3.2 Positivity bounds from hJJi

To derive positivity bounds on c2, c3, b and d we follow the general logic outlined in §2 (see
also Appendix C). For the time being, we focus on the tree-level approximation in the EFT
and we will discuss loops in §3.6. Consider the function

f̃(!) = G̃
µ⌫(k)Vµ(k)V⌫(k)

���
k=(!,k0+!⇠)

, (51)

where
G̃

µ⌫(k) = ihJ
µ(�k)J⌫(k)i . (52)

Its EFT low-energy approximation is given by Eqns. (49), (50) and (51). The vector V (k =

(!,k0 + !⇠)) ⌘ V (!) has components which are arbitrary polynomials in !. Initially we set
14Notice that the constant term in J0

N drops out from the Green’s function, since it involves a commutator.
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Eq. (131) (evaluated at Aµ = 0) and (132) are exactly the functional derivatives that enter
in the computation of the Green’s function of the U(1) currents hJ

µ(�k)J⌫(k)i, as derived
in (28) (which is not to be confused with correlation functions of Noether currents, with
respect to which it differs by contact terms). We therefore conclude that hJ

µ(�k)J⌫(k)i is
exactly conserved, without the presence, on the RHS, of any �-function term. This justifies
the tensorial structure that we assumed (and verified) in (48).
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where !(k) is the dispersion relation of the Goldstone (including the corrections due to higher-
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relativistic propagator of a massive scalar field.

The structure of hJµ(�k)J⌫(k)i is severely constrained by current conservation,
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This equality is exact, without contact terms on the RHS, given our definition of the correlator:
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3.2 Positivity bounds from hJJi

To derive positivity bounds on c2, c3, b and d we follow the general logic outlined in §2 (see
also Appendix C). For the time being, we focus on the tree-level approximation in the EFT
and we will discuss loops in §3.6. Consider the function
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where
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Its EFT low-energy approximation is given by Eqns. (48), (49) and (50). The vector V (k =

(!,k0 + !⇠)) ⌘ V (!) has components which are arbitrary polynomials in !. Initially we set
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–There is a rich kinematical structure. Consider:

–Take                  (as it does not change the result) 

–Take the most general 

– (expanded in a base)

–Get:

–Contour argument:

– .

– .
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k0 = 0, but turning on this parameter does not produce any new bounds as we illustrate
explicitly at the end of this section. At each ! we may expand V (!) as a sum of three
terms, one parallel to k and two others orthogonal to it, with arbitrary coefficients as long
as the result is a polynomial in !. When k0 = 0 these basis vectors are !-independent when
normalized:

K̂ =
(1, ⇠)p
1� ⇠2

, (53)

Ê =
(⇠, ⇠̂)p
1� ⇠2

, (54)

F̂ = (0, f̂) , (55)

where hats denote unit vectors, so ⇠̂·⇠̂ = 1 = f̂ ·f̂ , ⇠̂·f̂ = 0. Also K̂ ·K̂ = �1, Ê ·Ê = 1 = F̂ ·F̂

and K̂ · Ê = K̂ · F̂ = Ê · F̂ = 0. So we write

V (!) = ↵(!)K̂ + �(!)Ê + �(!)F̂ , (56)

where ↵, �, � are arbitrary polynomials of !. This expansion is useful because it is immediate
from (48) that ↵(!) will not appear in the sum (51). This property of the expansion persists
when k0 6= 0.

An essential step in the positivity logic is that we must be able to neglect the contribution
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We now follow the contour argument of §2 and consider a contour around the origin (see
Fig. 1) ‰
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We now follow the contour argument of §2 and consider a contour around the origin (see
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ŝ

Figure 1: The two contours in the ŝ-plane for S-matrix argument. The integral around the
origin gives the coefficient of the operator in the EFT. It is equivalent to the large contour
that reduces to an integral along the cuts, since the arcs at infinity vanish. The integral along
the cuts is positive definite.

along the positive-s cut, which gives i ⇥ c+, with c+ a non-negative number. We therefore
conclude that c2 � 0.

With this example in mind, let us now focus on theories where Lorentz invariance is
spontaneously broken. The spontaneous breaking of Lorentz invariance (perhaps combined
with the spontaneous breaking of other symmetries), leads to the presence of Goldstone
bosons, which are the relevant degrees of freedom in these kind of EFT’s. Typical examples are
the phonons of solids, the sounds waves of fluids, or the Goldstone boson of time-translations
in the effective field theory of inflation [?] and of dark energy [?, ?, ?]. We will focus on cases
where spacetime translations are effectively unbroken.1

Let us first point out an important obstacle in generalizing the S-matrix argument above to
theories in which Lorentz symmetry is non-linearly realized. There is a crucial difference in the
S-matrix depending on whether boosts are linearly realized or not. When Lorentz invariance
is unbroken, the in and out states are well-defined, no matter how large the value of s is. In
fact, the in and the out states are free single-particle states, and boost transformations relate
low- and high-energy single-particle states. Therefore, one is guaranteed that the S-matrix
is well-defined at all values of s: at low energy one can calculate it within the EFT, while at
high energy the UV theory is needed.

When we deal with theories where Lorentz invariance is broken, this is no longer the
1The low-energy unbroken spacetime translations are usually a linear combination of the original transla-

tions and some internal symmetry.
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k0 = 0, but turning on this parameter does not produce any new bounds as we illustrate
explicitly at the end of this section. At each ! we may expand V (!) as a sum of three
terms, one parallel to k and two others orthogonal to it, with arbitrary coefficients as long
as the result is a polynomial in !. When k0 = 0 these basis vectors are !-independent when
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and K̂ · Ê = K̂ · F̂ = Ê · F̂ = 0. So we write

V (!) = ↵(!)K̂ + �(!)Ê + �(!)F̂ , (56)

where ↵, �, � are arbitrary polynomials of !. This expansion is useful because it is immediate
from (48) that ↵(!) will not appear in the sum (51). This property of the expansion persists
when k0 6= 0.

An essential step in the positivity logic is that we must be able to neglect the contribution
from complex infinity to the contour integral. The full function f̃(!) = G̃
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Since in (48) we have only computed hJJi to order !2, we must take N = 0 to pick out those
terms.

So in our case ↵, �, � in (56) are just numbers, and a straightforward calculation yields
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We now follow the contour argument of §2 and consider a contour around the origin (see
Fig. 1) ‰

d!
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This contour can be deformed to the integral around the cut and the circle at infinity. The
circle at infinity is negligible as one can see using the CFT result Eq. (3) in d = 3. The
integral around the cut is i⇥ (positive) as shown in §2. So
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00(0) � 0 . (59)
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We now follow the contour argument of §2 and consider a contour around the origin (see
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circle at infinity is negligible as one can see using the CFT result Eq. (3) in d = 3. The
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and K̂ · Ê = K̂ · F̂ = Ê · F̂ = 0. So we write

V (!) = ↵(!)K̂ + �(!)Ê + �(!)F̂ , (56)
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We now follow the contour argument of §2 and consider a contour around the origin (see
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for all choices ⇠ 2 [0, 1) and �, �. These bounds may be reformulated as follows: first, letting
⇠ ! 1 with � 6= 0 we obtain d � 0 , while letting ⇠ ! 0 we get b+ d � 0 . Putting the terms
proportional to �

2 on the RHS of the inequality, we observe that the most stringent bound is
obtained at � = 0 (because the RHS is negative, and zero when � = 0). For � = 0 we have
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Again these constraints hold for all ⇠ 2 [0, 1), and they are plotted in Fig. 3. For c̃2 

Figure 3: The constraints (61) (the blue region is allowed). There are also the constraints d � 0

and b+ d � 0. c1 > 0 is required to have a healthy kinetic term for fluctuations.

�3/4, c̃3  1/4 the boundary curve is given by

c̃3 = c̃2 � 1 +
p
1� 4c̃2 , (62)

where c̃2,3 ⌘ c2,3/(b + d), while for c̃2 � �3/4 the boundary curve is the horizontal line
c̃3 = 1/4.

In terms of CFT applications, the coefficient c2 is the most interesting, since it controls
the NLO correction to the dimension of the lowest operator of charge Q in the limit of large
charge (see e.g. [?]). The bounds above, unfortunately, do not say something useful on this
coefficient alone.
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–  bound :
Positivity bounds from JJ
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–We need to go to NNLO. It is possible to classify all the operators, and at quadratic 
order, there are only 3 independent ones:

–We consider                                      , again, defined through path integral 

–Conservation constraints the form:

TT calculation

3.3 hTT i calculation

We now apply the same techniques to the stress-energy tensor. By dimensional analysis the
CFT correlator for the stress-energy tensor will contain two more powers of ! compared to
the one involving currents. Therefore to guarantee convergence of the contour at infinity,
one has to divide by two more powers of ! and this means one has to focus on the EFT
operators with two more derivatives. To calculate the two-point function of the stress-energy
tensor we couple � to a non-dynamical metric gµ⌫ , and write the most general action which
non-linearly realizes conformal symmetry. As we discuss in detail in Appendix A, this is most
easily expressed in terms of the Weyl-invariant combination ĝµ⌫ = gµ⌫ |g

↵�
@↵�@��|. At NNLO

in derivatives and focussing only on operators that start quadratic in the fluctuations (the
only ones that contribute to the two-point function of the stress-energy tensor) one has three
new operators
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(Here the index 0 means contracting with @�, R̂
0
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�
µ@��.) The procedure follows closely

the one for the current and we will only highlight the main points.
The stress-energy tensor can be computed considering linear perturbations around flat

space, T µ⌫ = (�g)�1/2
�S/�gµ⌫
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g=⌘

(we discard the conventional factor of 2). We are interested
in the correlator

hT
µ⌫(�k)T ⇢�(k)i , (69)

which, as in the hJJi computation of §3.1, will involve contact terms generated by the O(�g2)

terms in the action. (Constant terms in T
µ⌫ drop out when taking the commutator in the

Green’s function.)
It is useful to discuss the conservation and symmetry properties of hT µ⌫(�k)T ⇢�(k)i. The
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–Similar to current:

–when act with second derivative, we hit the Christoffell:

TT conservation

Now, we can change variables to a gauge-transformed field �
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�. Since the measure

of integration is invariant (assuming a non-anomalous symmetry), D�
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Eq. (131) (evaluated at Aµ = 0) and (132) are exactly the functional derivatives that enter
in the computation of the Green’s function of the U(1) currents hJ

µ(�k)J⌫(k)i, as derived
in (28) (which is not to be confused with correlation functions of Noether currents, with
respect to which it differs by contact terms). We therefore conclude that hJ
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exactly conserved, without the presence, on the RHS, of any �-function term. This justifies
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where ⇠⌫ is the parameter of an infinitesimal diffeomorphism, and round brackets stand for
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Now, interestingly, if we act with a second derivative with respect to the metric, this second
derivative will act also on the Christoffel symbols associated to the covariant derivative.
Explicitly, using some Christoffel symbol’s identities, we can write
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Evaluating this expression at gµ⌫ = ⌘µ⌫ , we obtain
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The term on the second line introduces some �-function terms (i.e. proportional to �
(d)(x�y))

in the conservation equation @µhT
µ⌫
T

⇢�
i. Notice that this term vanishes unless there is a

vacuum expectation value for the stress tensor: hT ✓�
i 6= 0. This is the case for the theory we

study in §3, for a term proportional to c1. The tensorial structure assumed in (70) is therefore
violated by a term in c1 (which was irrelevant for the discussion there). We verified that the
conservation law in (136) is indeed satisfied by the full answer we obtained for hT

µ⌫
T

⇢�
i.

C Contour argument in the upper half plane
In this appendix we want to show that one can draw the same conclusions as in the main
text with a contour argument that remains in the upper half of the complex plane. Indeed,
instead of considering the two contours of Fig. 2, one can just concentrate on the upper one.

Consider the function

f̃(!) = G̃
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R (!,k0 + !⇠)Vµ(!)V⌫(!

⇤)⇤ , (138)

where k0, ⇠ are arbitrary real (d� 1)-vectors with ⇠2 < 1, and V
µ(!) are polynomials. Then

f̃ is analytic in the upper half !-plane, !Im
> 0. For any integer `, Cauchy’s theorem tells us

that ˆ
C

d!

!`
f̃(!) = 0 , (139)

where C is any closed curve that lies completely in the upper half plane. We choose C as in
Fig. 4, so that the integral on the LHS of (138) can be expressed as a sum of contributions
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–At

–The second term is proportion to                      and to  the vev of the stress tensor. (for 
us it is proportional to      )

TT conservation
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–We need to go to NNLO. It is possible to classify all the operators, and at quadratic 
order, there are only 3 independent ones:

–We consider                                      , again, defined through path integral 

–Conservation constraints the form:

TT calculation

3.3 hTT i calculation

We now apply the same techniques to the stress-energy tensor. By dimensional analysis the
CFT correlator for the stress-energy tensor will contain two more powers of ! compared to
the one involving currents. Therefore to guarantee convergence of the contour at infinity,
one has to divide by two more powers of ! and this means one has to focus on the EFT
operators with two more derivatives. To calculate the two-point function of the stress-energy
tensor we couple � to a non-dynamical metric gµ⌫ , and write the most general action which
non-linearly realizes conformal symmetry. As we discuss in detail in Appendix A, this is most
easily expressed in terms of the Weyl-invariant combination ĝµ⌫ = gµ⌫ |g

↵�
@↵�@��|. At NNLO

in derivatives and focussing only on operators that start quadratic in the fluctuations (the
only ones that contribute to the two-point function of the stress-energy tensor) one has three
new operators

S =

ˆ
d3
x

p
�ĝ

⇣
c1

6
� c2R̂ + c3R̂

µ⌫
@̂µ�@̂⌫�+ c4R̂

2 + c5R̂µ⌫R̂
µ⌫ + c6R̂

0
µR̂

µ0
⌘
. (68)

(Here the index 0 means contracting with @�, R̂
0
µ ⌘ R̂

�
µ@��.) The procedure follows closely

the one for the current and we will only highlight the main points.
The stress-energy tensor can be computed considering linear perturbations around flat

space, T µ⌫ = (�g)�1/2
�S/�gµ⌫

��
g=⌘

(we discard the conventional factor of 2). We are interested
in the correlator

hT
µ⌫(�k)T ⇢�(k)i , (69)

which, as in the hJJi computation of §3.1, will involve contact terms generated by the O(�g2)

terms in the action. (Constant terms in T
µ⌫ drop out when taking the commutator in the

Green’s function.)
It is useful to discuss the conservation and symmetry properties of hT µ⌫(�k)T ⇢�(k)i. The

most general conserved and traceless object hT
µ⌫
T

⇢�
isubl. (the subscript subl. means that we

focus on the NLO and NNLO parts) with the correct symmetries (µ $ ⌫, ⇢ $ �, (µ⌫) $ (⇢�))
in d > 2 dimensions can be written as a linear combination of two structures,
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3.3 hTT i calculation

We now apply the same techniques to the stress-energy tensor. By dimensional analysis the
CFT correlator for the stress-energy tensor will contain two more powers of ! compared to
the one involving currents. Therefore to guarantee convergence of the contour at infinity,
one has to divide by two more powers of ! and this means one has to focus on the EFT
operators with two more derivatives. To calculate the two-point function of the stress-energy
tensor we couple � to a non-dynamical metric gµ⌫ , and write the most general action which
non-linearly realizes conformal symmetry. As we discuss in detail in Appendix A, this is most
easily expressed in terms of the Weyl-invariant combination ĝµ⌫ = gµ⌫ |g

↵�
@↵�@��|. At NNLO

in derivatives and focussing only on operators that start quadratic in the fluctuations (the
only ones that contribute to the two-point function of the stress-energy tensor) one has three
new operators
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(Here the index 0 means contracting with @�, R̂
0
µ ⌘ R̂

�
µ@��.) The procedure follows closely

the one for the current and we will only highlight the main points.
The stress-energy tensor can be computed considering linear perturbations around flat

space, T µ⌫ = (�g)�1/2
�S/�gµ⌫
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g=⌘

(we discard the conventional factor of 2). We are interested
in the correlator
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µ⌫(�k)T ⇢�(k)i , (69)

which, as in the hJJi computation of §3.1, will involve contact terms generated by the O(�g2)

terms in the action. (Constant terms in T
µ⌫ drop out when taking the commutator in the

Green’s function.)
It is useful to discuss the conservation and symmetry properties of hT µ⌫(�k)T ⇢�(k)i. The
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isubl. (the subscript subl. means that we
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in d > 2 dimensions can be written as a linear combination of two structures,

ihT
µ⌫(�k)T ⇢�(k)isubl. = C(k)⇧µ⌫⇢�(k) + D(k) ⇧̃µ⌫⇢�(k) (70)

with

⇧µ⌫⇢� =
1

2
(⇡µ⇢

⇡
⌫� + ⇡

µ�
⇡
⌫⇢)�

1

d� 1
⇡
µ⌫
⇡
⇢�
, (71)

⇧̃µ⌫⇢� =
1

4
(⇡µ⇢

⇡̃
⌫� + ⇡

µ�
⇡̃
⌫⇢ + ⇡

⌫�
⇡̃
µ⇢ + ⇡

⌫⇢
⇡̃
µ�)�

1

d� 2
⇡̃
µ⌫
⇡̃
⇢�
, (72)

where

⇡
µ⌫

⌘ ⌘
µ⌫

�
k
µ
k
⌫

k2
, (73)

⇡̃
µ⌫ = �

mn
�

k
m
k
n

k2 . (74)

23

3.3 hTT i calculation

We now apply the same techniques to the stress-energy tensor. By dimensional analysis the
CFT correlator for the stress-energy tensor will contain two more powers of ! compared to
the one involving currents. Therefore to guarantee convergence of the contour at infinity,
one has to divide by two more powers of ! and this means one has to focus on the EFT
operators with two more derivatives. To calculate the two-point function of the stress-energy
tensor we couple � to a non-dynamical metric gµ⌫ , and write the most general action which
non-linearly realizes conformal symmetry. As we discuss in detail in Appendix A, this is most
easily expressed in terms of the Weyl-invariant combination ĝµ⌫ = gµ⌫ |g
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–Contract with general symmetric 2-tensor:

–We get the bound: 

TT calculation

The required symmetries and conservation are manifest in these formulas.16 The operator
proportional to c1 gives a contribution with a different structure as a consequence of the
vacuum expectation of hTµ⌫i: this is the reason for the subscript subl., since the leading term
must be dropped. We are not considering the operator c1 for the positivity discussion, so we
postpone the discussion of this “modified” conservation to Appendix B.

It is a straightforward, but very long, exercise to get the functions C and D for the action
of Eq. (68):
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3.4 Positivity bounds from hTT i

Following the hJJi computation of §3.2, we contract (70) with two copies of a general symmet-
ric two-tensor A: hT µ⌫

T
⇢�
iAµ⌫A⇢�. We take k0 = 0 and expand A with constant coefficients

as

Aµ⌫ = ↵K̂µK̂⌫+�ÊµÊ⌫+�F̂µF̂⌫+↵̃
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(80)
where K̂, Ê and F̂ are given in Eqns. (53)-(55). The following identities are useful in the
calculation of the contraction: ⇡
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In the CFT the two-point function of T µ⌫ in Fourier space goes as !
d; therefore we must

divide by at least !
5 in d = 3 to be able to neglect the contour at infinity. Setting k = !⇠,

dividing by !
5 and integrating around a small circular contour going around the origin in the

counterclockwise direction, we obtain the positivity conditions. Defining � ⌘ ��� since only
16To show tracelessness the following identities are useful:

⇡ = ⇡ µ
µ = d� 1 , ⇡̃ = d� 2 , (75)

⌘µ⌫⇡µ⇢⇡⌫� = ⇡⇢� , (76)
⌘µ⌫⇡µ⇢⇡̃⌫� = ⇡̃⇢� . (77)

24

The required symmetries and conservation are manifest in these formulas.16 The operator
proportional to c1 gives a contribution with a different structure as a consequence of the
vacuum expectation of hTµ⌫i: this is the reason for the subscript subl., since the leading term
must be dropped. We are not considering the operator c1 for the positivity discussion, so we
postpone the discussion of this “modified” conservation to Appendix B.

It is a straightforward, but very long, exercise to get the functions C and D for the action
of Eq. (68):

C = �
µ

2

!
2(!2

� k2)2

(!2 � c2sk
2)2

(c2 + c3) +
1

µ

k4(!2
� k2)2

(!2 � c2sk
2)2

c4 +
1

2µ

(!2
� k2)2

�
!
2(!2

� k2) + k4
�

(!2 � c2sk
2)2

c5

+
1

4µ

k2
!
2(!2

� k2)2

(!2 � c2sk
2)2

c6 �
1

2µ

(c2 + c3)2

c1

k4
!
2(!2

� k2)2

(!2 � c2sk
2)3

, (78)

D = �
µ

4

k4(!2
� k2)

(!2 � c2sk
2)2

(c2 + c3)�
1

µ

k4(!2
� k2)2

(!2 � c2sk
2)2

✓
2c4 +

3

4
c5

◆
+

1

8µ

k6(!2
� k2)

(!2 � c2sk
2)2

c6

+
1

µ

(c2 + c3)2

c1

k4
!
2(!2

� k2)2

(!2 � c2sk
2)3

. (79)

3.4 Positivity bounds from hTT i

Following the hJJi computation of §3.2, we contract (70) with two copies of a general symmet-
ric two-tensor A: hT µ⌫

T
⇢�
iAµ⌫A⇢�. We take k0 = 0 and expand A with constant coefficients

as

Aµ⌫ = ↵K̂µK̂⌫+�ÊµÊ⌫+�F̂µF̂⌫+↵̃
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Êµ = 0, ⇡µ↵
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K̂µÊ⌫ + K̂⌫Êµ
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In the CFT the two-point function of T µ⌫ in Fourier space goes as !
d; therefore we must

divide by at least !
5 in d = 3 to be able to neglect the contour at infinity. Setting k = !⇠,

dividing by !
5 and integrating around a small circular contour going around the origin in the

counterclockwise direction, we obtain the positivity conditions. Defining � ⌘ ��� since only
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–Explicitly

–Not hard to show that the most stringent bounds are:

TT positivitythis combination involving � and � appears in (81), we find
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for all �, �̃ and ⇠ 2 [0, 1). Again this collection of bounds may be reformulated in a more
insightful way. By choosing � = 0, we obtain 2(1� ⇠
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2
c6 � 0. Taking ⇠ = 0 and ⇠ = 1

here gives c5 � 0 and c6 � 0 , which are equivalent to the bounds for all values of ⇠. Since
c5 and c6 are positive, so that �̃

2 appears on the LHS multiplying something positive, the
strongest bound is obtained setting �̃ = 0. This gives the bounds
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It is not hard to show that the most stringent of these bounds is attained when ⇠ = 1:
4c4 + 2c5 + c6 � 4(c2 + c3)

2
/c1 .

One could also derive additional bounds by studying the positivity of linear combinations
of T

µ⌫ and J
µ. Since the two operators have different dimensions, one could consider a

linear combination of the form µJ + T , where µ is the chemical potential. (We are here very
schematic and drop indices: of course one should also introduce a vector to match indices and
vary over this vector to get the most general constraint.) In this case, for the convergence of
the stress-energy tensor part, one needs to go to NNLO, so that we would need to consider also
the NNLO contact operators for the current (the analogue of the operators proportional to b

and d but with two more derivatives). Another possibility would be to consider combinations
of the schematic form i!J + T : in this case, by dividing the two-point function by !

5 one
would select the NLO in the hJJi part and NNLO in hTT i, i.e. the operators we have been
considering so far. However nothing new comes from the cross-terms hJT i, at least for the
operators that we studied. Indeed, it is straightforward to realize that all our two-point
functions, including the hJT i one, are even in !, so that one does not get any simple pole
after the multiplication by i!. The reason of this parity in ! can be explained in terms of
symmetry. The � action is time-reversal symmetric, but the background � = µt spontaneously
breaks this symmetry. If, however, the action is also invariant under � ! ��, then there is a
residual unbroken symmetry: t ! �t, ⇡ ! �⇡. This symmetry imposes to have only an even
number of !’s in a two-point function. We did not impose by hand any � ! �� symmetry,
but at the level of the operators we considered it turns out to be an accidental symmetry: ĝ

contains an even number of �’s and we always considered operators with an even number of
extra �’s. Looking at operators with even more derivatives, one finds terms that break this
symmetry: for instance R̂R̂

µ⌫
r̂⌫r̂µ� contains an odd number of �’s. Even at the order we

are working there is a contact operator for hJT i of the form R̂
µ0
F

0
µ that contributes to the

two-point function hJT i with an odd number of !’s. The coefficient of this operator would
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contains an even number of �’s and we always considered operators with an even number of
extra �’s. Looking at operators with even more derivatives, one finds terms that break this
symmetry: for instance R̂R̂

µ⌫
r̂⌫r̂µ� contains an odd number of �’s. Even at the order we

are working there is a contact operator for hJT i of the form R̂
µ0
F

0
µ that contributes to the

two-point function hJT i with an odd number of !’s. The coefficient of this operator would

25

this combination involving � and � appears in (81), we find

4⇠4�2c4 + 2
⇥
(2� ⇠

2)2�̃2 + (1� ⇠
2 + ⇠

4)�2
⇤
c5 + ⇠

2

✓
(2� ⇠

2)2

1� ⇠2
�̃
2 + �

2

◆
c6

�
4⇠4�2

2� ⇠2

(c2 + c3)2

c1
(82)

for all �, �̃ and ⇠ 2 [0, 1). Again this collection of bounds may be reformulated in a more
insightful way. By choosing � = 0, we obtain 2(1� ⇠

2)c5 + ⇠
2
c6 � 0. Taking ⇠ = 0 and ⇠ = 1

here gives c5 � 0 and c6 � 0 , which are equivalent to the bounds for all values of ⇠. Since
c5 and c6 are positive, so that �̃

2 appears on the LHS multiplying something positive, the
strongest bound is obtained setting �̃ = 0. This gives the bounds

4⇠4c4 + 2(1� ⇠
2 + ⇠

4)c5 + ⇠
2
c6 �

4⇠4

2� ⇠2

(c2 + c3)2

c1
. (83)

It is not hard to show that the most stringent of these bounds is attained when ⇠ = 1:
4c4 + 2c5 + c6 � 4(c2 + c3)

2
/c1 .

One could also derive additional bounds by studying the positivity of linear combinations
of T

µ⌫ and J
µ. Since the two operators have different dimensions, one could consider a

linear combination of the form µJ + T , where µ is the chemical potential. (We are here very
schematic and drop indices: of course one should also introduce a vector to match indices and
vary over this vector to get the most general constraint.) In this case, for the convergence of
the stress-energy tensor part, one needs to go to NNLO, so that we would need to consider also
the NNLO contact operators for the current (the analogue of the operators proportional to b

and d but with two more derivatives). Another possibility would be to consider combinations
of the schematic form i!J + T : in this case, by dividing the two-point function by !

5 one
would select the NLO in the hJJi part and NNLO in hTT i, i.e. the operators we have been
considering so far. However nothing new comes from the cross-terms hJT i, at least for the
operators that we studied. Indeed, it is straightforward to realize that all our two-point
functions, including the hJT i one, are even in !, so that one does not get any simple pole
after the multiplication by i!. The reason of this parity in ! can be explained in terms of
symmetry. The � action is time-reversal symmetric, but the background � = µt spontaneously
breaks this symmetry. If, however, the action is also invariant under � ! ��, then there is a
residual unbroken symmetry: t ! �t, ⇡ ! �⇡. This symmetry imposes to have only an even
number of !’s in a two-point function. We did not impose by hand any � ! �� symmetry,
but at the level of the operators we considered it turns out to be an accidental symmetry: ĝ
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–By working at NLO and NNLO, we obtained:
Summary of the bounds

be constrained by the mixed correlator and the same will happen in a general theory without
� ! �� symmetry. We leave this study to future work.

3.5 Summary of bounds

In summary, the bounds we have been able to obtain on the NLO and NNLO coefficients of
the EFT of conformal superfluids are

c1 � 0 (for healthy fluctuations), (84)
c2

b+ d
(1� ⇠

2)�
c3

b+ d
� �

(1� ⇠
2
/2)2

⇠2
, (85)

d � 0 , (86)
b+ d � 0 , (87)

4c4 + 2c5 + c6 � 4(c2 + c3)
2
/c1 , (88)

c5 � 0 , (89)
c6 � 0 . (90)

The constraints in (85) hold for all ⇠ 2 [0, 1) and are plotted in Fig. 3. The action of this
EFT for the Goldstone boson ⇡ corresponding to the spontaneous breaking of Lorentz boosts
is given by Eq. (68) where ĝµ⌫ = gµ⌫ |g

↵�
@↵�@��| and � = µt + ⇡, the first three terms of

which we have written out explicitly in Eq. (37).

3.6 Loop corrections?

Our calculations so far have been at tree level in the EFT, but there are no obstacles to
including loops in our formalism. In general, loops, in the absence of a mass gap, will open
a cut in the !-plane all along the real axis. As discussed above, the contours of Fig. 2
are applicable in this case. In the EFT one can calculate the integral over the two small
semicircles: the radius of these semicircles does not need to be infinitesimal, it is enough that
it is small enough for the EFT calculation to be reliable. In general, the result will depend
on the radius and this dependence reproduces the scale dependence induced by loops. The
contributions of these arcs are related via Cauchy’s theorem to the remaining integrals along
the real axis, which are constrained to be positive. The general picture is quite similar to
what happens in the Lorentz-invariant case, see [?].

It turns out, however, that for the particular example we are studying loops are actually
absent, so that the bounds derived above are sharp and not approximate. To understand
why, let us rewrite schematically the action for ⇡ in canonical normalization, including the
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–So far, we worked at tree-level. In this particular case, up to NNLO d=3, there are no-
loop corrections. In fact, in canonical normalization:

–and combinations of                               do not have the right                                to 
make these coefficient run (it will happen at higher order).

– In general, however, no problem: one can do the loop with this contour, and use a finite 
radius:  

Loop corrections?
interaction terms,
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From this expression in canonical normalization, it is clear that one cannot get loop corrections
with same µ-dependence as the one induced by c2;3 and c4;5;6 (in particular this says these
coefficients do not run). Indeed, looking at the powers of µ, one sees it is impossible for the
interactions, both the ones coming from the c1 operator and the ones from the c2;3 terms,
to combine to give the quadratic terms proportional to c2;3/µ

2 and c4;5;6/µ
4. (Notice that

combining two ⇡̇
4 interactions one gets µ

�6 which corresponds to operators with two more
derivatives with respect to c4;5;6: at this order one starts having log-divergences.)

4 UV complete example: conformal scalar in d = 3

In this section we test our constraints (84)-(90) in a simple explicit UV complete example, a
conformal complex scalar in d = 3. The UV action is
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p
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where � = ⇢ e
i✓ and � > 0 (a more general model is studied in Appendix E). This theory

is conformally invariant at tree level and it has been studied in detail in [?]. We will be
interested in a state with finite chemical potential, i.e. with ✓ = µt + ⇡(t,x) and work at
leading order in � so that the theory is conformal. To derive the EFT action at tree level we
integrate out the radial field ⇢ (we require � 6= 0 so that ⇢ has a finite mass). Its equation of
motion is

⇤⇢+ |@✓|
2
⇢� 3�⇢5 �
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8
⇢ = 0 . (93)

In a derivative expansion we have the solution ⇢ = ⇢0 + ⇢1 + ⇢2 + · · · , where

⇢0 =
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1/2

(3�)1/4
, ⇢1 =

⇤⇢0 �R⇢0/8

4|@✓|2
, (94)

where we treated R as a two-derivative term. To obtain the EFT action up to terms involving
two more ⇤’s than the leading term, we insert ⇢ into the action (it is not hard to see that ⇢2
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From this expression in canonical normalization, it is clear that one cannot get loop corrections
with same µ-dependence as the one induced by c2;3 and c4;5;6 (in particular this says these
coefficients do not run). Indeed, looking at the powers of µ, one sees it is impossible for the
interactions, both the ones coming from the c1 operator and the ones from the c2;3 terms,
to combine to give the quadratic terms proportional to c2;3/µ

2 and c4;5;6/µ
4. (Notice that

combining two ⇡̇
4 interactions one gets µ

�6 which corresponds to operators with two more
derivatives with respect to c4;5;6: at this order one starts having log-divergences.)

4 UV complete example: conformal scalar in d = 3

In this section we test our constraints (84)-(90) in a simple explicit UV complete example, a
conformal complex scalar in d = 3. The UV action is

LUV =
p
�g
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, (92)

where � = ⇢ e
i✓ and � > 0 (a more general model is studied in Appendix E). This theory

is conformally invariant at tree level and it has been studied in detail in [?]. We will be
interested in a state with finite chemical potential, i.e. with ✓ = µt + ⇡(t,x) and work at
leading order in � so that the theory is conformal. To derive the EFT action at tree level we
integrate out the radial field ⇢ (we require � 6= 0 so that ⇢ has a finite mass). Its equation of
motion is

⇤⇢+ |@✓|
2
⇢� 3�⇢5 �

R

8
⇢ = 0 . (93)

In a derivative expansion we have the solution ⇢ = ⇢0 + ⇢1 + ⇢2 + · · · , where

⇢0 =
|@✓|

1/2

(3�)1/4
, ⇢1 =

⇤⇢0 �R⇢0/8

4|@✓|2
, (94)

where we treated R as a two-derivative term. To obtain the EFT action up to terms involving
two more ⇤’s than the leading term, we insert ⇢ into the action (it is not hard to see that ⇢2

27

Getting rid of the mass-gap assumption. The contour argument above assumes that
one can stick to the tree-level approximation in the EFT, so that at low energy one has only
poles. In general, however, in the absence of a mass gap, loops of the low-energy excitation
will open a cut in the !-plane all along the real axis. In this case one can use the two contours
of Fig. 2. One gets the same result as with the contour of Fig. 1, but now this can be applied
even in the presence of a cut running all along the real axis. In Appendix C we will see that
the positivity arguments can also be derived remaining in the upper half plane, i.e. using only
the upper contour of Fig. 2

!

"

Figure 2: Different contours that give the same result as in Fig. 1. This choice is suitable
when a cut is running all along the real axis.

In the remainder of the paper we will apply the above ideas to the interesting case of an
EFT where boosts are non-linearly realized: a CFT at finite chemical potential.

3 Conformal superfluids
CFT’s are of fundamental interest in physics and any technique to get extra information
about them is precious. A way to understand analytically the general properties of operators
at large charge Q was developed in [?, ?] and in many subsequent papers, for a review see [?].
By the state/operator correspondence, a charged operator is mapped into a charged state.
Generically this charge induces the spontaneous breaking of the U(1) symmetry (for simplicity
we focus on a U(1)). We are therefore lead to study CFT’s at finite chemical potential µ: one
can think about this as a state that evolves in time around the U(1). Lorentz invariance is thus
spontaneously broken and this connects to the topic of the present paper. The breaking of
the symmetry leads to a Goldstone boson: this is the only degree of freedom at energies much

15



–We have constructed a method to derive robust bound on coefficients of operators 
where Boosts are spontaneously broken.

–Method based on 2-point functions of conserved current and stress tensor.

–proved that they have the right analytic properties and also controlled UV behavior 
thanks to CFT UV assumption

–then argument similar to S-matrix derived.

• Many applications:

–Light in Material

–QCD at finite 

–Inflation

• Limitations: 

–need to go to high order to ensure convergence

–presence of the contact terms

• …Perhaps, we just started… perhaps…

Conclusions

The required symmetries and conservation are manifest in these formulas.16 The operator
proportional to c1 gives a contribution with a different structure as a consequence of the
vacuum expectation of hTµ⌫i: this is the reason for the subscript subl., since the leading term
must be dropped. We are not considering the operator c1 for the positivity discussion, so we
postpone the discussion of this “modified” conservation to Appendix B.

µ (78)

It is a straightforward, but very long, exercise to get the functions C and D for the action
of Eq. (68):
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3.4 Positivity bounds from hTT i

Following the hJJi computation of §3.2, we contract (70) with two copies of a general symmet-
ric two-tensor A: hT µ⌫

T
⇢�
iAµ⌫A⇢�. We take k0 = 0 and expand A with constant coefficients

as
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K̂µÊ⌫ + K̂⌫Êµ
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(81)
where K̂, Ê and F̂ are given in Eqns. (53)-(55). The following identities are useful in the
calculation of the contraction: ⇡
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K̂µ = ⇡̃
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a. A straightforward calculation then yields
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2
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⇤
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. (82)

In the CFT the two-point function of T µ⌫ in Fourier space goes as !
d; therefore we must

divide by at least !
5 in d = 3 to be able to neglect the contour at infinity. Setting k = !⇠,

16To show tracelessness the following identities are useful:

⇡ = ⇡ µ
µ = d� 1 , ⇡̃ = d� 2 , (75)

⌘µ⌫⇡µ⇢⇡⌫� = ⇡⇢� , (76)
⌘µ⌫⇡µ⇢⇡̃⌫� = ⇡̃⇢� . (77)
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–From short to long

–The resulting equations are simpler

–Description arbitrarily accurate

–construction can be made without knowing the nature of the particles.

–short distance physics appears as a non trivial stress tensor for the long-distance fluid

What is a fluid?
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–From short to long

–The resulting equations are simpler

–Description arbitrarily accurate

–construction can be made without knowing the nature of the particles.

–short distance physics appears as a non trivial stress tensor for the long-distance fluid

Do the same for matter in our Universe
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• For long distances: expectation value over short modes (integrate them out)

• Equations with only long-modes

• each term contributes as factor of 

Dealing with the Effective Stress Tensor

every term allowed by symmetries
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• In the EFT we can solve iteratively                          , where  

• Two scales:
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• Solve iteratively some non-linear eq.

• Second order:

• Compute observable:

• We obtain Feynman diagrams

• Sensitive to short distance

• Need to add counterterms from                      to correct

• Loops and renormalization applied to galaxies
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• Regularization and renormalization of loops (no-scale universe)

–evaluate with cutoff:

– divergence (we extrapolated the equations where they were not valid anymore)
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• Regularization and renormalization of loops (no-scale universe)

–evaluate with cutoff:

– divergence (we extrapolated the equations where they were not valid anymore)

– we need to add effect of stress tensor

–we just re-derived renormalization

–after renormalization, result is finite and small for
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• Regularization and renormalization of loops (no-scale universe)

–evaluate with cutoff:

– divergence (we extrapolated the equations where they were not valid anymore)

– we need to add effect of stress tensor
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• Regularization and renormalization of loops (no-scale universe)

–evaluate with cutoff:

– divergence (we extrapolated the equations where they were not valid anymore)

– we need to add effect of stress tensor

–we just re-derived renormalization

–after renormalization, result is finite and small for
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…. lots of work ….



Galaxy Statistics
Senatore 1406
with Lewandowsky et al 1512
with Perko et al. 1610



• On galaxies, a long history before us, summarized by                           .

–                     provided first complete parametrization.

• Nature of Galaxies is very complicated

Galaxies in the EFTofLSS Senatore 1406

McDonald, Roy 2010

Senatore 1406
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• all terms allowed by symmetries

• all physical effects included

–e.g. assembly bias

• .

Galaxies in the EFTofLSS
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• Polarizability:

• and in fact, also the EFT of Non-Relativistic binaries                                             
is non-local in time.

It is familiar in dielectric E&M
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• The EFT is non-local in time

• Perturbative Structure has a decoupled structure

•   A few coefficients for each counterterm:

• where

• Difference:

• More terms, but not a disaster
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The EFTofLSS with Baryonic Effects
with Lewandowski and Perko JCAP 2015

with Braganca, Lewandowski and Sgier JCAP 2021



• When stars explode, baryons behave differently than dark matter 

• They cannot be reliably simulated due to large range of scales

Baryonic effects

credit: Millenium Simulation, 
Springel et al. (2005)



• Idea for EFT for dark matter:

– Dark Matter moves                                 

•             an effective fluid-like system with mean free path ~

•   Baryons heat due to star formation, but move the same: 

– Universe with CDM+Baryons            EFTofLSS with 2 specie

Baryons
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PlḢ(@µ⇡)

2
+ M4

4
�
⇡̇

4
+ ⇡̇

2
(@µ⇡)

2
�i

(11)

� (12)

H , or gweakH (13)

fNL & 1 (14)

�
H

2

M
2
Pl

(15)

✏(t), cs(t) (16)

dEt

d⌦d!
⇠

1

(2⇡)3

M
2

M
2
Pl

(17)

dEs

d⌦d!
⇠

1

(2⇡)3

M
2

✏M
2
Pl

(18)

m ⇠ H (19)

✏⇡ . 1 (20)

S =

Z
d

4
x ⇡̇O (21)

f
orthog.
NL (22)

⇡̇
4

(23)

ns � 1 ⇠ 6✏� 4⌘ +
ċs
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Figure 6: We fit to the simulations that include various baryonic e↵ects by comparing the quantity R =
PA

with baryon/PA
DM only as calculated in the EFT to the same quantity calculated from the data. Each simulation

has a di↵erent best-fit value of �c̄2
A. Here, we obtain a range of �c̄2

A: �c̄2
A ' 0.5 (hMpc�1)�2 is the blue curve,

which is the AGN data, while �c̄2
A ' 0.07 (hMpc�1)�2 is the yellow curve, which is the NOSN NOZCOOL

simulation. The rest of the curves are DMBLIMFV 1618 (dark red), NOSN (dark green), NOZCOOL
(cyan), REF (dark yellow), WDENS (purple), WML1V 848 (red), WML4 (green). The green region is the
size of the theoretical error, which we have calculated by estimating the size of the two loop corrections that
we have not included, using Eqs. (5.10) and (5.11). The dashed line is the same theoretical error after adding
in quadrature a 1% error for unknown systematics. This has only been plotted for the AGN simulation to
avoid clutter.

come with an extra factor of wb. To see this, we write the ratio as:
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We are interested in calculating this ratio to within a few percent. The leading terms that we did
not calculate are
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where P I
1�loop is the contribution from all the one-loop diagrams that have one isocurvature mode,

and PA
DM only|1 is the IR resummed adiabatic power spectrum up to one loop. P I

1�loop ⇠ wb10�2PA
1�loop,

and so is subleading with respect to wb�c̄2
Ak2PA

1�loop for k & 0.1 hMpc�1. This can be seen because
�c = �A + wb�I , so the di↵erence between the CDM one-loop term and the adiabatic one-loop term
is

h�2
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Ai1�loop = 2wbh�(3)
A �(1)

I i+ . . . , (5.9)
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• EFT Equations:

Baryons



• EFT Equations:

• Counterterms:

Baryons

effective forcedynamical friction



• Dynamical friction term is indeed needed for renormalization of the theory, i.e. it is 
generated.

• Dynamical friction is a relevant operator: i.e. it cannot be treated perturbatively: it is an 
essential part of the linear equations:

–due to the time-translation breaking and actually even non-locality, very very very 
very very very hard to handle consistently.

• we can make some guesses

• Luckily: it only affect the decaying mode of the isocurvature, which is very very very 
very very small.

A relevant operator



• Baryon corrections are detectable in next CMB S-4 experiments. But we can predict it:

Predictions for CMB Lensing



Bispectrum at one loop
with D’Amico, Donath, Lewandowski, Zhang 2206



• The tree level bispectrum had been already used for cosmological parameter analysis in

• ~10% improvement on 

• Time to move to one-loop:

–Large effort:

• data analysis

• theory model

• theory integration

Bispectrum

with Guido D’Amico, Jerome Gleyzes, 
Nickolas Kockron, Dida Markovic, Pierre Zhang,  Florian Beutler, Hector Gill-Marin 1909.05271

Philcox, Ivanov 2112

~P (!) = �(!) ~E(!) ) ~P (t) =

Z
dt

0
�(t� t

0) ~E(t0)

As (1)

105 (2)

h ⇠
1

R
, ) Rmax ⇠

1

hmin
(3)

n (R < Rmax) ⇠ R
3
max ⇠

1

h
3
min

(4)

5� (5)

(6)

with D’Amico, Donath, Lewandowski, Zhang 2206

with D’Amico, Donath, Lewandowski, Zhang 2211

with Anastasiou, Braganca, Zheng 2212



• Measurement of all 
cosmological parameters

• Compatible with Planck

–no tensions

–new way to measure 
Hubble

• Often Planck Comparable 

Data Analysis
with D’Amico, Donath, Lewandowski, Zhang 2206

Power Spectrum only:

with D’Amico, Gleyzes,  Kockron, Markovic, 
Zhang,  Beutler, Gill-Marin 2019
with Colas, D’Amico, Zhang, Beutler, 2019

see also Ivanov, Simonovic, Zaldarriaga 
2019, 2019, 2020



• We add all the relevant biases (4th order) and counterterms (2nd order):

• IR-resummation:

• For the power spectrum, we use the correct and controlled IR-resummation.

• For the bispectrum, we use the wiggle/no-wiggle approximation

• For the loop, we just use                                                               in the non-
integrated power spectra  

Theory Model with D’Amico, Donath, Lewandowski, Zhang 2206

Ivanov and Sibiryakov 2018



Derivation of theory model
with D’Amico, Donath, Lewandowski, Zhang 

2211



• Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.

• Renormalization of velocity

• In the EFTofLSS, the velocity is a composite operator                               , so, it 
needs to be renormalized:

• Under a diffeomorphisms:

• In redshift space, we have local product of velocities, which need to be renormalized 
but have non-trivial transformations under diff.s:

• To achieve this, one can do: (so must include products                  )
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One way to write renormalized quantities satisfying the above in terms of the non-renormalized

fields is
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where all of the O terms are Galilean scalars. The last expression is not unique in the sense

that other operators could have been used that are not independent from the ones shown, like

[vi]R[vj ]R[vk]R[vl]R and [vivj ]R[vk]R[vl]R, for example. Definitions using di↵erent bases can di↵er

in their scalar parts O. Note that v
i is renormalized here because it is the composite operator
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/⇢ [27].
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One way to write renormalized quantities satisfying the above in terms of the non-renormalized

fields is
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where all of the O terms are Galilean scalars. The last expression is not unique in the sense
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and the one-loop contributions are
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(4.11)

As a final point, we note that we have explicitly displayed and factored out the major source of

time dependence, which is through the factors of D(a)n in Eq. (4.4), in the above equations. The

kernels F r
n in Eq. (4.4) are in fact time dependent as well, coming from factors of f(a) that enter

Eq. (4.3) through the factors of ~v. While we fully take into account this time dependence (which

in any case is relatively mild), we do not explicitly write the time argument in the F
r
n kernels, to

remove clutter; all kernels and observables with the redshift space marking ‘r’ are understood to

contain this time dependence through f(a). For details on how to evaluate the above integrals,

see App. B.

4.2 Renormalization of dark matter in redshift space

Ultimately, we want a renormalized expression for the redshift space overdensity �r in Eq. (4.3).

The first two terms, containing only � and ⇡
j , have already been renormalized in Sec. 3, and

this is entirely determined by the local stress-tensor counterterms in ⌧
ij . The non-linear terms in

Eq. (4.3), however, are contact operators (i.e. UV sensitive) and must be separately renormalized

[15], which essentially amounts to adding new counterterms directly to Eq. (4.3). Here we present

a systematic renormalization similar to [24] and address some subtleties that appear since we are

going to quadratic order in the counterterms.

As can be seen in Eq. (4.3), we ultimately want to renormalize products like ⇡i
v
j
v
k · · · . In order

to build up to that, let us start with the renormalization of velocity products, up to [vivjvkvl]R,

where [·]R denotes a renormalized quantity. In order to have the correct transformation properties

under the Galilean transformation v
i ! v

i + �
i, we wish to have

v
i(x) =

⇡
i(x)

⇢(x)
(4.12)

v
i ! v

i + �
i ) Oi

v is a scalar (4.13)
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One way to write renormalized quantities satisfying the above in terms of the non-renormalized

fields is

[vi]R = v
i +Oi

v ,

[vivj ]R = [vi]R[v
j ]R +Oij

v2
, where Oij

v2
is a scalar
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,
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where all of the O terms are Galilean scalars. The last expression is not unique in the sense

that other operators could have been used that are not independent from the ones shown, like

[vi]R[vj ]R[vk]R[vl]R and [vivj ]R[vk]R[vl]R, for example. Definitions using di↵erent bases can di↵er

in their scalar parts O. Note that v
i is renormalized here because it is the composite operator

⇡
i
/⇢ [27].

v
i · Oi

v (4.16)
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• Nice trick for fast evaluation of the loops integrals 

• The power spectrum is a numerically computed function

• Decompose linear power spectrum

• Loop can be evaluated analytically

–using quantum field theory techniques

–

The best approach so far
Simonovic, Baldauf, Zaldarriaga, 

Carrasco, Kollmeier 2018
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1 Introduction and Conclusions

The E↵ective Field Theory of Large Scale Structure (EFTofLSS) [3, 4] describes the dynamics

of the large-scale structures of the universe in the mildly non-linear regime. The development

of the theory, from its initial formulation to the application to data, has been a decade

long e↵ort, where several important developments have been obtained at all stages. Very

schematically, it has been necessary to develop the description of dark matter, biased tracers

and redshift space distorsions, as well as a non perturbative treatment of some infrared e↵ects.

We provide a summary of some important results obtained prior the application to data in

this footnote 1. [[[[Henry liked this footnote, so I put it. In practice, it saves us a lot of

e↵ort for writing the introduction :) .]]]] [[[[[Henry and Diogo: we need to fix the names

of the references. You have changed them from the arxiv name, but then this means that

some are duplicate. Can we go back to the standard arxive name please? Sorry for the extra

work, but in this way we can recycple the blibliography and many citations, and it is also

easier to add citations and things like that. I did it for the introduction, but we will cut and

paste Babis and yours section here, so it needs to be done for those, Luckly, it is just a few

places]]][[[Additionally, can you please download from the arxiv the source file of your past

papers, and make the bibliography look as nice/useful as there (for example not having the

arxiv number nor clickable if present, is really missing a lot of usefulness). however, I would

care of these aesthetic requirements once we are done with the physics iterations (after you

have found the solution, you can just send me the first part of the tex file to cut and paste

here, to keep it simple).]]]

Mn1n2 is cosmology independent ) so computed once (1.1)

With the results of [36] the EFTofLSS became ready to be applied to data, in particular

to the power spectrum of galaxies in redshfit space. Ref. [51, 52, 55] provided the first

1The initial formulation of the EFTofLSS was performed in Eulerian space in [3, 4], and subsequently

extended to Lagrangian space in [5]. The dark matter power spectrum has been computed at one-, two-

and three-loop orders in [4, 6–10, 10–12, 12–15]. These calculations were accompanied by some theoretical

developments of the EFTofLSS, such as a careful understanding of renormalization [4, 16, 17] (including rather-

subtle aspects such as lattice-running [4] and a better understanding of the velocity field [6, 18]), of several

ways for extracting the value of the counterterms from simulations [4, 19], and of the non-locality in time of the

EFTofLSS [6, 8, 20]. These theoretical explorations also include an enlightening study in 1+1 dimensions [19].

An IR-resummation of the long displacement fields had to be performed in order to reproduce the Baryon

Acoustic Oscillation (BAO) peak, giving rise to the so-called IR-Resummed EFTofLSS [21–25]. Accounts

of baryonic e↵ects were presented in [26, 27]. The dark-matter bispectrum has been computed at one-loop

in [28, 29], the one-loop trispectrum in [30], and the displacement field in [31]. The lensing power spectrum

has been computed at two loops in [32]. Biased tracers, such as halos and galaxies, have been studied in

the context of the EFTofLSS in [20, 33–38] (see also [39]), the halo and matter power spectra and bispectra

(including all cross correlations) in [20, 34]. Redshift space distortions have been developed in [21, 36, 40].

Neutrinos have been included in the EFTofLSS in [41, 42], clustering dark energy in [14, 43–45], and primordial

non-Gaussianities in [34, 40, 46–49]. Faster evaluation schemes for the calculation of some of the loop integrals

have been developed in [50]. Comparison with high-quality N -body simulations to show that the EFTofLSS

can accurately recover the cosmological parameters have been performed in [51–54].
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• Two difficulties:

• integrals are complicated due to fractional, complex exponents

• many functions needed, the matrix                   for bispectrum is about 50Gb, so, 
~impossible to load on CPT for data analysis 

• In order to ameliorate (solve) these issues, we use a different basis of functions.

Computational Challenge

Mn1n2n3 (1.2)

With the results of [36] the EFTofLSS became ready to be applied to data, in particular to the

power spectrum of galaxies in redshfit space. Ref. [51, 52, 55] provided the first application

of the EFTofLSS to data, by being able to extract the cosmological parameters from the

analysis of the full shape of the galaxy bispectrum of BOSS observations [56]. Since then,

many applications to data have followed. We summarize some of the main results concerning

the application to data in this footnote 2.

One application to data that is very relevant for this paper is the one were the one-loop

EFTofLSS prediction for the bispectrum was compared to BOSS to measure the ⇤CDM pa-

rameters [1] or to set limits on some parameters related to primordial non-Gaussianities [2]

(see also [73, 74] for a contemporary and a subsequent paper which constrain the same pa-

rameters but using the EFTofLSS tree-level prediction) 3. Ref. [1, 2] are important for this

paper because the computational tool to evaluate the one-loop bispectrum in the analysis is

the one we originally present here.

Let us first explain the challenge in performing a data analysis using the EFTofLSS.

In practice, one needs to evaluate the model predictions as a function of the cosmological

and EFT parameters, and determine what are the parameter regions allowed by the data.

Since the EFTofLSS equations are typically solved perturbatively, evaluating the prediction

requires the computation of loop integrals. In principle, these depend on the cosmology

and on the EFTofLSS parameters, which are being scanned over as we compare theory and

data. Certainly, evaluating the loop integrals in the EFTofLSS takes computational time, and

therefore it might be challenging to analyze the data scanning over thousands of combinations

of cosmological parameters and EFTofLSS parameters. The problem of scanning over the

EFTofLSS parameters has been solved in [51, 52] by defining them as prefactors of the loop

expressions that they multiply. So, at the cost of increasing the number of the loop integrals to

2The EFTofLSS prediction at one-loop order has been used to analyze the BOSS galaxy Power Spec-

trum [51, 52, 55], and Correlation Function [57, 58]. This was extended to eBOSS in [59]. The BOSS

galaxy-clustering bispectrum monopole was analyzed in [51, 60] using the EFTofLSS prediction at tree-level.

All ⇤CDM cosmological parameters have been measured from these data by only imposing a prior from Big

Bang Nucleosynthesis (BBN), reaching quite a remarkable precision. For example, the present amount of

matter, ⌦m, and the Hubble constant (see also [61, 62] for subsequent refinements) have error bars that are

similar to the ones obtained from the Cosmic Microwave Background (CMB) [63]. For clustering and smooth

quintessence models, limits on the equation of state w of dark energy of . 5% have been set using only late-

time measurements [59, 62, 64], similar to the ones from CMB [63]. These measurements establish a new,

CMB-independent, method for determining the Hubble constant [51], with precision comparable to one from

the cosmic ladder [65, 66] and CMB. Some models that were proposed to alleviate the tension in the Hubble

measurements between the CMB and cosmic ladder (see e.g. [67]) have also been compared to data [68–72].
3The non-Gaussianity parameters that were constrained are f equil.

NL , forth.
NL , and f loc.

NL , which are predicted

to be produced by some single-clock [75, 76] or multiple fields [77–81] inflationary models.
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• Use as basis:

• With just 16 functions:

Complex-Masses Propagators

has been already used to set the first and strong limits on primordial non-Gaussianities from

Large-Scale Structure by using BOSS data [2] as well as to perform the first analysis of the

⇤CDM model using the one-loop bispectrum on the same data [1].

The paper is organized as follows. In Sec. 2, we present the expansion of the power

spectrum in the basis of functions similar to massive propagators. In Sec. 3 we present the

comparison of our analytical integrations against numerical integration, validating in this

way the formalism. In Sec. [[[[no label for sec. 4, I am waiting for your feedback there]]]] we

present the recursion relation to reduce the loop integrals to the master integrals. In Sec. 5

we finally present the integration of the master integrals.

This paper is organized in two large parts. The first part explains the main application

of the formalism to evaluate the EFTofLSS loop integrals and the comparison with numerical

integration, and the second part details the actual analytical calculations of the same loop

integrals. The first part starts with Sec. 2, where we go through the new power spectrum de-

composition, then, in Sec. 3 we explain the formalism and show the agreement with numerical

integration for the one-loop power spectrum and one-loop bispectrum (in real and redshift

space). In the second part, Secs. 4.2, 4.2.2, and 4.2.3 describe the recursion relations to reduce

to master integrals, Sec. 4.2.4 describes the tensor reduction of some so-called triangle loop

integrals, and in Sec. 5, we explicitly calculate expression for the master integrals.

2 Decomposition of the power spectrum

We approximate the linear power spectrum Plin by a fitting function Pfit(k) given by

Pfit(k) =
NX

n=1

↵nf(k
2
, k

2
peak,n, k

2
UV,n, in, jn) =

NX

n=1

↵nfn(k
2) . (2.1)

The function f is given by

f(k2, k2peak, k
2
UV, i, j) ⌘

�
k
2
/k

2
0

�i
✓
1 +

(k2�k2peak)
2

k4UV

◆j , (2.2)

where k0, k2peak and k
2
UV are predetermined cosmology independent parameters, and i and

j are positive integers, with i  j. We define fn(k2) ⌘ f(k2, k2peak,n, k
2
UV,n, in, jn) and use

k0 =
1
20h/Mpc. The cosmology dependence is encoded in the fitting coe�cients ↵n. N is the

number of fitting functions used (throughout this paper, we use N = 16). We also denote ↵

and f as vectors whose n-th entry is given, respectively, by the elements ↵n and fn. Note

that ↵n has the same dimensions as 1/k3.

We can select a number of points Np of Plin and determine ↵ using a least squares

regression:

↵ = (XT
X)�1

X
TP lin , (2.3)
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Figure 1: Comparison of Plin with Pfit, from k = 10�3
hMpc�1 to k = 1hMpc�1 . Note that

even if the fit is only performed up to 0.6hMpc�1 , the error is within 5% up to 1hMpc�1 .

Each one of our fitting functions f in Eq. (2.2) can itself be expressed as a sum of QFT
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• This basis is equivalent to massive propagators to integer powers

• So, each basis function:
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• We end up with integral like this:

• with integer exponents.

• First we manipulate the numerator to reduce to:

• Then, by integration by parts, we find (i.e. QCD teaches us how to) recursion relations

• relating same integrals with raised or lowered the exponents (easy terminate due to 
integer exponents).

Figure 11: Left: Comparison of B̄1�loop,r using Pfit evaluated with our code (B1�loop,r

analytical) and numerical integration using exact Plin (B1�loop,r numerical), both obtained by

summing the contributions in Fig. 10. Right: 1-loop error relative to the tree level redshift

space bispectrum including the linear contribution at redshifts z = 0 and z = 1, whose ratio

is just the ratio of the growth factors at the two redshifts squared.

These results validate this formalism to quickly calculate loop integrals in the EFTofLSS.

In the remaining part of the paper, we will present a detailed calculation of the function L

introduced in Eq. (3.30).

4 L-function evaluation

With our power spectrum decomposition given in Eq. (2.1), we remind readers that the

evaluation of the 1-loop bispectrum involves integrals of the type shown in Eq. (3.30). For

clarity, we rewrite the expression here with some arguments dropped, which is a notation that

we will use in this section.

L(n1, d1, n2, d2, n3, d3) =

Z

q

(k1 � q)2n1q2n2(k2 + q)2n3

((k1 � q)2 +M1)d1(q2 +M2)d2((k2 + q)2 +M3)d3
(4.1)

where n1, n2, n3 can be positive or negative integers and d1, d2, d3 � 0. We call the expression

in Eq. (4.1) the general triangle integral named after the shape of the corresponding Feynman

diagram (see Fig. 5). The procedure for calculating a given L will be to perform several

recursion steps to reduce the powers of ni and di. The recursions eventually terminate

resulting in L being a sum of master integrals, which we call Tadpole, Bubble, and Triangle

master integrals, given by:

1. Tadpole:

Tad(Mj , n, d) =

Z
d
3q

⇡3/2

(p2
i )

n

(p2
i +Mj)d

(4.2)

where pi = {k1 � q, q,k2 + q} and Mj = {M1,M2,M3}.
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We can use Eqs. (4.9) and (4.12) to decrease the absolute value of ni (or the corresponding

di) for both ni > 0 and ni < 0.

There are four possibilities to end the recursion for a specific i:

• If ni = 0 but di � 0, we can also redo this recursion for a di↵erent i for which ni 6= 0. If

there are no more ni 6= 0 and all di > 0, we can continue simplifying using integration

by parts, with what we call T -recursion, as described in Sec. 4.2.2. In the case of all

n1 = n2 = n3 = 0 and one di = 0, then we proceed to B-recursion as described in

Sec. 4.2.3.

• If di = 0 and ni > 0, we redefine di = �ni < 0 and use a tensor reduction method to

simplify the expression, as detailed in Sec. 4.2.4.

• If di = 0 and ni < 0, we are left with a simpler L function with Mi = 0, di = �ni, and

ni = 0. We can then redo this recursion for a di↵erent i provided that ni 6= 0.

4.2.2 T -recursion

In the previous subsection, we were able to reduce L in Eq. (4.1) to a form where there are

no ni’s. If one has di = 0 for some i, then we go to the B-recursion in Sec. 4.2.3. In this

section we outline the recursion relation used to reduce L when all ni = 0 and all di > 0. We

define the following integral

T (d1, d2, d3) =

Z

q

1

((k1 � q)2 +M1)d1(q2 +M2)d2((k2 + q)2 +M3)d3
, , (4.13)

which is just L with all ni = 0. We can define

t(d1, d2, d3) ⌘
1

((k1 � q)2 +M1)d1(q2 +M2)d2((k2 + q)2 +M3)d3
, (4.14)

and from the divergence theorem, we have
Z

q

@

@qµ
· (qµt(d1, d2, d3)) = 0 , (4.15)

Z

q

@

@qµ
· (k1µt(d1, d2, d3)) = 0 , (4.16)

Z

q

@

@qµ
· (k2µt(d1, d2, d3)) = 0 . (4.17)

Noticing that

@

@qµ
· qµ = 3 + qµ

@

@qµ
, (4.18)

@

@qµ
· kiµ = kiµ ·

@

@qµ
, (4.19)
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and calculating the derivative, we get

) (3� d1223)0̂ + d1k1s
c1+ + d3(k2s)c3+ + 2M2d2

c2+ � d1
c1+c2� � d3

c2�c3+ = 0 , (4.20)

(d1 � d2)0̂ + d1(k1s � 2M1)c1+ � c2�(d1c1+ + d3
c3+)� d2(k1s � 2M2)c2++

c1�(d2c2+ + d3
c3+)� d3(k3s � k2s)c3+ = 0 , (4.21)

(d2 � d3)0̂ + d1(k3s � k1s)c1+ � c3�(d1c1+ + d2
c2+) + c2�(d3c3+ + d1

c1+)+

d2(k2s � 2M2)c2+ � d3(k2s � 2M3)c3+ = 0 , (4.22)

where

k1s = k
2
1 +M2 +M1 , (4.23)

k2s = k
2
2 +M2 +M3 , (4.24)

k3s = k
2
3 +M3 +M1 , (4.25)

d1223 = d1 + 2d2 + d3 , (4.26)

and we also defined ladder operators 0̂, c1±, c2±, and c3±, that act on T as

b0T (d1, d2, d3) = T (d1, d2, d3) , (4.27)

c1± T (d1, d2, d3) = T (d1 ± 1, d2, d3) , (4.28)

c2± T (d1, d2, d3) = T (d1, d2 ± 1, d3) , (4.29)

c3± T (d1, d2, d3) = T (d1, d2, d3 ± 1) . (4.30)

The action of two ladder operators on T is for example

c1+c2�[T (d1, d2, d3)] = T (d1 + 1, d2 � 1, d3) . (4.31)

Solving for terms only involving c1+,c2+,c3+, we obtain,

c1+ = �ks,23
c1+c2� +

ks,22d2

d1

c2+c1� � ks,12
c1+c3� +

ks,22d3

d1

c3+c1� �
ks,12d2

d1

c2+c3�

�
ks,23d3

d1

c3+c2� +

✓
ks,12

3� d1233

d1
� ks,22

3� d1123

d1
+ ks,23

3� d1223

d1

◆
0̂ , (4.32)

c2+ =
ks,33d1

d2

c1+c2� � ks,23
c2+c1� �

ks,31d1

d2

c1+c3� �
ks,23d3

d2

c3+c1� � ks,31
c2+c3�

+
ks,33d3

d2

c3+c2� +

✓
ks,23

3� d1123

d2
+ ks,31

3� d1233

d2
� ks,33

3� d1223

d2

◆
0̂ , (4.33)

c3+ = �
ks,31d1

d3

c1+c2� �
ks,12d2

d3

c2+c1� � ks,12
c1+c3� +

ks,11d1

d3

c3+c1� +
ks,11d2

d3

c2+c3�

� ks,31
c3+c2� +

✓
�ks,11

3� d1233

d3
+ ks,12

3� d1123

d3
+ ks,31

3� d1223

d3

◆
0̂ , (4.34)
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• We end up to three master integrals:

• Tadpole:

• Bubble:

• Triangle:

Figure 11: Left: Comparison of B̄1�loop,r using Pfit evaluated with our code (B1�loop,r

analytical) and numerical integration using exact Plin (B1�loop,r numerical), both obtained by

summing the contributions in Fig. 10. Right: 1-loop error relative to the tree level redshift

space bispectrum including the linear contribution at redshifts z = 0 and z = 1, whose ratio

is just the ratio of the growth factors at the two redshifts squared.

These results validate this formalism to quickly calculate loop integrals in the EFTofLSS.

In the remaining part of the paper, we will present a detailed calculation of the function L

introduced in Eq. (3.30).

4 L-function evaluation

With our power spectrum decomposition given in Eq. (2.1), we remind readers that the

evaluation of the 1-loop bispectrum involves integrals of the type shown in Eq. (3.30). For

clarity, we rewrite the expression here with some arguments dropped, which is a notation that

we will use in this section.

L(n1, d1, n2, d2, n3, d3) =

Z

q

(k1 � q)2n1q2n2(k2 + q)2n3

((k1 � q)2 +M1)d1(q2 +M2)d2((k2 + q)2 +M3)d3
(4.1)

where n1, n2, n3 can be positive or negative integers and d1, d2, d3 � 0. We call the expression

in Eq. (4.1) the general triangle integral named after the shape of the corresponding Feynman

diagram (see Fig. 5). The procedure for calculating a given L will be to perform several

recursion steps to reduce the powers of ni and di. The recursions eventually terminate

resulting in L being a sum of master integrals, which we call Tadpole, Bubble, and Triangle

master integrals, given by:

1. Tadpole:

Tad(Mj , n, d) =

Z
d
3q

⇡3/2

(p2
i )

n

(p2
i +Mj)d

(4.2)

where pi = {k1 � q, q,k2 + q} and Mj = {M1,M2,M3}.
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Figure 12: Tadpole, bubble, and triangle master integrals represented by Feynman diagrams.

2. Bubble:

Bmaster(k
2
,M1,M2) =

Z
d
3q

⇡3/2

1

(q2 +M1)(|k � q|2 +M2)
(4.3)

3. Triangle:

Tmaster(k
2
1, k

2
2, k

2
3,M1,M2,M3) =

Z
d
3q

⇡3/2

1

(q2 +M1)(|k1 � q|2 +M2)(|k2 + q|2 +M3)
,

(4.4)

where k1 + k2 + k3 = 0.

These master integrals are evaluated in closed form, as explained in Sec. 5. The name of

the master integrals come from the number of propagators of the associated Feynman diagram

as shown in Fig. 12.

While the integrals that we actually evaluate analytically are the master integrals defined

just above, we point out that, in intermediate steps, we may find that one of the ni and di

are 0 or two of the ni and di are 0. We call these intermediate integrals the general bubble

integrals, also named after the shape of the corresponding Feynman diagrams. Note that the

general integrals are di↵erent from the master integrals. The general bubble integral has the

form,

LB(n1, d1, n2, d2) =

Z

q

p2n1
i p2n2

j

(p2
i +Mi)d1(p2

j +Mj)d2
, (4.5)

where pi = {k1�q, q,k2+q} and i 6= j. These general integrals will be also themselves then

further reduced to master integrals as defined above, as will later be explained.

4.1 L-function calculation flowchart

In this section we outline the procedure used to compute the function L in Eq. (4.1).
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• The master integrals are evaluated with Feynman parameters, but with great care of 
branch cut crossing, which happens because of complex masses.

• Bubble Master:

• Triangle Master:

• Very simple expressions with simple rule for branch cut crossing.

For x�  0 and x� � 1, the branch cut crossing is in the integration region, so we need to

take the crossing into account. In these two cases, it amounts to subtracting 2⇡ from the

expression inside the square brackets in Eq. (5.57). Therefore, since Re(�(m1,m2)) <

0 ) ✓(i�(m1,m2)) = 0, Eq. (5.57) for x�  0 and x� � 1 is simply given by

Bmaster(k
2
,M1,M2) =

p
⇡

k
[G(1)�G(0)] . (5.62)

For 0 < x� < 1, there is no branch cut crossing in the integration region, so Eq. (5.55)

becomes

Bmaster(k
2
,M1,M2) =

p
⇡

k
[G(1)�G(0) + 2⇡] . (5.63)

Notice that in this particular case we have Im (A (0,m1,m2)) < 0 and Im (A (1,m1,m2)) > 0.

Combining all these results, we find the remarkable result that we have the same expres-

sions as in Eq. (5.35), which is therefore valid regardless of the relative signs of Im(m1) and

Im(m2):

Bmaster(k
2
,M1,M2) =

p
⇡

k
i[log (A(1,m1,m2))� log (A(0,m1,m2))

� 2⇡iH(ImA(1,m1,m2))H(� ImA(0,m1,m2))] ,
(5.64)

A(x,m1,m2) ⌘ 2
p
x(1� x) +m1x+m2(1� x) + i(m1 �m2 � 2x+ 1) , (5.65)

where

A(0,m1,m2) = 2
p
m2 + i(m1 �m2 + 1) , (5.66)

A(1,m1,m2) = 2
p
m1 + i(m1 �m2 � 1) , (5.67)

provided that the condition �(Re(m1),Re(m2))> 0 is satisfied. This interesting observation

makes Bmaster(k2,M1,M2) extremely e�cient to evaluate numerically. This last expression

Eq. (5.64) hints, by its simplicity, at some closer relation between the case where the masses

have the same sign of the imaginary part and where they have opposite signs. Indeed, it can

be proven using contour integration that the two cases are closely related. This proof is given

in the Appendix C.

5.4 Calculation of the triangle master integral

Let us compute the triangle master integral,

Tmaster(k
2
1, k

2
2, k

2
3,M1,M2,M3) =

Z
d
3q

⇡3/2

1

((k1 � q)2 +M1)(q2 +M2)((k2 + q)2 +M3)
.

(5.68)

The procedure will be similar to the bubble integral.
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with a = S+, and in particular Im(a) = ✏ > 0.

Now, doing the change of variables described before: s1 = ⌧x, s2 = ⌧(1� x), and noting

that the Jacobian of the transformation is ⌧ , we get

Bmaster(k
2
,M1,M2) =

�
1

(�i)3/2

Z 1

0
dx

Z 1

0
d⌧ ⌧(⌧ + i✏)�3/2 exp

⇢
i

⌧
2

⌧ + i✏
x(1� x)k2 + i⌧(M1x+M2(1� x))

�
,

(5.20)

and since the integral is convergent when ✏ ! 0, we can set ✏ = 0 and get:

Bmaster(k
2
,M1,M2) =

�
1

(�i)3/2

Z 1

0
dx

Z 1

0
d⌧ ⌧

�1/2 exp
�
i⌧x(1� x)k2 + i⌧(M1x+M2(1� x))

 
,

(5.21)

and finally performing the ⌧ integral yields the integral:

Bmaster(k
2
,M1,M2) =

�(1/2)

(�i)3/2

Z 1

0
dx

(�i)3/2p
x(1� x)k2 +M1x+M2(1� x)

=
p
⇡

Z 1

0
dx

1p
x(1� x)k2 +M1x+M2(1� x)

,

(5.22)

which is a standard Feynman integral. Note that in this case the square root does not have any

branch cut, because its argument always has a positive imaginary part, from our assumption

on the masses M1 and M2. We were thus able to find the Feynman parameter integral using

Schwinger parameters for this case. For two masses with negative imaginary parts, the exact

same steps apply, and we obtain the same result.

Solving this integral yields:

Bmaster(k
2
,M1,M2) =

p
⇡

k

h
i log

⇣
2
p
x(1� x) +m1x+m2(1� x) + i(m1 �m2 � 2x+ 1)

⌘ix=1

x=0
,

(5.23)

where m1 = M1/k
2 and m2 = M2/k

2. To use this expression, we need to check if the

argument of the log as a function of x crosses its branch cut (the negative real axis). If it

does, we need to add/subtract 2⇡i, depending on the direction of the crossing.

Branch cut crossings. We can analyze under what conditions a log branch cut crossing

happens. Let us define the argument of the log as

A(x,m1,m2) ⌘ 2
p
x(1� x) +m1x+m2(1� x) + i(m1 �m2 � 2x+ 1) , (5.24)

then, we have a branch cut crossing when A(x,m1,m2) = �t, where t > 0, for some x 2]0, 1[.

We now want to prove two statements: first, that there can be at most one branch cut
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This integral only makes sense if the square root in the integrand does not cross any

branch cut. Thus, we will separate the square root using our formula.

Fint(R2, z+, z�, x0) =

p
⇡

2

Z 1

0
dx

s(z+ � x, x� z�)p
|R2|

p
(z+ � x)

p
(x� z�)(x� x0)

. (5.84)

Under our parametrization of the masses, s(z+ � x, x� z�) is constant which means we can

take s(z+�x, x�z�) = s(z+,�z�). This can be seen the following way: on the one hand, since

ReMi > 0, we have Re(R2(x� z+)(x� z�)) > 0 if 0 < x < 1 both for y = 0 and y = 1. This

means that
p
R2(x� z+)(x� z�) cannot cross any branch cut. On the other hand, for fixed

y (and so fixed z±), both (z+�x) and (x�z�) have a constant imaginary part sign and so do

not cross any branch cut. Since
p
(z+ � x)(x� z�) = s(z+�x, x�z�)

p
(z+ � x)

p
(x� z�),

these observations imply that s(z+ � x, x� z�) is constant 17. Integrating yields:

Fint(R2, z+, z�, x0) = s(z+,�z�)

p
⇡p
|R2|

arctan
⇣p

z+�x
p
x0�z�p

x0�z+
p
x�z�

⌘

p
x0 � z+

p
x0 � z�

������

x=1

x=0

. (5.88)

This would be the final result if arctan did not have any branch cuts, and if Fint had no

indeterminacies. We now outline how to incorporate possible branch cut crossings, and later

how to incorporate possible indeterminate results in Eq. (5.87).

5.4.3 Branch cut crossings

Let us start by analyzing the branch cuts of arctan. There are two of them, both in the

imaginary axis. The first goes from i to +i1 and the second goes from �i to �i1. The

discontinuity works as follows:

lim
✏!0

arctan(x i)� arctan(x i� ✏) = ⇡ , |x| > 1 ,

lim
✏!0

arctan(x i+ ✏)� arctan(x i� ✏) =
⇡

2
, |x| = 1 ,

(5.89)

17 Explicitly:

Re(R2(x� z�)(x� z+)) = x2 Re(R2)� xRe(R2(z+ + z�)) + Re(R2(z�z+)) (5.85)

= x2 Re(R2) + xReR1 +ReR0 (5.86)

= Re(M1x+M3(1� y)(1� x) + k2
3(1� x)(1� y)x

+M2y(1� x) + (1� x)y(k2
1x+ k2

2(1� x)(1� y))) > 0 , (5.87)

where in the second passage, we used that R1 = R2(z+ + z�) and R0 = R2z+z�, and in the third we used

the definitions of z+, z�, R2, R1 and R0 (the ones without putting to zero the terms that vanish at y = 0

and y = 1, because here we are interested in the analyticity the the integration region both in x and y).

Each term in the equation above is positive for 0 < x < 1 and 0 < y < 1. Thus, ‘Re(R2(x � z�)(x �
x+))’!‘

p
R2(x� z�)(x� z+)’ cannot cross any branch cut in the region 0 < x < 1 and 0 < y < 1. Sincep

R2(x� z�)(x� z+) =
p

|R2|
p

(z+ � x)(x� z�), also
p

(z+ � x)(x� z�) has no branch cut crossing. Now,

since there are no branch cut crossing for any 0 < y < 1, for the purpose of evaluating the function s(, ),

[[[[right?]]] we can fix y such that z± is fixed. If z± is fixed, the imaginary part of z+ �x and x� z� [[right?]]]

are also fixed. Hence, since s(, ) only depends on the imaginary parts of the arguments, s(z+ � x, x � z�) is

also constant.
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• All automatically coded up.

• For BOSS analysis, evaluation of matrix is 2.5CPU hours and 800 Mb storage, very fast 
matrix contractions.

• Accuracy with 16 functions:

Result of Evaluation

●

●

●

●

●
●

●
●

● ● ●
●

●

●

●

●
●

●
● ● ● ● ●
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●

Btree

B1-loop analytical

● B1-loop numerical
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Figure 7: Left: Comparison between analytical result B̄1�loop and exact numerical result

B1�loop, obtained by summing the contributions in Fig. 6. Right: 1-loop error relative to the

full bispectrum including the linear contribution at redshifts z = 0 and z = 1.

Calculation for scalene triangles. We have so far calculated the diagrams for equilateral

triangles. We also compare for general scalene triangle, and verify that a similar precision is

achieved, as can be seen in Figs. 8 and 9.
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Back to data-analysis:
Pipeline Validation



• We can estimate the                   without the use of simulations, by adding NNLO terms, 
and seeing when they make a difference on the posteriors. 

• For our                 , we find the following shifts, which are ok: 

Scale cut from NNLO with D’Amico, Donath, Lewandowski, Zhang 2206



• N-series

• Volume ~80 BOSS

• safely within

• After phase-space correction

Scale-cut from simulations with D’Amico, Donath, Lewandowski, Zhang 2206
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• Patchy:

• Volume ~2000 BOSS

• safely within 

• After phase-space correction

Scale-cut from simulations with D’Amico, Donath, Lewandowski, Zhang 2206
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BOSS data



• Measurement of all 
cosmological parameters

• Compatible with Planck

–no tensions

–new way to measure 
Hubble

• Often Planck Comparable 

Data Analysis
with D’Amico, Donath, Lewandowski, Zhang 2206

Power Spectrum only:

with D’Amico, Gleyzes,  Kockron, Markovic, 
Zhang,  Beutler, Gill-Marin 2019
with Colas, D’Amico, Zhang, Beutler, 2019

see also Ivanov, Simonovic, Zaldarriaga 
2019, 2019, 2020
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• all terms allowed by symmetries

• all physical effects included

–e.g. assembly bias

• .

Galaxies in the EFTofLSS
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• This means that one does not get the same terms as in the local-in-time expansion

• If we could measure one of these terms, we could measure that Galaxies take an 
Hubble time to form. We have never measured this: we take pictures of different 
galaxies at different stages of their evolution. But we have never seen a galaxy form 
in an Hubble time.

–This would be the first direct evidence that the universe lasted an Hubble time.

• So, detecting a non-local-in-time bias would allow us to measure that, and from the 
size, the formation time. Unfortunately, so far, not yet.

Consequences of non-locality in time



• Mathematics again:

• non-local in time:

• local in time: 

• more non local in time:

Consequences of non-locality in time

2

Galilean invariance), is on second spatial derivatives of
the gravitational potential, gradients of the dark-matter
velocity, and their spatial gradients, integrated over all
past times. This makes the EFT of LSS generally local
in space, but non-local in time.

However, until now, the most advanced perturbative
calculations [15] have shown that the non-local-in-time
bias expansion up to fourth order is mathematically
equivalent to the local-in-time expansion. As we show in
this Letter, though, this is no longer true at fifth order,
and thus it is possible to see distinctly non-local-in-time
e↵ects in the galaxy clustering signal. Measuring the size
of these e↵ects would then give us a direct indication of
the formation time scale of galaxies.

Notes We work in the Newtonian approxima-

tion. a(t) is the scale factor of the universe, the

Hubble parameter is defined by H(t) ⌘ ȧ(t)/a(t), the
overdot ‘˙’ stands for a derivative with respect to t, and
�(~x, t) is the gravitational potential. The dark-matter
fluid is described by the overdensity �(~x, t) and fluid ve-
locity ~v(~x, t). The growth factor D(t) is defined as the
growing mode solution to the linear equation of motion
for �, i.e. satisfies

D̈ + 2HḊ �
3⌦mH

2

2
D = 0 , (1)

where ⌦m(t) is the time-dependent matter fraction.
The building blocks of Galilean scalars are the dimen-

sionless tensors
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D

aḊ
@iv

j
. (2)

For brevity, we will always denote the traces �
ij
rij = �

(which is true because of the Poisson equation) and
�
ij
pij ⌘ ✓ (which is our definition of ✓). Then, for

other contractions, we write the matrix products as sim-
ple multiplication, i.e. r

2 = rijrji, r
2
p = rijrjkpki,

rprp = rijpjkrklpli, and so on (repeated indices are al-
ways summed over). We work in the so-called Einstein-de
Sitter (EdS) approximation, where the time dependence
of perturbations is given by

�
(n)(~x, t) =

✓
D(t)

D(t0)

◆n

�
(n)(~x, t0) ,

✓
(n)(~x, t) =
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D(t)

D(t0)

◆n

✓
(n)(~x, t0) .

(3)

In this Letter, we focus on the lowest-derivative bias
terms that are su�cient to establish our claims, and leave
a discussion of higher-derivative bias (and counterterms)
for future work. Finally, we focus on the real space (as
opposed to redshift space) prediction, which in any case
is the leading signal if one were to restrict observa-

tions to directions near the line of sight. We leave
extending our results to redshift space to future work as
well. For a much more detailed explanation of the nota-
tion used here, see [15].

II. COMPLETE BIAS EXPANSION AND

RECURSION

We now construct the most general bias expansion for
the galaxy overdensity �g(~x, t) ⌘ (ng(~x, t)� n̄g(t))/n̄g(t),
where n̄g(t) is the average number density of galaxies,
that is consistent with the equivalence principle, di↵eo-
morphism invariance, and is non-local-in-time. Up to
N -th order in perturbations, we have

�g(~x, t)
��
N

=
NX

n=1

�
(n)
g (~x, t) , (4)

where the expression at n-th order is given by the non-
local-in-time integral over the sum of all possible local-
in-time functions Om up to order n [14]

�
(n)
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X

Om
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evaluated along the fluid element

~xfl(~x, t, t
0) = ~x+

Z t0

t

dt
00

a(t00)
~v (~xfl(~x, t, t

00), t00) , (6)

and we use the square brackets and superscript nota-
tion [·](n) to mean that we perturbatively expand the
expression inside of the brackets and take the n-th order
piece. Neglecting baryons, as they are a small ef-

fect [][[[put Matt]]], in Eq. (5), since �g is a Galilean
scalar, the equivalence principle implies that the set of
functions Om is given by all possible rotationally invari-
ant contractions of the dark-matter fields rij and pij , and
integrating the Om along the fluid element is the most
general way to write a non-local-in-time expression for
�g. All of the complicated details of galaxy-formation
physics is then encoded in the functions cOm , which are
a priori unknown (from the EFT point of view) time-
dependent kernels, which physically can be thought

of as the response of the galaxy overdensity to a

given field at a given time. The local-in-time expan-
sion (as laid out in, for example, [13]) is given by setting
cOm(t, t0) = cOm(t)�D(t � t

0)/H(t). From now on, in

the list of operators {Om}, we identify the subscript
m on Om to denote that the function starts at order m,
i.e. m = 3 for �2✓, �3, . . ..
In this way, the bias expansion at order n is reduced to

an algorithmic procedure. To create the list of seed func-
tionsOm, we list all contractions up to n factors of rij and
pij . We then iteratively Taylor expand Om(~xfl(~x, t, t0), t0)
around ~x using the recursive definition Eq. (6), and take
the n-th order piece. After performing this expansion, we
end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1

✓
D(t0)
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(7)
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In this way, the bias expansion at order n is reduced to
an algorithmic procedure. To create the list of seed func-
tionsOm, we list all contractions up to n factors of rij and
pij . We then iteratively Taylor expand Om(~xfl(~x, t, t0), t0)
around ~x using the recursive definition Eq. (6), and take
the n-th order piece. After performing this expansion, we
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end up with an expression can be cast with the following
notation [15]
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The resulting bias functions C(n)
Om,↵, which we say are in

the fluid expansion of the seed function Om and will use
throughout this Letter, are defined by the expansion in
Eq. (8), whose form is guaranteed by assuming the scaling
time dependence of the dark-matter fields Eq. (3), which
also implies that
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Plugging (8) into (5), and defining the expansion co-
e�cients
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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Om
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cOm,↵(t)C(n)
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We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation
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which is trivially obtained by setting t = t
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and where O
(n)
m is the standard expansion of Om at n-

th order in perturbations. The second, which captures
the consequences of expanding ~xfl in Eq. (8), is the fluid
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with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
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m are easily computable, since these

are just the standard perturbative expressions in terms
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bias expansion. One then starts at n = m and ↵ = 1
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m , which is evident from the equal-
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C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can
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Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.
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tions, which is an additional key technical results of this
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tually straightforward, it can be practically quite cum-
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• it turns out that up to 4th order, the two basis of operators were identical.

• but at 5th order they are not!

– out of 29 independent operators, 3 cannot be written as local in time ones.

•         By looking at, eg, 

• we can detect these biases, and, from their size, determine:

– the order of magnitude of the formation time of galaxies

– direct evidence that the universe lasted 13 Billion years

Consequences of non-locality in time
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to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
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sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the
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the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-
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We choose the basis such that the elements with j =
1, . . . , 26 are a basis of the local expansion Eq. (16). Ex-

plicitly, we take L(5)
j = O
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m with the corresponding Om
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for j = 1, . . . , 26. Thus, the non-locality-in-time is con-
tained in the final three basis elements, which we take to
be

L(5)
27 = C(5)

�,5 , L(5)
28 = C(5)

r2,4 , L(5)
29 = C(5)

p3,3 . (22)

Non-zero b̃27, b̃28, and b̃29 can only come from non-local-
in-time physics, so we call them the non-local-in-time
bias parameters.

Another, perhaps more natural, choice of basis func-
tions is the so-called basis of descendants [19], where if

C(n)
Om,↵ is used at order n, then C(n+1)

Om,↵+1 is used at order

n+1.2 We write the fifth-order expansion in the basis of
descendants as

�
(5)
g (~x, t) =

29X

j=1

bj(t)B(5)
j (~x, t) . (23)

As shown in App. A [[check]]], the first 15 terms in
Eq. (23) are determined by the fourth order terms, i.e.,

for j = 1, . . . , 15, the bj and B(5)
j in Eq. (23) are the same

as those in [15], and those B(5)
j are given explicitly in [15].

For the new elements derived here, i.e. j = 16, . . . , 29,

we have B(5)
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Om,↵, where Om,↵ takes the following
values for the given j

j : 16 17 18 19 20 21 22

Om,↵ : �, 5 �
2
, 4 r

2
, 4 �

3
, 3 r

3
, 3 r

2
�, 3 �

4
, 2

j : 23 24 25 26 27 28 29

Om,↵ : r3�, 2 r
4
, 2 �

5
, 1 r

5
, 1 r

4
�, 1 r

3
�
2
, 1 p

3
, 3

. (24)

We also note that fifth order is the first time that the @ivj

has to be used in the initial expansion to form a basis, for

example through C(5)
p3,3 in the basis of descendants. This

is contrasted with the case at fourth order [15] where
@i@j� is enough.

Converting between the starting-from-time-

locality basis and the basis of descendants, we find
the following expression for the non-local-in-time bias
parameters and the basis of descendants bias parameters

b̃27 = b1 � 4b2 + 6b3 � 4b4 + 90b8 � 76b9 + b16 ,

b̃28 = b18 � b9 ,

b̃29 = �
4b8
3

+
4b9
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�
10b11
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+
7b20
3

+ b29 .

(25)
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For n = 4, for example, this is the basis used in [15].

To see more quantitatively how the non-local-in-time
bias parameters measure the time scale of galaxy forma-
tion, consider the expression Eq. (11) for the bias param-
eters. Assuming that the kernel cOm(t, t0) has support
over a time scale of order 1/! and expanding around the
local-in-time limit, we have

cOm,↵(t) ⇡ cOm(t)

✓
1 + gOm,↵(t)

H

!
+ . . .

◆
, (26)

where the . . . represents terms higher order in H/!, and

gOm,↵(t) ⇠ O(1). Since the non-local-in-time bias pa-
rameters b̃27, b̃28 and b̃29 all vanish in the local-in-time
limit, they are proportional to (at least) H/!. The size
of the deviation from the first term, i.e. the local-in-time
piece, is controlled by H/!: if there is a sizable deviation
from the local-in-time limit, then ! ⇠ H, and thus the
time scale of the kernel cOm(t, t0) is of the order 1/H.3 In
our case, this happens if b̃27, b̃28, or b̃29 are order unity.
This in turn would mean that the formation of the ob-
served population of galaxies has been a↵ected by the
state of the Universe up to a Hubble time ago, and thus
that it has formed on a time scale of the order of the age
of the Universe.

V. OBSERVABLE SIGNATURES

Until now, we have focused on the perturbative galaxy
overdensity field itself. In large-scale structure analyses,
we typically compare to data using correlation functions
(or n-point functions if they contain n fields) of the over-
density fields of various tracers. Thus, one way to mea-
sure the non-local-in-time e↵ect that we have discovered
in this Letter is in correlation functions. Since we found
that this e↵ect arises at fifth order in perturbations, the
lowest order observables sensitive to it are the two-loop
two-point function through
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where we have used the subscript gi to denote possibly
di↵erent tracer samples (each of which can have a di↵er-
ent set of bias parameters), and we have taken all fields

3
Of course, the measurement of a smaller deviation from the local-

in-time limit means that the formation time scale could be cor-

respondingly smaller.



• more on time-non-locality:

• if formation time is fast,         , we can Taylor expand the Kernels:

• so these terms would be suppressed, and we could therefore determine a fast 
formation time.

Consequences of non-locality in time
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our case, this happens if b̃27, b̃28, or b̃29 are order unity.
This in turn would mean that the formation of the ob-
served population of galaxies has been a↵ected by the
state of the Universe up to a Hubble time ago, and thus
that it has formed on a time scale of the order of the age
of the Universe.

V. OBSERVABLE SIGNATURES

Until now, we have focused on the perturbative galaxy
overdensity field itself. In large-scale structure analyses,
we typically compare to data using correlation functions
(or n-point functions if they contain n fields) of the over-
density fields of various tracers. Thus, one way to mea-
sure the non-local-in-time e↵ect that we have discovered
in this Letter is in correlation functions. Since we found
that this e↵ect arises at fifth order in perturbations, the
lowest order observables sensitive to it are the two-loop
two-point function through

h�
(5)
g1 (~x1)�

(1)
g2 (~x2)i , (25)

the two-loop three-point function through
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and the tree-level five-point function through
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where we have used the subscript gi to denote possibly
di↵erent tracer samples (each of which can have a di↵er-
ent set of bias parameters), and we have taken all fields

3
Of course, the measurement of a smaller deviation from the local-

in-time limit means that the formation time scale could be cor-

respondingly smaller.
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for j = 1, . . . , 26. Thus, the non-locality-in-time is con-
tained in the final three basis elements, which we take to
be

L(5)
27 = C(5)

�,5 , L(5)
28 = C(5)

r2,4 , L(5)
29 = C(5)

p3,3 . (20)

Non-zero b̃27, b̃28, and b̃29 can only come from non-local-
in-time physics, so we call them the non-local-in-time
bias parameters.

Another, perhaps more natural, choice of basis func-
tions is the so-called basis of descendants [19], where if

C(n)
Om,↵ is used at order n, then C(n+1)

Om,↵+1 is used at order

n+1.2 We write the fifth-order expansion in the basis of
descendants as

�
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29X
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bj(t)B(5)
j (~x, t) . (21)

As shown in App. A [[check]]], the first 15 terms in
Eq. (21) are determined by the fourth order terms, i.e.,

for j = 1, . . . , 15, the bj and B(5)
j in Eq. (21) are the same

as those in [15], and those B(5)
j are given explicitly in [15].

For the new elements derived here, i.e. j = 16, . . . , 29,

we have B(5)
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We also note that fifth order is the first time that the @ivj

has to be used in the initial expansion to form a basis, for

example through C(5)
p3,3 in the basis of descendants. This

is contrasted with the case at fourth order [15] where
@i@j� is enough.

Converting between the starting-from-time-

locality basis and the basis of descendants, we find
the following expression for the non-local-in-time bias
parameters and the basis of descendants bias parameters

b̃27 = b1 � 4b2 + 6b3 � 4b4 + 90b8 � 76b9 + b16 ,

b̃28 = b18 � b9 ,

b̃29 = �
4b8
3

+
4b9
3

�
10b11
3

+
7b20
3

+ b29 .

(23)

2
For n = 4, for example, this is the basis used in [15].

To see more quantitatively how the non-local-in-time
bias parameters measure the time scale of galaxy forma-
tion, consider the expression Eq. (10) for the bias param-
eters. Assuming that the kernel cOm(t, t0) has support
over a time scale of order 1/! and expanding around the
local-in-time limit, we have
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!
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◆
, (24)

where the . . . represents terms higher order in H/!, and
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from the local-in-time limit, then ! ⇠ H, and thus the
time scale of the kernel cOm(t, t0) is of the order 1/H.3 In
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state of the Universe up to a Hubble time ago, and thus
that it has formed on a time scale of the order of the age
of the Universe.
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overdensity field itself. In large-scale structure analyses,
we typically compare to data using correlation functions
(or n-point functions if they contain n fields) of the over-
density fields of various tracers. Thus, one way to mea-
sure the non-local-in-time e↵ect that we have discovered
in this Letter is in correlation functions. Since we found
that this e↵ect arises at fifth order in perturbations, the
lowest order observables sensitive to it are the two-loop
two-point function through
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• After validating our technique against the MCMC’s on BOSS data, we Fisher 
forecast for DESI and Megamapper

• Prediction of one-loop Power Spectrum and Bispectrum

• We introduce a `perturbativity prior’: impose expected size and scaling of loop

• Also a `galaxy formation prior’ , 0.3 in each EFT-parameter

Next Decade
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Expected P2 L0
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Figure 9: Plot showing various two-loop monopole power spectra, P 0

2L against the CMASS data error,

�data,CMASS (grey). As an example of a typical MCMC, the BOSS CMASS P 0

2L was estimated using the rela-

tion P2L ⇠ P2
1L

PTree , and is shown in blue. The expected P 0

2L size is shown in red and an example of a P 0

2L that would

be favoured by the perturbative prior is shown in green.

this threshold for the two-loop contribution into a prior on the size of the one-loop contribution.

5.1 Contribution to the Fisher matrix

We impose a perturbative prior for the power spectrum and bispectrum respectively, and the

procedure is the same in both cases. We therefore keep the derivation generic, for the loop of some

observable, X1L, where X 2 {P,B}. In a later step, we will derive an estimate for the correct size

of the loop, denoted by X
C

1L
. As mentioned in the previous section, this estimate will come from a

threshold for the signal-to-noise of two-loop contributions, through which we can infer properties

about the correct one-loop contributions. The quantity we want to constrain is X1L, whereas XC

1L

we assume to be estimated before the data analysis. We then impose that on average, X1L is close

to X
C

1L
, therefore, we impose a Gaussian prior

1

NX

X

ki

Z
1

�1

Z
2⇡

0

dµi

2

d�

2⇡

X1L(ki; ẑ)

X
C

1L
(ki; ẑ)

⇠ N (1, 1), (5.1)

where ki 2 {k, (k1, k2, k3)}, µi 2 {µ, µ1} and NX 2 {Nbins, N�} for the power spectrum and

bispectrum respectively. We here implement the real space part of the perturbative prior29. For

the remainder of this section, we, therefore, always refer to real space quantities, indicated by

29We note that the real space perturbative prior is on its own only restricting the size of the real space correlators.

However, given that the size of the full redshift space observables is highly dependent on the real space EFT-parameter

values, there is little room left for the full redshift space contribution to be large, if the real space contribution is

restricted enough. We therefore expect that the full redshift space prior is highly correlated with the real space one,

and, therefore, only do the real space version here. Adding the redshift space part is straightforward.
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• Just using perturbativity prior, potentially a factor of 20, 3, 6 over Planck!!

Results: Non-Gaussianities

BOSS DESI

MegaMapper

BOSS: �(·) f
loc.
NL f

eq.
NL f

orth.
NL log(b1) c2 c4

P+BTree 37 357 142 0.006 0.081 0.88

P+B 23 253 67 0.005 0.021 0.36

P+B+p.p. 17 228 62 0.003 0.020 0.28

P+B+p.p.+g.p. 15 163 49 0.003 0.011 0.15

DESI: �(·) f
loc.
NL f

eq.
NL f

orth.
NL log(b1) c2 c4

P+BTree 3.61 142 71.5 0.003 0.04 0.4

P+B 3.46 114 30.2 0.003 0.02 0.2

P+B+p.p. 3.26 91.5 27.0 0.001 0.01 0.1

P+B+p.p.+g.p. 3.19 77.0 21.8 0.002 0.008 0.08

MMo: �(·) f
loc.
NL f

eq.
NL f

orth.
NL log(b1) c2 c4

P+BTree 0.29 23.4 8.7 0.0005 0.01 0.14

P+B 0.27 17.7 4.6 0.0003 0.01 0.05

P +B+p.p. 0.26 16.0 4.2 0.0002 0.005 0.04

P+B+p.p.+g.p. 0.26 12.6 3.4 0.0002 0.003 0.03

Figure 10: Triangle plots and errors from Fisher forecasts for BOSS (top left), DESI (top right), and
MegaMapper (bottom left), for the equilateral type of non-Gaussianity, and leading bias parameters. We also
show errors on other non-Gaussianity parameters in the tables. Each analysis was done with cosmological
parameters fixed and each non-Gaussianity parameter was analyzed separately. We always include the
power spectrum at one loop order with the addition of either the tree-level bispectrum the loop bispectrum
or the loop bispectrum with a perturbative prior (p.p.) also in combination with the “galaxy-formation
prior” (g.p.). We use all power spectrum and bispectrum multipoles in each case and use the analytical
covariance without cross-correlations.
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• Just using perturbativity prior, potentially factor of 5 over Planck!

• Important for the landscape of string theory.

• Neutrinos: guaranteed evidence/detection:

Results: Curvature and Neutrinos

BOSS DESI

MegaMapper

BOSS:�(·) h ln(10
10
As) ⌦m ns ⌦k

P+B 0.007 0.130 0.006 0.025 0.050

P +B+p.p. 0.006 0.110 0.004 0.013 0.041

P+B+p.p.+g.p. 0.006 0.069 0.004 0.011 0.025

DESI: �(·) h ln(10
10
As) ⌦m ns ⌦k

P+B 0.004 0.035 0.002 0.011 0.013

P +B+p.p. 0.004 0.032 0.002 0.008 0.012

P+B+p.p.+g.p. 0.004 0.025 0.002 0.007 0.009

MMo: �(·) h ln(10
10
As) ⌦m ns ⌦k

P+B 0.002 0.0052 0.0003 0.002 0.0015

P +B+p.p. 0.002 0.0046 0.0003 0.002 0.0012

P+B+p.p.+g.p. 0.002 0.0044 0.0003 0.001 0.0011

Figure 12: Triangle plots and errors from Fisher forecasts for BOSS (top left), DESI (top right), and
MegaMapper (bottom left), for base cosmological parameters including the spectral tilt and spatial cur-
vature. We always include the power spectrum at one loop order with the addition of either the loop
bispectrum or the loop bispectrum with a perturbative prior (p.p.) or also in combination with the “galaxy-
formation prior” (g.p.). We use all power spectrum and bispectrum multipoles in each case and use the
analytical covariance without cross-correlations.
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3

end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1

✓
D(t0)

D(t)

◆↵+m�1

C(n)
Om,↵(~x, t) .

(8)

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1

✓
D(t0)

D(t)

◆↵+m�1

C(n)
Om,↵(~x, t) .

(9)

The resulting bias functions C(n)
Om,↵, which we say are

in the fluid expansion of the seed function Om and will
use throughout this Letter, are defined by the expansion
in Eq. (9), whose form is guaranteed by assuming the
scaling time dependence of the dark-matter fields Eq. (3),
which also implies that

C(n)
Om,↵(~x, t) =

✓
D(t)

D(t0)

◆n

C(n)
Om,↵(~x, t

0) . (10)

Plugging (9) into (5), and defining the expansion co-
e�cients

cOm,↵(t) ⌘

Z t

dt
0
H(t0)cOm(t, t0)

✓
D(t0)

D(t)

◆↵+m�1

, (11)

we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:

) �
(n)
g (~x, t) =

X

Om

n�m+1X

↵=1

cOm,↵(t)C(n)
Om,↵(~x, t) . (12)

We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (13)

which is trivially obtained by setting t = t
0 in Eq. (9),

and where O
(n)
m is the standard expansion of Om at n-th

order in perturbations. The second, which captures the
consequences of expanding ~xfl in Eq. (9), is the
fluid recursion

C(n)
Om,↵(~x, t) =

n�1X

q=m

1

n� ↵�m+ 1
@iC(q)

Om,↵(~x, t)
@i

@2
✓(~x, t)(n�q)

,

(14)

C(m)

Om,1
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+
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O
(m+2)
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=
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=

FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (13) and Eq. (14) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (14),

while the blue arrows indicate the use of the completeness relation

Eq. (13).

which is valid for n�↵�m+1 > 0. To derive Eq. (14),
one can simply take d/dt of both sides of Eq. (9), use the
scaling time dependence in Eq. (10), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.

2� DESI, 14� MegaMapper (15)

It is worth stressing that, unlike other treatments of bi-
ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (14) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.

One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (13). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (14). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.

We give a diagrammatic representation of this recur-
sion relation in Fig. 1.



• Shot noise and EFT-parameters:

Where can we make better?
�(·) h ln(10

10
As) ⌦m ns f

loc.

NL
f
eq.

NL
f
orth.

NL

P 0.0057 0.035 0.0041 0.019 - - -

P + g.p. : 0.0056 0.032 0.0040 0.016 - - -

P : bias fixed 0.0053 0.021 0.0032 0.011 - - -

P : nb ! 1 0.0044 0.024 0.0022 0.011 - - -

P+B 0.0042 0.020 0.0022 0.010 3.5 114 30

P +B + g.p. : 0.0042 0.018 0.0022 0.009 3.4 83 23

P +B : bias fixed 0.0037 0.010 0.0016 0.004 2.0 21 11

P +B : nb ! 1 0.0035 0.011 0.0009 0.005 1.7 67 17

Figure 6: Triangle plots and errors from several di↵erent Fisher forecasts for DESI. We compare base results to

results obtained without shot noise (left) and with biases fixed or with a “galaxy-formation prior” (g.p.) (right). In

the table, we also show the impact of including higher multipoles on the power spectrum and bispectrum and also

see the impact on fNL. For the constraints on fNL, we fix the other cosmological parameters.

scenario in App. B.1. Thus, the numerical values that we will use in this section were derived from

Tab. 1 of [116] and methods from Sec. 2. They are given in Tab. 3.

As in the DESI forecast, we shift the rest of the biases parameters according to the method

described in Sec. 2.3. Furthermore, we again use kmin = 0.001hMpc�1 for the power spectrum and

kmin = 0.02hMpc�1 for the bispectrum, as well as �k = 0.005hMpc�1 for the power spectrum

and �k = 0.02hMpc�1 for the bispectrum. Again, to reduce binning e↵ects, we evaluate on ke↵.

The results for fNL were again obtained with fixed cosmological parameters. Analyzing fNL in

combination with cosmological parameters changes the fNL constraints by less than 3%. Finally,

just like for the DESI forecasts, we use the analytical covariance from Eq. (2.16) and Eq. (2.17),

following the discussion in Sec. 2.3 and its precision discussed in Sec. 3.

Results We present base results for MegaMapper in a similar format to the previous sections

in Fig. 7. We see that the bispectrum contains significant constraining power. As mentioned in

Sec. 3.2, we expect that the constraints presented here will be an overestimate as we are neglecting

28
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Figure 6: Triangle plots and errors from several di↵erent Fisher forecasts for DESI. We compare base results to

results obtained without shot noise (left) and with biases fixed or with a “galaxy-formation prior” (g.p.) (right). In

the table, we also show the impact of including higher multipoles on the power spectrum and bispectrum and also

see the impact on fNL. For the constraints on fNL, we fix the other cosmological parameters.

scenario in App. B.1. Thus, the numerical values that we will use in this section were derived from

Tab. 1 of [116] and methods from Sec. 2. They are given in Tab. 3.

As in the DESI forecast, we shift the rest of the biases parameters according to the method

described in Sec. 2.3. Furthermore, we again use kmin = 0.001hMpc�1 for the power spectrum and

kmin = 0.02hMpc�1 for the bispectrum, as well as �k = 0.005hMpc�1 for the power spectrum

and �k = 0.02hMpc�1 for the bispectrum. Again, to reduce binning e↵ects, we evaluate on ke↵.

The results for fNL were again obtained with fixed cosmological parameters. Analyzing fNL in

combination with cosmological parameters changes the fNL constraints by less than 3%. Finally,

just like for the DESI forecasts, we use the analytical covariance from Eq. (2.16) and Eq. (2.17),

following the discussion in Sec. 2.3 and its precision discussed in Sec. 3.

Results We present base results for MegaMapper in a similar format to the previous sections

in Fig. 7. We see that the bispectrum contains significant constraining power. As mentioned in

Sec. 3.2, we expect that the constraints presented here will be an overestimate as we are neglecting

28

DESI

Impact of shot noise and biases Given the long timeline until results will be available for

MegaMapper, and target selection is yet to happen, we will discuss some aspects that might

improve results as was discussed for DESI in Sec. 4.2. In particular, while the perturbative reach

is far greater at higher redshifts, as can be seen from Tab. 8, the shot noise, especially for the

higher redshift bin, is extremely large28. We, therefore, present the limiting case of zero shot noise

to better understand the possible gain achievable by reducing the currently estimated shot noise.

Equally motivated by the long timeline of MegaMapper, we present results with stronger bias

priors, anticipating the better understanding of galaxy formation until the data release. Along

with the zero shot noise and “galaxy-formation prior” results, we also present the impact of fixing

biases in Fig. 8.

�(·) h ln(10
10
As) ⌦m ns f

loc.

NL
f
eq.

NL
f
orth.

NL

P 0.0036 0.013 0.0012 0.005 - - -

P + g.p. : 0.0034 0.011 0.0011 0.0043 - - -

P : bias fixed 0.0029 0.0074 0.00079 0.0024 - - -

P : nb ! 1 0.0029 0.0074 0.00047 0.0029 - - -

P+B 0.0021 0.0047 0.00034 0.0017 0.27 18 4.6

P +B + g.p. : 0.0020 0.0045 0.00033 0.016 0.26 13 3.6

P +B : bias fixed 0.0016 0.0034 0.00021 0.0010 0.17 3.6 1.7

P +B : nb ! 1 0.00019 0.00045 0.000029 0.00017 0.11 5.4 1.5

Figure 8: Triangle plots and errors from several di↵erent Fisher forecasts for MegaMapper. We compare base results
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In the table, we also show the impact of including higher multipoles on the power spectrum and bispectrum and

also see the impact on fNL. For the constraints on fNL, we fix the other cosmological parameters.

We see that stronger bias priors mostly have an e↵ect on f
eq.
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and f
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. Going further and

fixing the biases we would again, roughly, reduce the error bar by a factor 2, with again the

28This also means that the 2-loop analysis for MegaMapper just marginally improves on this results at < 20%

error bar reduction, which we verified with the same method as mentioned in footnote 25.
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• After the initial, successful, application to BOSS data:

–measurement of cosmological parameters

–new method to measure Hubble

–perhaps fixing tension

• the EFTofLSS is starting to look ahead to

–higher-order and higher-n point functions

–enlightening what next surveys could do, and how to design them

–learning about some astrophysics, qualitative facts on the universe

Summary



• Nice recursion relations for these operators:

• .

• .

• Easy higher order:

Consequences of non-locality in time
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end up with an expression can be cast with the following
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The resulting bias functions C(n)
Om,↵, which we say are

in the fluid expansion of the seed function Om and will
use throughout this Letter, are defined by the expansion
in Eq. (8), whose form is guaranteed by assuming the
scaling time dependence of the dark-matter fields Eq. (3),
which also implies that
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
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which is trivially obtained by setting t = t
0 in Eq. (8),

and where O
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m is the standard expansion of Om at n-

th order in perturbations. The second, which captures
the consequences of expanding ~xfl in Eq. (8), is the fluid
recursion
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (12) and Eq. (13) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (13),

while the blue arrows indicate the use of the completeness relation

Eq. (12).

which is valid for n�↵�m+1 > 0. To derive Eq. (13),
one can simply take d/dt of both sides of Eq. (8), use
the scaling time dependence in Eq. (9), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (12). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-
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sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
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and provides, for the first time, a full generalization to
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We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation
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generic biased tracers.
It is worth stressing that, unlike other treatments of bi-
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Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then
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the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.
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tions, which is an additional key technical results of this
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tually straightforward, it can be practically quite cum-
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do not assume an instantaneous formation time of galax-
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the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-
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III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in
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generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
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