Softening the UV without new particles

Anson Hook

University of Maryland

$$B=1$$
 \longrightarrow SM

BBSM

$$SM = 1 \longrightarrow Beyond^2$$

w/Riccardo Rattazzi 2306.12489

SM inspiration

My favorite part of physics is that is it possible to guess the answer

This talk: Naturalness

Naturalness: Using dimensional analysis to predict a new scale (sometimes this is the mass of a new particle)

SM inspiration

Naturalness: Using dimensional analysis to predict a new scale (sometimes this is the mass of a new particle)

Believe: Experimental evidence indicates dimensional analysis always works

Just like Occam's Razor

Simple Example

Drop a ball

Time when you hear a noise

$$d \sim g t^2$$

Predict distance to new physics

Simple Example

Guess the size of molecule

$$V = \frac{c_1}{r} + \frac{c_2}{r^2} + \frac{c_3}{r^3} + \frac{c_4}{r^4} + \cdots$$

Use terms in the multipole expansion to guess size of object

Todo: do this for methane

Classic Examples

Classical Radius of the electron

$$V_{E+M} \sim \frac{\alpha}{r_e} \sim m_e$$

"Anticipated" Quantum Mechanics

Classic Examples

Charged pion mass

$$m_{\pi^{\pm}}^2 - m_{\pi^0}^2 \sim \alpha \Lambda^2$$

Diagrams enforce dimensional analysis "Anticipated" Rho meson

Classic Examples

Charm quark

Fermi in 1922 predicted (stimulated) Schwinger pair-production

Elephant in the Room

Guess the energy scale where something changes

$$\Lambda_{NP} \sim \frac{m_H}{y} \sim \mathcal{O}(1) \times 500 \,\mathrm{GeV}$$

Tradition

What happens at this scale? New **Particles!**

Colored scalars

Colored particles dimensions

3. Particles

What's going on?

Where are the 500 GeV new particles????

Dimensional Analysis does not predict O(1) numbers

To the extent that there is nothing there, we must be missing something important!

*Most Current Models are somewhat tuned

Twin Higgs Axion/Relaxation solution Cosmological Naturalness

Making Friends

Concrete example where ASSUMPTION that what appears is particles is INCORRECT

Dimensional analysis still correct, but instead new dynamics instead of new particles

Outline

• IR EFT

A Yukawa coupled fermion without quadratic divergences

UV completion

Confirm we aren't tricking ourselves

Interpretation

• We still don't completely understand why our result is what it is

Conclusion

IR EFT

$$\mathcal{L} = y \, \phi \, \overline{\psi} \psi$$

Quadratic divergence

$$\mathcal{L}=\sqrt{2}\,y\,f\,\sin\left(rac{\phi}{2f}
ight)\overline{\psi}\psi$$
 No new particles No new particles offective potential

No new particles effective potential

Calculate the physical Yukawa coupling

$$\mathcal{L} = \sqrt{2} y f \sin \left(\frac{\phi}{2f}\right) \overline{\psi} \psi$$

All corrections are multiplicative

Later calculations are more easily done in position space

$$-\frac{1}{2}(\frac{1}{2f})^2 D_{\phi}(0)$$

2 loop

Previous result squared

$$\frac{1}{2}(-\frac{D_{\phi}(0)}{8f^2})^2$$

Additional cyclic symmetry factor

All corrections are multiplicative

$$\sum_{n} \frac{1}{n!} \left(-\frac{D_{\phi}(0)}{8f^2} \right)^n$$

All corrections are multiplicative

$$\mathcal{L} = \sqrt{2} y f \sin \left(\frac{\phi}{2f}\right) \overline{\psi} \psi e^{-D_{\phi}(0)/8f^2}$$

End Result

$$y_{\text{obs}} = y e^{-D_{\phi}(0)/8f^2}$$

= $y e^{-\Lambda^2/32\pi^2 f^2}$

Divergences resum into an exponential suppression instead of enhancement!

Also true for mass term!

Calculate faster

Perturbation theory is a way of doing path integral

$$ye^{i\phi/2f}\psi\psi^c\int D\delta\phi e^{iS}e^{i\delta\phi/2f}+h.c.$$

Just do path integral

$$e^{iS+\int d^4x\delta^4(x-x_0)i\delta\phi(x)/2f}$$

Delta function source terms

Calculate faster

Complete the square

$$S = -\frac{1}{2} \int d^4x \, d^4y J(x) D_{\phi}(x - y) J(y)$$

$$J = \frac{1}{2f} \delta^4(x - x_0)$$

Calculate faster

Complete the square to get

$$\mathcal{L} = \sqrt{2} y f \sin \left(\frac{\phi}{2f}\right) \overline{\psi} \psi e^{-D_{\phi}(0)/8f^2}$$

Same as Feynman Diagrams

Took you long enough

Finally calculate the fermion loop

Scalar loops can hit either Yukawa or reach between them

$$-\frac{x}{2}$$
 $\frac{x}{2}$

$$\delta V_{\text{eff}} = -\frac{y^2 f^2}{2} \cos\left(\frac{\phi_0}{f}\right) \int d^4 x \operatorname{Tr}\left(D_{\psi}(x)D_{\psi}(-x)\right)$$

Fermion loop in position space

$$\int D\delta\phi \, e^{i(\delta\phi(-x/2) + \delta\phi(x/2))/2f} e^{-S}$$

Fluctuations

Complete the square

$$\delta V_{\text{eff}} = \frac{y^2 f^2}{2\pi^2} \int \frac{dx^2}{x^4} \int D\delta \phi \, e^{-\frac{1}{8f^2}(D_{\phi}(x) + D_{\phi}(-x) + 2D_{\phi}(0))}$$

Complete the square

$$\delta V_{\text{eff}} = \frac{y^2 f^2}{2\pi^2} \int \frac{dx^2}{x^4} \int D\delta \phi \, e^{-\frac{1}{8f^2}(D_{\phi}(x) + D_{\phi}(-x) + 2D_{\phi}(0))}$$

Takes Yukawa couplings to IR value

$$y_{\text{obs}} = y(\Lambda)e^{-D_{\phi}(0)/8f^2}$$

Complete the square

$$\delta V_{\text{eff}} = \frac{y^2 f^2}{2\pi^2} \int \frac{dx^2}{x^4} \int D\delta\phi \, e^{-\frac{1}{8f^2}(D_{\phi}(x) + D_{\phi}(-x) + 2D_{\phi}(0))}$$

Divergent integral made finite

$$-\frac{1}{8f^2}(D_{\phi}(x) + D_{\phi}(-x)) = -\frac{1}{16\pi^2 f^2 x^2}$$

Final Result

$$\delta V_{\text{eff}} = \frac{y_{\text{obs}}^2 f^2}{2\pi^2} \int \frac{dx^2}{x^4} e^{-\frac{1}{8f^2} \left(D_{\phi}(x) + D_{\phi}(-x)\right)} \cos\left(\frac{\phi_0}{f}\right)$$
$$= 8y_{\text{obs}}^2 f^4 \cos\left(\frac{\phi_0}{f}\right)$$

Finite correction to the potential No quadratic divergence after resuming diagrams

$$\delta V_{\text{eff}} = 8y_{\text{obs}}^2 f^4 \cos\left(\frac{\phi_0}{f}\right)$$

Main result of this talk!

Before trying to interpret this result, a few is to dot and a few ts to cross

- Unitarity
- Does anything happens at the scale $4\pi f$?
- UV completion

Unitarity

Unitarity Limit - Result only matters if UV cutoff can be taken large

$$\sqrt{2}yf\sin\left(\frac{\phi}{2f}\right)\psi\psi^c \qquad \qquad \Lambda > 4\pi f$$

No Yukawa means no UV cutoff so it depends on Yukawa coupling

Unitarity

Unitarity Limit on scalar + fermion matrix element

$$M_{n\to n} \sim y \left(\frac{E}{4\pi f n^{3/2}}\right)^{2n-4} \lesssim 1$$

$$\frac{\sqrt{s}}{n} \lesssim 4\pi f \log^{1/2} y$$

Unitarity

$$\frac{\sqrt{s}}{n} \lesssim 4\pi f \log^{1/2} y$$

Large UV cutoff requires small Yukawa

Had a hint of this from the exponential nature of the divergent corrections to the Yukawa coupling

Many Legs + Final States

What physically happens at this new scale?

$$M_{n\to n} \sim y \left(\frac{E}{4\pi f n^{3/2}}\right)^{2n-4} \lesssim 1$$
 $n_{\text{max}} \sim \left(\frac{E}{f}\right)^{2/3}$

Many Legs + Final States

What physically happens at this new scale?

Multiple scalar final states become important

$$n_{\rm max} \sim \left(\frac{E}{f}\right)^{2/3}$$

Many Legs + Final States

Many loops become more important than few loops

Surprisingly, by making diagrams more divergent, the loop becomes convergent

$$e^{-\frac{1}{16\pi^2 f^2 y^2}}$$

$$n_{\rm loops} \sim \frac{1}{16\pi^2 f^2 y^2}$$

Outline

• IR EFT

A Yukawa coupled fermion without quadratic divergences

UV completion

Confirm we aren't tricking ourselves

Interpretation

• We still don't completely understand why our result is what it is

Conclusion

A simple starting point

Our starting point is everyone's favorite toy theory

$$\mathcal{L} = |\partial\Phi|^2 + m_{\Phi}^2 \Phi \Phi^{\dagger} - \frac{\lambda_{\Phi}}{4} (\Phi \Phi^{\dagger})^2$$

Spontaneous Symmetry breaking with a Higgs mode and a Goldstone

A simple starting point

Break U(1) but preserve a Z_N

$$\delta \mathcal{L} = Y(\Phi^{N/2} - \Phi^{\dagger, N/2})\psi\psi^c$$

We will be interested in the loop of fermions

$$\delta \mathcal{L} = \lambda_N \Phi^N$$

High dimensional operator is why multiparticle final states become important

Limit under consideration

$$F, N \to \infty$$

Symmetry breaking scale and classical dimension large. Many legs

$$\lambda N \to 0$$

Loop expansion small

$$\lambda N^2 = \text{const.}$$

1-Loop effects are O(1) important

$$m_{\rho} = \mathrm{const.}$$

Radial mode has a fixed mass

$$F/N = f = \text{const.}$$

New scale

Nice Simplification

Useful Simplification

$$\begin{split} \Phi^{N/2} &= (\frac{F+\rho}{\sqrt{2}})^{N/2} e^{i\phi/2f} = \frac{F^{N/2}}{2^{N/4}} (1+\frac{\rho}{Nf})^{N/2} e^{i\phi/2f} \\ &\approx \frac{F^{N/2}}{2^{N/4}} e^{(\rho+i\phi)/2f} & \text{Radial Mode also} \\ &\text{exponentiates} \end{split}$$

Radial mode and pNGB appear the same up to an factor of i

$$\delta \lambda_N = -\frac{iY(\Lambda)^2}{8} \int d^4y \operatorname{Tr} \left(D_{\psi}(y) D_{\psi}(-y) \right)$$

Fermion loop in position space

$$\int D\delta\rho \, D\delta\phi \, D\psi \, e^{\left(\delta\rho(\frac{y}{2}) + i\delta\phi(\frac{y}{2}) + \delta\rho(-\frac{y}{2}) + i\delta\phi(-\frac{y}{2})\right)/2f} \, e^{iS}$$

Fluctuations

Complete the square

$$\delta\lambda_N = \frac{Y(\Lambda)^2}{8\pi^2} \int \frac{dy_E^2}{y_E^4} e^{\frac{1}{8f^2} (2D_\rho(0) - 2D_\phi(0) + D_\rho(y) - D_\phi(y) + D_\rho(-y) - D_\phi(-y))}$$

Complete the square

$$\delta\lambda_N = \frac{Y(\Lambda)^2}{8\pi^2} \int \frac{dy_E^2}{y_E^4} e^{\frac{1}{8f^2} \left(2D_\rho(0) - 2D_\phi(0) + D_\rho(y) - D_\phi(y) + D_\rho(-y) - D_\phi(-y)\right)} \chi_E^{-\frac{1}{8g^2}}$$

Takes Yukawa couplings to IR value

$$Y(0) = Y(\Lambda)e^{(D_{\rho}(0) - D_{\phi}(0))/8f^{2}}$$

We will see that from the UV perspective all we are doing is the RG resummation

Complete the square

$$\delta\lambda_N = \frac{Y(\Lambda)^2}{8\pi^2} \int \frac{dy_E^2}{y_E^4} e^{\frac{1}{8f^2} (2D_{\rho}(0) - 2D_{\phi}(0) + D_{\rho}(y) - D_{\phi}(y) + D_{\rho}(-y) - D_{\phi}(-y))}$$

Divergent integral made finite

$$\frac{1}{8f^2} \left(D_{\rho}(y) - D_{\phi}(y) + D_{\rho}(-y) - D_{\phi}(y) \right)
= -\gamma_{\Phi^N} \frac{1 - m_{\rho} y K_1(m_{\rho} y)}{m_{\rho}^2 y^2}$$

Final Result

$$\delta \lambda_N = \frac{Y(0)^2}{8\pi^2} \int \frac{dy_E^2}{y_E^4} e^{-\gamma_{\Phi^N} \frac{1 - m_\rho y_E K_1(m_\rho y_E)}{m_\rho^2 y_E^2}}$$

High energy behavior

$$m_{\rho}y \ll 1$$

Anomalous Dimension $\gamma_{\Phi^N} = \frac{\lambda N^2}{32\pi^2}$

$$\gamma_{\Phi^N} = \frac{\lambda N^2}{32\pi^2}$$

At high energies

$$\frac{\gamma_{\Phi^N}}{2}\log(m_\rho y)$$

Exactly the differential RG running expected from Conformal Perturbation Theory

$$\frac{\gamma_{\Phi^N}}{2}\log(m_\rho y) = (\gamma_{\Phi^N} - 2\gamma_{\Phi^{N/2}})\log(m_\rho y)$$

Low energy behavior

$$m_{\rho}y \gg 1$$

Exponential Suppression

$$e^{-\gamma_{\Phi^N}/(m_{\rho}^2 y^2)}$$

Low energy behavior

$$m_{\rho}y \gg 1$$

Exponential Suppression

$$e^{-\gamma_{\Phi^N}/(m_{\rho}^2 y^2)}$$

Energy scale introduced by exponential

$$m_{\rho}/\sqrt{\gamma_{\Phi^N}} \sim F/N = f$$

Exact behavior

Position Space Integrand

A new scale appears

Conformal Perturbation Theory

Differential running

 $\cdot m_{
ho}$

E

Multi Particle Final state important

$$F/N = f$$

Exponential Unimportant - Usual Quadratic Divergence

Outline

• IR EFT

A Yukawa coupled fermion without quadratic divergences

UV completion

Confirm we aren't tricking ourselves

Interpretation

• We still don't completely understand why our result is what it is

Conclusion

Traditional Statements: New Particles

$$m_{\lambda}^2 \sim {32 \pi^2 m_{\phi}^2 \over \lambda_{\phi}}$$
 Quartic Coupling

$$m_y^2 \sim \frac{8\pi^2 m_\phi^2}{y^2}$$
 Yukawa Coupling

Traditional Statements: New Particles

 m_y

 m_{λ}

 $m_{
ho}$

Standard estimates of mass of new particles parametrically incorrect

.. m_{ϕ}

Dimensional analysis does not say what has to happen

 $\dots m_y$

 m_{λ}

F/N = f

Successfully predicts when the many legged phenomenon becomes important

 m_{ϕ}

Dimensional analysis doesn't fail

People have mis-interpret what needs to happen at the scale

Why?

Why does this happen?

Who knows

$$\mathcal{L} = \sqrt{2} y f \sin \left(\frac{\phi}{2f}\right) \overline{\psi} \psi$$

Essential Singularity as $f \rightarrow 0$

Essential Singularity in the UV

$$e^{\pm \#/f^2x^2}$$

Something odd with dimensional analysis

Probably I'm just too stupid to realize what's going on yet

Dim. Analysis

Result

$$m_{\phi} \sim y E$$

$$m_{\phi} \sim yf$$

What is the spurion argument that forces the energy scale to be f and not the UV cutoff?

Conclusion

Standard expectations of "naturalness" are a bit too simple

New physics is not always new particles

Extend to non-abelian, gauge interactions, ...

What about the Higgs boson?

Perhaps new particles are not what occurs at the TeV scale

Multiple Higgs final state in conjunction with top quarks?

 $m_h \approx m_t/\sqrt{2}$