The classical equations of motion of quantised gauge theories

Tom Melia, Kavli IPMU
With David Kaplan and Surjeet Rajendran

Classical physics asserts

Maxwell
 $$
\partial_{\mu} F^{\mu \nu}=J^{\nu}
$$

Einstein

$$
G^{\mu \nu}=\Gamma^{\mu \nu}
$$

Quantum physics described by Schrodinger equation

$$
i \frac{\partial}{\partial t}|\psi\rangle=H|\psi\rangle
$$

From this equation classical physics follows...

Quantum physics described by Schrodinger equation

$$
i \frac{\partial}{\partial t}|\psi\rangle=H|\psi\rangle
$$

From this equation classical physics follows...

$$
\begin{gathered}
\partial_{t}\langle\hat{\phi}\rangle=i\langle[\hat{H}, \hat{\phi}]\rangle=\left\langle\frac{\partial \hat{H}}{\partial \hat{\pi}}\right\rangle \\
\partial_{t}\langle\hat{\pi}\rangle=i\langle[\hat{H}, \hat{\pi}]\rangle=-\left\langle\frac{\partial \hat{H}}{\partial \hat{\phi}}\right\rangle \\
\text {.in expectation value }
\end{gathered}
$$

A subtlety for gauge theories

$$
\left\langle\frac{\delta S}{\delta \phi_{i}}\right\rangle=\left\langle\frac{\delta \mathcal{L}}{\delta \phi_{i}}-\partial_{\mu} \frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \phi_{i}\right)}\right\rangle=0
$$

Fewer d.o.f. than fields

1. Fewer 2nd order equations for evolution
2. Additional constraint equations on the dof

Compare

$$
\begin{aligned}
\partial_{\mu} F^{\mu \nu} & =J^{\nu} & i \frac{\partial}{\partial t}|\psi\rangle & =H_{E M}|\psi\rangle \\
G^{\mu \nu} & =T^{\mu \nu} & i \frac{\partial}{\partial t}|\psi\rangle & =H_{G R}|\psi\rangle
\end{aligned}
$$

Both dynamics and

Constraints:

Dynamics only

$$
\begin{aligned}
\partial_{\mu} F^{\mu 0} & =J^{0} \\
G^{0 \mu} & =T^{0 \mu}
\end{aligned}
$$

\& Initial conditions

$$
|\psi(0)\rangle
$$

Compare

$$
\begin{aligned}
\partial_{\mu} F^{\mu \nu} & =J^{\nu} & i \frac{\partial}{\partial t}|\psi\rangle=H_{E M}|\psi\rangle \\
G^{\mu \nu} & =T^{\mu \nu} & i \frac{\partial}{\partial t}|\psi\rangle=H_{G R}|\psi\rangle
\end{aligned}
$$

Both dynamics and

Constraints:

Dynamics only

Gauss' law $\nabla \cdot \mathbf{E}=\rho_{c h}$
\& Initial conditions
$\underset{\text { Friedman }}{\text { e.g. First }}\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho$

What do we believe?

$$
G^{\mu \nu}=T^{\mu \nu}
$$

$$
i \frac{\partial}{\partial t}|\psi\rangle=H_{G R}|\psi\rangle
$$

Full set of

classical equations

Schrodinger equation

Initial conditions $|\psi(0)\rangle$

What do we believe?

$$
G^{\mu \nu}=T^{\mu \nu} \quad i \frac{\partial}{\partial t}|\psi\rangle=H_{G R}|\psi\rangle
$$

Full set of
 classical equations

Schrodinger equation

Most fundamental

Initial conditions $|\psi(0)\rangle$
Why should they be just so?

Summary of the talk

Quantum mechanics only guarantees that, in the classical limit

$$
\begin{aligned}
\partial_{\mu} F^{\mu i} & =0 \\
\partial_{t}\left(\nabla \cdot \mathbf{E}-\rho_{c h}\right) & =0
\end{aligned}
$$

Summary of the talk

Quantum mechanics only guarantees that, in the classical limit

$$
\begin{array}{r}
\partial_{\mu} F^{\mu i}=0 \\
\partial_{t}\left(\nabla \cdot \mathbf{E}-\rho_{c h}\right)=0 \\
\Downarrow \\
\nabla \cdot \mathbf{E}=\rho_{c h}+\rho_{s}(\mathbf{x}) \\
\text { Shadow charge }
\end{array}
$$

Summary of the talk

Quantum mechanics only guarantees that, in the classical limit

$$
\left.\begin{array}{cc}
\partial_{\mu} F^{\mu i}=0 & G^{i j}-T^{i j}=0 \\
\partial_{t}\left(\nabla \cdot \mathbf{E}-\rho_{c h}\right)=0 & \nabla_{\mu}\left(G^{\mu \nu}-T^{\mu \nu}\right)=0 \\
\Downarrow & \Downarrow \\
\nabla \cdot \mathbf{E}=\rho_{c h}+\rho_{s}(\mathbf{x}) \\
\text { Shadow charge }
\end{array}\right\}
$$

Summary of the talk

Quantum mechanics only guarantees that, in the classical limit

$$
\begin{array}{rr}
\partial_{\mu} F^{\mu i}=0 & G^{i j}-T^{i j}=0 \\
\partial_{t}\left(\nabla \cdot \mathbf{E}-\rho_{c h}\right)=0 & \nabla_{\mu}\left(G^{\mu \nu}-T^{\mu \nu}\right)=0 \\
\downarrow & \Downarrow \\
\nabla \cdot \mathbf{E}=\rho_{c h}+\rho_{s}(\mathbf{x}) & G^{\mu \nu}=T^{\mu \nu}+T_{a u x}^{\mu \nu} \\
\text { Shadow charge } & \text { Shadow Matter }
\end{array}
$$

Not adding any dof to the theory.

$$
T_{\text {alx }}^{\mu, 1}=\frac{1}{\sqrt{-g}}\left(\begin{array}{cccc}
\mathbb{H}^{\mathbb{1}} & \mathbb{P}^{1} & \mathbb{P}^{2} & \mathbb{P}^{3} \\
\mathbb{P}^{2} & 0 & 0 & 0 \\
\mathbb{P}^{3} & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Familiar from EM

In Weyl gauge $\quad A_{0}=0 \quad \Pi_{j}=\frac{\partial \mathcal{L}_{\mathcal{E M}}}{\partial \dot{A}_{j}}=-E_{j}$
Comm.

$$
\left[\hat{A}_{j}(\mathbf{x}), \hat{E}_{j^{\prime}}\left(\mathbf{x}^{\prime}\right)\right]=-i \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta_{j j^{\prime}}
$$

Ham.

$$
\hat{H}_{W}=\int d^{3} \mathbf{x}\left(\frac{1}{2}(\hat{\mathbf{E}} \cdot \hat{\mathbf{E}}+\hat{\mathbf{B}} \cdot \hat{\mathbf{B}})+\hat{\mathbf{J}} \cdot \hat{\mathbf{A}}+\hat{\mathcal{H}}_{J}\right)
$$

SE

$$
i \frac{\partial|\Psi\rangle}{\partial t}=\hat{H}_{W}|\Psi\rangle
$$

Familiar from EM

In Weyl gauge $\quad A_{0}=0 \quad \Pi_{j}=\frac{\partial \mathcal{L}_{\mathcal{E M}}}{\partial \dot{A}_{j}}=-E_{j}$
Comm.

$$
\left[\hat{A}_{j}(\mathbf{x}), \hat{E}_{j^{\prime}}\left(\mathbf{x}^{\prime}\right)\right]=-i \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta_{j j^{\prime}}
$$

Ham.

$$
\hat{H}_{W}=\int d^{3} \mathbf{x}\left(\frac{1}{2}(\hat{\mathbf{E}} \cdot \hat{\mathbf{E}}+\hat{\mathbf{B}} \cdot \hat{\mathbf{B}})+\hat{\mathbf{J}} \cdot \hat{\mathbf{A}}+\hat{\mathcal{H}}_{J}\right)
$$

SE

$$
i \frac{\partial|\Psi\rangle}{\partial t}=\hat{H}_{W}|\Psi\rangle
$$

Ampère's law follows in expectation value

$$
\partial_{t}\left\langle\hat{E}^{j}(\mathbf{x})\right\rangle=\left\langle(\nabla \times \hat{\mathbf{B}})^{j}(\mathbf{x})\right\rangle-\left\langle\hat{J}^{j}(\mathbf{x})\right\rangle
$$

Familiar from EM

In Weyl gauge $\quad A_{0}=0 \quad \Pi_{j}=\frac{\partial \mathcal{L}_{\mathcal{E M}}}{\partial \dot{A}_{j}}=-E_{j}$
Comm.

$$
\left[\hat{A}_{j}(\mathbf{x}), \hat{E}_{j^{\prime}}\left(\mathbf{x}^{\prime}\right)\right]=-i \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta_{j j^{\prime}}
$$

Ham.

$$
\hat{H}_{W}=\int d^{3} \mathbf{x}\left(\frac{1}{2}(\hat{\mathbf{E}} \cdot \hat{\mathbf{E}}+\hat{\mathbf{B}} \cdot \hat{\mathbf{B}})+\hat{\mathbf{J}} \cdot \hat{\mathbf{A}}+\hat{\mathcal{H}}_{J}\right)
$$

SE

$$
i \frac{\partial|\Psi\rangle}{\partial t}=\hat{H}_{W}|\Psi\rangle
$$

Gauss' Law does not

Familiar from EM

Supplement with requirement that physical states satisfy

$$
\left(\nabla \cdot \hat{\mathbf{E}}-\hat{J}^{0}\right)\left|\Psi_{E M}\right\rangle=0
$$

Familiar from EM

Supplement with requirement that physical states satisfy

$$
\left(\nabla \cdot \hat{\mathbf{E}}-\hat{J}^{0}\right)\left|\Psi_{E M}\right\rangle=0
$$

Gauss' law operator commutes with H

Familiar from EM

Supplement with requirement that physical states satisfy

$$
\left(\nabla \cdot \hat{\mathbf{E}}-\hat{J}^{0}\right)\left|\Psi_{E M}\right\rangle=0
$$

In fact, $\hat{G} \equiv \nabla \cdot \hat{\mathbf{E}}-\hat{J}^{0}$ is the generator of the remaining spatial gauge freedom in the Weyl gauge

The above selects states that are invariant

$$
e^{-i \int \alpha(\mathbf{x}) \hat{G}(\mathbf{x})}\left|\Psi_{E M}\right\rangle=\left|\Psi_{E M}\right\rangle
$$

Familiar from EM

Instead consider

$$
\left(\nabla \cdot \hat{\mathbf{E}}-\hat{J}^{0}\right)\left|\Psi_{E M}\right\rangle=J_{s}^{0}(\mathbf{x})\left|\Psi_{E M}\right\rangle
$$

States transform with an overall phase

$$
e^{-i \int \alpha(\mathbf{x}) \hat{G}(\mathbf{x})}\left|\Psi_{E M}\right\rangle=e^{-i \int \alpha(\mathbf{x}) J_{s}^{0}(\mathbf{x})}\left|\Psi_{E M}\right\rangle
$$

Still leads to gauge invariant physics.

Familiar from EM

Instead consider

$$
\left(\nabla \cdot \hat{\mathbf{E}}-\hat{J}^{0}\right)\left|\Psi_{E M}\right\rangle=J_{s}^{0}(\mathbf{x})\left|\Psi_{E M}\right\rangle
$$

This is just like adding a background classical charge density

$$
\tilde{\mathcal{L}}_{\mathcal{E M}}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+A_{\mu} J^{\mu}+A_{\mu} J_{s}^{\mu}+\mathcal{L}_{J} \quad J_{s}^{\mu}=\left(J_{s}^{0}(\mathrm{x}), 0,0,0\right)
$$

But, ...

Familiar from EM

Instead consider

$$
\left(\nabla \cdot \hat{\mathbf{E}}-\hat{J}^{0}\right)\left|\Psi_{E M}\right\rangle=J_{s}^{0}(\mathbf{x})\left|\Psi_{E M}\right\rangle
$$

This is just like adding a background classical charge density

$$
\tilde{\mathcal{L}}_{\mathcal{E M}}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+A_{\mu} J^{\mu}+A_{\mu} J_{s}^{\mu}+\mathcal{L}_{J} \quad J_{s}^{\mu}=\left(J_{s}^{0}(\mathrm{x}), 0,0,0\right)
$$

No additional microphysics

Simply a choice of EM quantum state

Minisuperspace

$$
g_{\mu \nu} \rightarrow d s^{2}=-N(t)^{2} d t^{2}+a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

t
00 component of metric, lapse function

$$
\begin{aligned}
S_{m s} & =\int d t \sqrt{-g}\left(M_{p l}^{2} R+\mathcal{L}_{\text {matter }}\right) \\
& =\int d t\left(-6 M_{p l}^{2} \frac{a(t) \dot{a}(t)^{2}}{N(t)}+\frac{a(t)^{3} \dot{\phi}(t)^{2}}{2 N(t)}-N(t) a(t)^{3} V(\phi)\right)
\end{aligned}
$$

Minisuperspace

$$
S_{m s}=\int d t\left(-6 M_{p l}^{2} \frac{a(t) \dot{a}(t)^{2}}{N(t)}+\frac{a(t)^{3} \dot{\phi}(t)^{2}}{2 N(t)}-N(t) a(t)^{3} V(\phi)\right)
$$

The equations of motion naively follow

$$
\begin{aligned}
\frac{\delta S_{m s}}{\delta N} & =a^{3}\left(6 M_{p l}^{2} \frac{\dot{a}^{2}}{N^{2} a^{2}}-\frac{\dot{\phi}^{2}}{2 N^{2}}-V(\phi)\right)=0 \\
\frac{\delta S_{m s}}{\delta a} & =3 N a^{2}\left(4 M_{p l}^{2} \frac{\ddot{a}}{N^{2} a}+2 M_{p l}^{2} \frac{\dot{a}^{2}}{N^{2} a^{2}}-4 M_{p l}^{2} \frac{\dot{a} \dot{N}}{N^{3} a}+\frac{\dot{\phi}^{2}}{2 N^{2}}-V(\phi)\right)=0 \\
\frac{\delta S_{m s}}{\delta \phi} & =-\frac{a^{3}}{N}\left(\ddot{\phi}+3 \frac{\dot{a}}{a} \dot{\phi}-\frac{\dot{N} \dot{\phi}}{N}+N^{2} \frac{\partial V(\phi)}{\partial \phi}\right)=0
\end{aligned}
$$

Minisuperspace

$$
S_{m s}=\int d t\left(-6 M_{p l}^{2} \frac{a(t) \dot{a}(t)^{2}}{N(t)}+\frac{a(t)^{3} \dot{\phi}(t)^{2}}{2 N(t)}-N(t) a(t)^{3} V(\phi)\right)
$$

The equations of motion naively follow
Bubt this variation is ${ }_{p}$ suspect!

$$
\begin{aligned}
\frac{\partial S_{m s}}{\delta N} & =a^{3}\left(6 M_{p l}^{2} \frac{a}{N^{2} a^{2}}-\frac{\phi^{2}}{2 N^{2}}-V(\phi)\right)=0 \\
\frac{\delta S_{m s}}{\delta a} & =3 N a^{2}\left(4 M_{p l}^{2} \frac{\ddot{a}}{N^{2} a}+2 M_{p l}^{2} \frac{\dot{a}^{2}}{N^{2} a^{2}}-4 M_{p l}^{2} \frac{\dot{a} \dot{N}}{N^{3} a}+\frac{\dot{\phi}^{2}}{2 N^{2}}-V(\phi)\right)=0 \\
\frac{\delta S_{m s}}{\delta \phi} & =-\frac{a^{3}}{N}\left(\ddot{\phi}+3 \frac{\dot{a}}{a} \dot{\phi}-\frac{\dot{N} \dot{\phi}}{N}+N^{2} \frac{\partial V(\phi)}{\partial \phi}\right)=0
\end{aligned}
$$

Minisuperspace

$$
S_{m s}=\int d t\left(-6 M_{p l}^{2} \frac{a(t) \dot{a}(t)^{2}}{N(t)}+\frac{a(t)^{3} \dot{\phi}(t)^{2}}{2 N(t)}-N(t) a(t)^{3} V(\phi)\right)
$$

The equations of motion naively follow
Buts this variation is ${ }_{p}$ suspect!

$$
\frac{\partial N_{m s}}{\delta N}=a^{3}\left(6 M_{p l}^{2} \frac{a}{N^{2} a^{2}}-\frac{\phi^{2}}{2 N^{2}}-V(\phi)\right)=0
$$

If

$$
N(t) \rightarrow N(t)+\delta N(t)
$$

Redefine $\quad d t^{\prime}=\left(1+\frac{\delta N}{N}\right) d t$
Then

$$
S_{m s}[N+\delta N, a, \phi]=S_{m s}[N, a, \phi]
$$

Minisuperspace

$$
S_{m s}=\int d t\left(-6 M_{p l}^{2} \frac{a(t) \dot{a}(t)^{2}}{N(t)}+\frac{a(t)^{3} \dot{\phi}(t)^{2}}{2 N(t)}-N(t) a(t)^{3} V(\phi)\right)
$$

For the quantum theory

$$
\pi_{N}=\frac{\delta \mathcal{L}}{\delta \dot{N}}=0 \quad \pi_{a}=\frac{\delta \mathcal{L}}{\delta \dot{a}}=-12 M_{p l}^{2} \frac{a \dot{a}}{N} \quad \pi_{\phi}=\frac{\delta \mathcal{L}}{\delta \dot{\phi}}=\frac{a^{3}}{N} \dot{\phi}
$$

Hamiltonian

$$
\begin{aligned}
H=\left[\pi \dot{a}+\pi_{\phi} \dot{\phi}-\mathcal{L}\right]_{\dot{a}=\cdots, \dot{\phi}=\ldots} & =-\frac{N}{24 M_{p l}^{2} a} \pi^{2}+\frac{N}{2 a^{3}} \pi_{\phi}^{2}+N a^{3} V(\phi) \\
& =-N \frac{\delta S_{m s}}{\delta N} \equiv N \tilde{H}
\end{aligned}
$$

Minisuperspace

Schrodinger equation

$$
\begin{aligned}
& i \partial_{t}|\psi\rangle=N(t) \hat{\tilde{H}}|\psi\rangle \\
& \text { Just choose } \mathbf{N}=\text { choice of time } \\
& \text { coordinate }
\end{aligned}
$$

Only get the 'a' hamiltonian eqns in gravitational sector

$$
\begin{aligned}
\partial_{t}\langle\hat{a}\rangle & =-i\langle[\hat{\tilde{H}}, \hat{a}]\rangle \\
\partial_{t}\langle\hat{\pi}\rangle & =-i\langle[\tilde{\tilde{H}}, \hat{\pi}]\rangle
\end{aligned}
$$

Minisuperspace

First Friedman $\langle\hat{\tilde{H}}\rangle=0$ not a consequence of the quantum theory

QM only guarantees

$$
\partial_{t}\langle\hat{\tilde{H}}\rangle=i\langle[\hat{\tilde{H}}, \hat{\tilde{H}}]\rangle=0
$$

i.e.

$$
\langle\hat{\tilde{H}}\rangle=\mathbb{H}_{0}
$$

c.f.

WheelerDeWitt

$$
\hat{H}|\psi\rangle=0
$$

Minisuperspace

First Friedman $\langle\hat{\tilde{H}}\rangle=0$ not a consequence of the quantum theory

QM only guarantees

$$
\partial_{t}\langle\hat{\tilde{H}}\rangle=i\langle[\hat{\tilde{H}}, \hat{\tilde{H}}]\rangle=0
$$

i.e.

$$
\langle\hat{\tilde{H}}\rangle=\mathbb{H}_{0}
$$

$$
6 M_{p l}^{2} \frac{\dot{a}^{2}}{a^{2}}-\frac{\dot{\phi}^{2}}{2}-V(\phi)=\frac{\mathbb{H}_{0}}{a^{3}} \begin{aligned}
& \text { Could be zero, } \\
& \text { but generally } \\
& \text { contributes like } \\
& \text { dark matter }
\end{aligned}
$$

General(er) relativity

$$
S=\int d^{4} x \sqrt{-g}\left(M_{p l}^{2} R+\mathcal{L}_{\text {matter }}\right)
$$

The equations of motion naively follow

$$
\frac{\delta S}{\delta g_{\mu \nu}}=\sqrt{-g}\left(M_{p l}^{2} G^{\mu \nu}-T^{\mu \nu}\right)=0
$$

For the quantum theory

$$
\begin{aligned}
\pi^{i j} & \equiv \frac{\delta L_{\text {grav }}}{\delta g_{i j, 0}} \\
\pi^{i} & \equiv \frac{\delta L_{\text {grav }}}{\delta g_{0 i, 0}}=0 \\
\pi & \equiv \frac{\delta L_{\text {grav }}}{\delta g_{00,0}}=0
\end{aligned}
$$

General(er) relativity

$$
S=\int d^{4} x \sqrt{-g}\left(M_{p l}^{2} R+\mathcal{L}_{\text {matter }}\right)
$$

The equations of motion naively follow

$$
\frac{\delta S}{\delta g_{\mu \nu}}=\sqrt{-g}\left(M_{p l}^{2} G^{\mu \nu}-T^{\mu \nu}\right)=0
$$

For the quantum theory

$$
\begin{array}{rlr}
\pi^{i j} & \equiv \frac{\delta L_{\text {grav }}}{\delta g_{i j, 0}} \\
\pi^{i} & \equiv \frac{\delta L_{\text {grav }}}{\delta g_{0 i, 0}}=0 & \\
\text { The corresponding } \\
\pi & \equiv \frac{\delta L_{\text {grav }}}{\delta g_{00,0}}=0 & \text { variations are } \\
\text { suspect! }
\end{array}
$$

'Gauge fix' $\quad g_{00}=-1 \quad g_{0 i}=0$

General(er) relativity

$$
S=\int d^{4} x \sqrt{-g}\left(M_{p l}^{2} R+\mathcal{L}_{\text {matter }}\right)
$$

The equations of motion that actually follow from the quantum theory

$$
\begin{aligned}
G^{00} & =8 \pi G_{N} T^{00}+8 \pi G_{N} \frac{\mathbb{H}}{\sqrt{-g}} \\
G^{0 i} & =8 \pi G_{N} T^{0 i}+8 \pi G_{N} \frac{\mathbb{P}^{i}}{\sqrt{-g}} \\
G^{i j} & =8 \pi G_{N} T^{i j}
\end{aligned}
$$

An auxiliary 'shadow matter' tensor

$$
T_{\text {aux }}^{\mu \nu}=\frac{1}{\sqrt{-g}}\left(\begin{array}{cccc}
\mathbb{H} & \mathbb{P}^{1} & \mathbb{P}^{2} & \mathbb{P}^{3} \\
\mathbb{P}^{1} & 0 & 0 & 0 \\
\mathbb{P}^{2} & 0 & 0 & 0 \\
\mathbb{P}^{3} & 0 & 0 & 0
\end{array}\right) \quad \Longrightarrow \begin{gathered}
0=\nabla_{\mu} T_{\text {aux }}^{\mu \nu} \\
\\
\partial_{0} \mathbb{H}=-\partial_{i} \mathbb{P}^{i} \\
\partial_{0}\left(\gamma_{i j} \mathbb{P}^{j}\right)=0
\end{gathered}
$$

Shadow matter in the cosmos

$$
\begin{aligned}
& d s^{2}=-d t^{2}+a(t)^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j} \\
& \left.h_{i j}=h \delta_{i j}+D_{i j} \eta+\left(\partial_{i} w_{j}+\partial_{j} w_{i}\right)+s_{i j}\right)
\end{aligned}
$$

$$
\tilde{D}_{i j}=\hat{k}_{i} \hat{k}_{j}-\delta_{i j} / 3 .
$$

Linear perturbation theory of scalars and shadow matter with $\quad \mathbb{H}=\mathbb{H}_{0}=$ const $\quad \mathbb{P}_{i}=0$

Zeroth order $\quad\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G_{N} \frac{\mathbb{H}_{0}}{a^{3}}$

Shadow matter in the cosmos

$$
\begin{aligned}
& d s^{2}=-d t^{2}+a(t)^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j} \\
& \left.h_{i j}=h \delta_{i j}+D_{i j} \eta+\left(\partial_{i} w_{j}+\partial_{j} w_{i}\right)+s_{i j}\right)
\end{aligned}
$$

$$
\tilde{D}_{i j}=\hat{k}_{i} \hat{k}_{j}-\delta_{i j} / 3 .
$$

Linear perturbation theory of scalars and shadow matter with $\quad \mathbb{H}=\mathbb{H}_{0}=$ const $\quad \mathbb{P}_{i}=0$

Zeroth order $\quad\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G_{N} \frac{\mathbb{H}_{0}}{a^{3}}$

First order
$\tilde{\eta} \propto$ const

$$
\tilde{h} \propto a
$$

To summarise

Classical physics is a limit of quantum mechanics

Certain classical equations are not guaranteed by the quantum theory

One should consider a broader class of states in EM and GR

Some observations to conclude with

Shadow matter sources linear growth in curvature perturbations, like dark matter

Could have either sign, trivial violation of NEC

The nonlinear regime is important to study, along with detailed cosmological evolution

Inflation dynamically drives to conventional EM/GR

Thanks for listening!

Shadow matter in the cosmos

$$
\begin{gathered}
d s^{2}=-d t^{2}+a(t)^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j} \\
\left.h_{i j}=h \delta_{i j}+D_{i j} \eta+\left(\partial_{i} w_{j}+\partial_{j} w_{i}\right)+s_{i j}\right)
\end{gathered}
$$

$$
\tilde{D}_{i j}=\hat{k}_{i} \hat{k}_{j}-\delta_{i j} / 3
$$

Linear perturbation theory of scalars and shadow matter: $\quad \mathbb{H} \equiv \mathbb{H}_{0}+\delta \mathbb{H} \quad \mathbb{P}^{i}=\mathbb{P}_{0}^{i}+\delta \mathbb{P}^{i}$

Zeroth order $\quad\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G_{N} \frac{\mathbb{H}_{0}}{a^{3}} \quad \mathbb{H}_{0}=$ const

$$
\mathbb{P}_{0}^{i}=0
$$

Shadow matter in the cosmos

$$
\begin{aligned}
& d s^{2}=-d t^{2}+a(t)^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j} \\
& \left.h_{i j}=h \delta_{i j}+D_{i j} \eta+\left(\partial_{i} w_{j}+\partial_{j} w_{i}\right)+s_{i j}\right)
\end{aligned}
$$

$$
\tilde{D}_{i j}=\hat{k}_{i} \hat{k}_{j}-\delta_{i j} / 3
$$

Linear perturbation theory of scalars

 and shadow matter: $\quad \mathbb{H} \equiv \mathbb{H}_{0}+\delta \mathbb{H} \quad \mathbb{P}^{i}=\mathbb{P}_{0}^{i}+\delta \mathbb{P}^{i}$ First order$$
\begin{aligned}
& \ddot{\tilde{h}}+3 \frac{\dot{a}}{a} \dot{\tilde{h}}-2 \frac{k^{2}}{a^{2}} \tilde{\eta}=0 \\
& \ddot{\tilde{h}}+3 \frac{\dot{a}}{a} \dot{\tilde{h}}+6\left(\ddot{\tilde{\eta}}+3-\frac{\dot{a}}{a} \frac{\tilde{\tilde{\eta}}}{a}\right)-2 \frac{k^{2}}{a^{2}} \tilde{\eta}=0 \\
& \frac{\dot{a}}{a} \dot{\tilde{h}}-2 \frac{k^{2}}{a^{2}} \tilde{\eta}=8 \pi G_{N} \frac{1}{a^{3}}\left[-\frac{1}{2} \tilde{h} \mathbb{H}_{0}+\delta \mathbb{H}\right] \\
& -2 i \frac{k}{a^{2}} \dot{\tilde{\eta}}=8 \pi G_{N} \frac{\mathbb{P}_{\|}}{a^{3}} .
\end{aligned}
$$

$\tilde{\eta} \propto$ const
$\tilde{h} \propto a$
$\delta \mathbb{H} \propto$ const $+1 / a^{1 / 2}$
$\delta \mathbb{P}^{i} \propto 1 / a^{2}$

Shadow matter in the cosmos

$$
\begin{aligned}
& d s^{2}=-d t^{2}+a(t)^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j} \\
& \left.h_{i j}=h \delta_{i j}+D_{i j} \eta+\left(\partial_{i} w_{j}+\partial_{j} w_{i}\right)+s_{i j}\right)
\end{aligned}
$$

$$
\tilde{D}_{i j}=\hat{k}_{i} \hat{k}_{j}-\delta_{i j} / 3 .
$$

Linear perturbation theory of scalars and shadow matter: $\quad \mathbb{H} \equiv \mathbb{H}_{0}+\delta \mathbb{H} \quad \mathbb{P}^{i}=\mathbb{P}_{0}^{i}+\delta \mathbb{P}^{i}$ First order

$$
\begin{aligned}
& { }_{a}^{a} \dot{a}_{\dot{\sim}} k^{2} \\
& \text { Consistent with } \\
& \tilde{\eta} \propto \text { const } \\
& \ddot{\tilde{h}}+\dot{a} \\
& -2 i \frac{\kappa}{a^{2}} \dot{\tilde{\eta}}=8 \pi G_{N} \frac{\Perp \|}{a^{3}} . \\
& \delta \mathbb{H} \propto \text { const }+1 / a^{1 / 2} \\
& \delta \mathbb{P}^{i} \propto 1 / a^{2}
\end{aligned}
$$

