Explorations in

 Hilbert space*
Brian Henning
 École Polytechnique Fédérale de Lausanne

Based on work done in collaboration with
O. Delouche, T. Melia, H. Murayama, F. Riva, J. Thompson, M. Walters, ...

Explorations in Hilbert space*

$\mathrm{S} \sim \mathrm{M} \sim 1 / \epsilon$
$B \sim \epsilon$

Brian Henning
 École Polytechnique Fédérale de Lausanne

Based on work done in collaboration with
O. Delouche, T. Melia, H. Murayama, F. Riva, J. Thompson, M. Walters, ...

Explorations in

Hilbert space*
$\mathrm{S} \sim \mathrm{M} \sim 1 / \epsilon$ $B \sim \epsilon$

Brian Henning
 École Polytechnique Fédérale de Lausanne

Based on work done in collaboration with
O. Delouche, T. Melia, H. Murayama, F. Riva, J. Thompson, M. Walters, ...

Bala Biött Standard Model

Our universe in 16 kB

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \bar{\psi} \not D \psi+\text { h.c. } \\
& +\psi_{i} y_{i j} \psi_{j} \phi+\text { h.c. } \\
& +\left|D_{\mu} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Scope of QFT

2IN, 201
2 SIMPLE?

\Rightarrow The scope of questions is severely narrow
\Rightarrow "More is different" -P. Anderson
\Rightarrow Abundance of "new physics" lurking within theories we "know"

Opinion

What does a theorist do?

Considers dynamical systems, identifies the relevant dof, and finds a quantitative description for the dynamics

In this sense, we've barely scratched the surface

The universe at different scales

The universe at different scales

Effective Field Theory:
New Interactions

- Model independent
- Exhaustive
- Guide for experiments

The universe at different scales

The universe at
different scales

| 10^{27} | $10^{20} \quad 10^{10} \quad 1 \mathrm{~m}$ |
| :--- | :--- | :--- | :--- | big

under our nose: QCL
New numerical methods for strong coupling:
Hamiltonian truncation

Standard Model
10^{-15}

Effective Field Theory:
New Interactions

- Model independent
- Guide for experiments

Hamiltonian truncation a new tool for strong coupling

Most striking feature of QCD is confinement
\Rightarrow Inherently a strongly coupled (nonperturbative) phenomenon
\Rightarrow A 50+ year old problem

Charmonium spectrum

$$
\star=\text { exotics }
$$

numerous open problems BOTH qualitative AND quantitative

Tetraquark Z(4430)

Discovery significance
Belle 2007: 5.2 σ
LHCb 2014: 13.9б

hadronization

- Lots of data on jets
- Clean observables experimentally and theoretically
- e.g. "energy correlators"

$$
\mathcal{E}(\hat{n})=\lim _{r \rightarrow \infty} r^{2} \int_{0}^{\infty} d t n^{i} T_{0 i}(t, r \hat{n})
$$

$$
\langle\psi| \mathcal{E}\left(\hat{n}_{1}\right) \cdots \mathcal{E}\left(\hat{n}_{k}\right)|\psi\rangle
$$

Current state-of-the-art: Lattice MC

\checkmark General nonperturbative method
\checkmark Tremendously successful
\Rightarrow e.g. hadron spectroscopy
\Rightarrow Absolutely crucial for experimental analyses
X Inherently Euclidean
\Rightarrow No real time dynamics, e.g. scattering
\times No chiral fermions
\Rightarrow Can't put the SM on the lattice!

Current state-of-the-art: Lattice MC

$$
\begin{aligned}
& \int D \phi e^{i S[\phi]} \\
& \quad \Rightarrow \int D \phi e^{-S_{E}[\phi]}
\end{aligned}
$$

\checkmark General nonperturbative method
\checkmark Tremendously successful
\Rightarrow e.g. hadron spectroscopy
\Rightarrow Absolutely crucial for experimental analyses
\times Inherently Euclidean
NEED OTHER APPROACHES TO COMPLEMENT THE LATTICE!
\Rightarrow No real time dynamics, e.g. scattering
\times No chiral fermions
\Rightarrow Can't put the SM on the lattice!

$$
\begin{gathered}
P^{\mu}=\binom{H}{\vec{P}} \text {, Will present another approach: } \\
H=i \partial_{t}
\end{gathered}
$$

P $-(2)$
 Will present another approach:

 Hamiltonian truncation

 Hamiltonian truncation
 $$
H=i \partial_{t}
$$

Question

Can we make it our responsibility to make a theory collider at the same time as building the next collider(s)?
[in the spirit of brainstorming how to get the future we want, I recommend taking a hard look at messaging]

Observation/question

It appears (to me) that there is plenty of "new physics"
 ($\stackrel{\text { def }}{=}$ physics we don't know how to describe) being discovered at colliders

Why doesn't this "count"?

[e.g.
Exotics,
diffractive scattering (Pomeron),
QGP,
hadronization (energy correlators),

opinion

We need digestible, compact, and

 comprehensive materials clearly explaing what phenomenology we *could* be working on(How else can we make informed decisions on our personal choices for research directions?)

Putting the quantum in QFT $\mathrm{QFT}=\mathrm{QM}$ on an infinite \# of d.o.f.

\Rightarrow States live in a Hilbert space $\longrightarrow|\psi\rangle \in \mathcal{H}$
\Rightarrow They obey Schrödinger eqn $\longrightarrow H\left|\psi_{\alpha}\right\rangle=E_{\alpha}\left|\psi_{\alpha}\right\rangle$
\Rightarrow Operators act on states

$$
\mathcal{O}(\hat{\phi}, \hat{\pi}),[\hat{\phi}, \hat{\pi}] \sim i
$$

the dumbest idea which might actually work

start from known system

$$
\begin{gathered}
H=H_{0}+V \\
H_{0}|i\rangle=E_{i}|i\rangle
\end{gathered}
$$

IR

$$
\langle i| H_{0}+V|j\rangle
$$ compute matrix elements "Hamiltonian truncation"

deform with some relevant operator

$$
V=\int d^{d-1} x \mathcal{O}_{r}(x)
$$

result approximates true
 spectrum

HT output

Basis choice:
 $H_{J_{R}} \subset \mathcal{H}_{u v}$

fighting the exponential

Quantum Hilbert spaces grow exponentially
\Rightarrow How to isolate the relevant sector for desired physics?

basis choice?

- plane wave basis (e.g. DLCQ)
- tensor networks (MPS/PEPS)
- organizing principle: information content
- partial waves (conformal basis)
- organizing principle: spacetime symmetry

Tree Tensor Network /
Hierarchical Tucker
Hierarchical Tucker

Partial waves/phase space harmonics

Don't treat independentlycouple together and ask properties about the collection of particles

EFT amplitude bases
(see later)

smart basis
』
"spherical harmonics" on phase space

HT works splendidly in $\mathrm{d}=1+1$

- Exponential improvement over naïve Fock basis
- \quad \# states $=\mathrm{p}\left(\Delta_{\max }\right)=$ \# partitions of the integer $\Delta_{\max }$
- Laptop + Mathematica

$d>2$: Harder...but worth it

\rightarrow Requires "bigger" basis
$\rightarrow 2$ truncation parameters
\rightarrow Lots of relevant couplings in $d=2+1$

$$
\begin{aligned}
& \lambda \phi^{4} ; y \phi \bar{\psi} \psi ; \frac{1}{g^{2}} F^{2}, g A_{\mu} J^{\mu} \\
& {[\lambda]=1 ;[y]=1 / 2 ;[g]=1 / 2}
\end{aligned}
$$

\Rightarrow lots of strong coupling!
\rightarrow Fewer exact results
\Rightarrow uncharted territory!

Correlators Near Critical Coupling

Truncation philosophy

1) Pick an observable

$$
1=\sum\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

$\left\langle T\left\{\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \cdots \mathcal{O}_{k}\left(x_{k}\right)\right\}\right\rangle$

2) Learn to compute with Hamiltonian
3) Apply truncation

$$
\begin{gathered}
{ }^{*}\langle\mathcal{O}(x) \mathcal{O}(0)\rangle=\sum_{n}\langle 0| \mathcal{O}(x)|n\rangle\langle n| \mathcal{O}(y)|0\rangle \\
H|n\rangle=E_{n}|n\rangle, \mathcal{O}(x)=e^{i P x} \mathcal{O}(0) e^{-i P x}
\end{gathered}
$$

things like

super cool!

TIME TO GO AFTER THE FUNDAMENTAL OBSERVABLE IN RELATIVISTIC FIELD THEORY

The dream

Truncation output:
(approximate) spectrum $\Leftrightarrow\left\{E_{i},\left|\psi_{i}\right\rangle\right\}, \hat{H}\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle$
\Rightarrow gives (approximate) resolution of identity: $1 \approx \sum_{i=1}^{N}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
Fundamental question:

GIVEN THE ENERGY EIGENSTATES, HOW DO YOU COMPUTE THE S-MATRIX?

How to compute \mathcal{M} from $|\psi\rangle$? $=\left\langle p_{3} P_{+} ;\right.$out $| P_{1} p_{2} ;$ in \rangle

PROBLEM: How are truncation states related to in/out-states?

Think finite volume e.g. $\mathbb{R} \times S^{d-1}$

DISCRETIZING continuum $\quad \Rightarrow \quad$ IR cutoff $=$ finite "box"
Prevents formal identification of asymptotic states

\mathcal{M} from $|\psi\rangle$?

Lippmann-Schwinger equation

$$
\left(E_{\alpha}-H_{0}\right)\left|\psi_{\alpha}\right\rangle=V\left|\psi_{\alpha}\right\rangle
$$

> continuum
> consequence

\mathcal{M} from $|\psi\rangle$?

Lippmann-Schwinger equation

$$
\left(E_{\alpha}-H_{0}\right)\left|\psi_{\alpha}\right\rangle=V\left|\psi_{\alpha}\right\rangle
$$

continuum
consequence

$$
\underset{E_{\alpha} \text { eigenvalue }}{H_{0} \text { guaranteed to have } \exists\left|\phi_{\alpha}\right\rangle \text { s.t. } H_{0}\left|\phi_{\alpha}\right\rangle=E_{\alpha}\left|\phi_{\alpha}\right\rangle, ~}
$$

$$
\left|\psi_{\alpha}^{ \pm}\right\rangle=\left|\phi_{\alpha}\right\rangle+\frac{1}{E_{\alpha}-H_{0} \pm i \epsilon}\left|\psi_{\alpha}^{ \pm}\right\rangle
$$

$\pm i \epsilon$ physically specifies a boundary condition
Truncation: $\mathrm{H}_{0}, \mathrm{H}$ finite dim matrices
Discrete spectra for $\mathrm{H}_{0}, \mathrm{H}$ generically differ
No need for $i \in!$

BH, Murayama, Riva, Thompson, Walters arXiv:2209.14306
\mathcal{M} from $|\psi\rangle$
scattering amplitude $\xrightarrow{\text { LSZ }}$ correlation function

$$
\mathcal{M}\left(p_{i}\right) \sim\left(\square_{1}+m^{2}\right) \cdots\left(\square_{4}+m^{2}\right)\left\langle T \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle
$$

evaluate by inserting the identity

\mathcal{M} from $|\psi\rangle$

$$
\left.\mathcal{M}\left(p_{i}\right)=\left\langle\mathbf{p}_{4} \mathbf{p}_{3}, \text { out }\right| \mathbf{p}_{2} \mathbf{p}_{1}, \text { in }\right\rangle \sim\left(\square_{2}+m^{2}\right)\left(\square_{3}+m^{2}\right)\left\langle\mathbf{p}_{4}\right| T \phi\left(x_{3}\right) \phi\left(x_{2}\right)\left|\mathbf{p}_{1}\right\rangle
$$

$$
\sim\left(p_{3}^{2}-m^{2}\right)\left(p_{2}^{2}-m^{2}\right)\left\langle\mathbf{p}_{4}\right| T \phi_{3} \phi_{2}\left|\mathbf{p}_{1}\right\rangle
$$

on-shell, $\mathrm{p}_{\mathrm{i}}{ }^{2}=\mathrm{m}^{2}$
multiplying by zero

Issue: resolution of
identity is approximate

$$
1 \approx \sum_{i=1}^{N}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

develops poles which cancel zeroes

Multiplying exact zero by approximate pole
\rightarrow delicate numerical game \Rightarrow want to avoid!

Exact zeros and approximate poles Analytically: $0 \times \frac{1}{0}=\mathcal{M} \quad$ Numerically: $0 \times \frac{1}{\text { small }}=\mathbf{0}$
$\begin{aligned} & \text { Resolution: } \\ & \text { USE EOM! }\end{aligned} \frac{\delta S}{\delta \phi_{x}}=0 \Rightarrow \underbrace{\left(\square_{x}+m^{2}\right)}_{D_{x} \equiv \square_{x}+m^{2}} \phi_{x} \equiv \underbrace{J_{x}}_{\frac{\lambda}{3!} \phi^{3},\left(m^{2}-m_{0}^{2}\right) \phi}$ Source,

$$
D_{3} D_{2}\left\langle p_{4}\right| T \phi_{3} \phi_{2}\left|p_{1}\right\rangle=\left\langle p_{4}\right| T J_{3} J_{2}\left|p_{1}\right\rangle-i\left\langle p_{4}\right| \frac{\partial J}{\partial \phi}\left(x_{2}\right)\left|p_{1}\right\rangle \delta^{d}\left(x_{3}-x_{2}\right)
$$

Understanding ingredients

TRUNCATION CALL MIMICS

$$
\left\langle p_{4}\right| J_{\Lambda} J\left|p_{1}\right\rangle
$$ DISPERSION RELATION

$$
1=\Sigma|4\rangle\langle 4|
$$

$$
\mu(s) \sim \int d s^{\prime} \frac{\operatorname{Im}\left(\mu\left(s^{\prime}\right)\right)}{s-s^{\prime}}
$$

Reproduces fixed- u dispersion relation:

$$
\mathcal{M}(s, t)=\frac{1}{\pi} \int d s^{\prime} \frac{\operatorname{Im}\left[\mathcal{M}\left(s^{\prime}, t^{\prime}\right)\right]}{s^{\prime}-s-i \epsilon}+\frac{1}{\pi} \int d t^{\prime} \frac{\operatorname{Im}\left[\mathcal{M}\left(s^{\prime}, t^{\prime}\right)\right]}{t^{\prime}-t-i \epsilon}+\text { subtraction terms }
$$

$$
\mathcal{M}(s, t)=\frac{1}{Z}\left[\sum _ { \alpha } \left(\frac{\left\langle\mathbf{p}_{4}\right| J(0)\left|M_{\alpha}^{2} ; \mathbf{p}_{1}+\mathbf{p}_{2}\right\rangle\left\langle M_{\alpha}^{2} ; \mathbf{p}_{1}+\mathbf{p}_{2}\right| J(0)\left|\mathbf{p}_{1}\right\rangle}{M_{\alpha}^{2}-s-i \epsilon}\right.\right.
$$

Summary of recipe

$$
\underbrace{\left\langle p_{4}\right| J J} \mid \underbrace{\left|p_{1}\right\rangle}=\sum_{i=1}^{N}\langle\underbrace{\left\langle p_{4}\right| J\left|\psi_{i}\right\rangle}\left\langle\psi_{i}\right| \cdot \mid p_{1}\rangle
$$ straightforward to compute

can easily read off stable states* from output
*below continuum

Implementing on a strongly coupled theory

$$
\begin{gathered}
d=2+1: O(N) \text { model, } N \rightarrow \infty \\
V=\frac{1}{2} m^{2} \vec{\phi}^{2}+\frac{1}{N} \frac{\lambda}{4}\left(\vec{\phi}^{2}\right)^{2} ; \text { fixed } \lambda, m^{2}, \frac{\lambda}{m}=\begin{array}{c}
\text { dimensionless } \\
\text { parameter }
\end{array}
\end{gathered}
$$

At large N: particle changing processes suppressed

$$
\begin{gathered}
\mathcal{M}^{i j k l}(s, t, u)=\frac{1}{N}\left(\mathcal{M}(s) \delta^{i j} \delta^{k l}+\mathcal{M}(t) \delta^{i k} \delta^{j l}+\mathcal{M}(u) \delta^{i l} \delta^{j k}\right)+O\left(\frac{1}{N^{2}}\right) \\
\mathcal{M}(s)=-\frac{2 \lambda}{1+\frac{\lambda}{8 \pi \sqrt{s}}}\left[\log \left(\frac{\sqrt{s}+2 m}{\sqrt{s}-2 m}\right)+i \pi\right]
\end{gathered}
$$

BH, Murayama, Riva, Thompson, Walters
arXiv:2209.14306
large coupling! $\underbrace{-}$
$\operatorname{Im}[\mathcal{M}]$ for $\lambda / m=8$
results
$O(N)$ model: repulsive interaction \Rightarrow no bound states

Best convergence outside physical regime
results

BH, Murayama, Riva, Thompson, Walters
arXiv:2209.14306

- Can explore analytic behavior
- Rapid convergence throughout complex plane

Scattering goals

Forward scattering/ Regge physics
is
 structure

Gauge theories

$$
\begin{gathered}
\text { QED in } d=2+1 \\
\left.\checkmark \text { Confining (for small } N_{f}\right)
\end{gathered}
$$

Graphene honeycomb lattice Unconventional OHE from: arXiv:0706.3016

QHE in graphene
Zhang et. al., Nature 438, 201-205 (2005)

GAUGE THEORIES

TWO POSSIBLE APPROACHES

$$
H_{0}=\text { "SOLVABLE" INTERACTING }
$$

$H_{0}=$ FREE QUARKS \& GLUONS UV FIXED POINT
(egg. Banks-Zaks, sulu) $4=16$)

$$
V \sim g A_{\mu} J^{\mu}+g A^{2} \partial A
$$

$V \sim m \bar{q} q$

+: FAMILIAR
-: Marginal ($d=3+1$)

- : NOT GAUGE INVARIANT

Future directions: HT

is

resonances

$$
d=1+1
$$

- ongoing with S. Monin, M. Walters

$$
\mathcal{E}(\hat{n})=\lim _{r \rightarrow \infty} r^{2} \int_{0}^{\infty} d t n^{i} T_{0 i}(t, r \hat{n})
$$

Future directions: HT

Banks-Zaks \Rightarrow QCD

\Rightarrow Banks-Zaks data (ongoing) with Karateev, Kosmopoulos, Ricossa, Riembau, Riva, Walters

QED3

concrete mysteries; tension between methods; relevance to cond-mat

Two approaches:

1) Start from free theory
2) Start from interacting fixed point - ongoing with J. Thompson, M. Walters, ...
gauge theories in $\mathrm{d}=1+1$
QED2
\rightarrow screening vs confinement

- ongoing with K. Farnsworth, S. Ricossa

Future directions: HT

QED3

concrete mysteries; tension between methods; relevance to cond-mat

Two approaches:

1) Start from free theory
2) Start from interacting fixed point

- ongoing with J. Thompson, M. Walters, ...
gauge theories in $\mathrm{d}=1+1$
QED2
\rightarrow screening vs confinement
- ongoing with K. Farnsworth , S. Ricossa

PLENTY of projects, ranging from pheno, to formal, to numerical \Rightarrow something for everyone!

Observation

"becoming a better physicist" and "career advancement" are not always the same path

I worry these paths are diverging
I think "how do we work on the longstanding, big questions" plays a role here

into (some set of) the weeds

isomorphic problems

OPERATOR -STATE CORRESPONDENCES)

$$
\left|\sigma_{\Delta, l}\right\rangle=\theta_{\Delta, l}(0)|0\rangle
$$

$\left.\left|\vec{p}_{1} \sigma_{1}, \ldots, \vec{p}_{n} \sigma_{n}\right\rangle=\alpha_{\sigma}^{+} \mid \bar{p}\right) \ldots a_{\sigma_{-}}^{+}\left(\vec{p}_{n}\right)|0\rangle, \phi \sim \int\left(\epsilon_{(p)}^{\sigma} a_{\sigma}^{+}(p)+h . c.\right)$

OPERATOR SPACE
hilbert space

$$
\begin{aligned}
& \text { SCATTERING AMPLITUDES } \\
& \text { (} S \text {-MATRIX) }
\end{aligned}
$$

isomorphic problems

OPERATOR -STATE CORRESPONDENCE (S)

$$
\left|\sigma_{\Delta, l}\right\rangle=\theta_{\Delta, l}(0)|0\rangle
$$

$\left.\left.\left.\vec{p}_{1} \sigma_{1}, \ldots, \vec{p}_{n} \sigma_{n}\right\rangle=\alpha_{\sigma}^{+} \mid \bar{p}\right) \ldots a_{\sigma_{n}}^{+}\left(\vec{p}_{n}\right)|0\rangle, \phi \sim \int\left(\epsilon^{\sigma}(p)\right)_{\sigma}^{+}(p)+h . c\right) \quad$ ing IT

OPERATOR SPACE
HILBERT SPACE

$$
\uparrow
$$

SCATTERING AMPLITUDES

$$
(S-\mu A T R I X)
$$

Reminder: two input ingredients

STATES $\Rightarrow|\psi\rangle,\langle\psi \mid \psi\rangle<\infty$

Born level
\Rightarrow Ingredients recyclable for many different theories

Computational dream

Building Fock spaces

QFT with S-matrix
$\Leftrightarrow \exists$ scattering states

\Rightarrow Fock space at $\mathrm{t} \rightarrow-\infty$ or $+\infty$
\Rightarrow Furnishes unitary rep of ISO(d-1,1) $\vec{p} \in$

$$
S O(d-1,1) / S O(d-1)
$$

\Rightarrow Single particle: $\mathcal{H}_{1}=\{|\vec{p}, \sigma\rangle\}$

$$
S O(d-1,1) / I S O(d-2)
$$

FOCK: $\quad \mathcal{H}=\bigoplus(a) \operatorname{sym}^{n}\left(\mathcal{H}_{1}\right)$

Scalar Fock space

$$
\begin{gathered}
\mathcal{H}_{1}=\{|\mathbf{p}\rangle\} \equiv \Pi_{1}(p)=\begin{array}{c}
\text { single particle } \\
\text { phase space }
\end{array} \\
\langle\mathbf{p} \mid \mathbf{q}\rangle=\delta(\mathbf{p}-\mathbf{q}) \Leftrightarrow \mathbf{1}=\int \mathrm{d} p|\mathbf{p}\rangle\langle\mathbf{p}|
\end{gathered}
$$

Scalar Fock space

$$
\mathcal{H}_{1}=\{|\mathbf{p}\rangle\} \equiv \Pi_{1}(p)=\begin{gathered}
\text { single particle } \\
\text { phase space }
\end{gathered}
$$

$$
\begin{gathered}
\langle\mathbf{p} \mid \mathbf{q}\rangle=\delta(\mathbf{p}-\mathbf{q}) \Leftrightarrow \mathbf{1}=\int \mathbb{d} p|\mathbf{p}\rangle\langle\mathbf{p}| \\
\text { Arbitrary state }|\psi\rangle \in \mathcal{H}_{1} \\
|\psi\rangle=\int \mathbb{d} p|\mathbf{p}\rangle\langle\mathbf{p} \mid \psi\rangle=\int \mathbb{d} p \psi(\mathbf{p})|\mathbf{p}\rangle=\text { "wave packet" }
\end{gathered}
$$

Scalar Fock space

$$
\begin{gathered}
\mathcal{H}_{1}=\{|\mathbf{p}\rangle\} \equiv \Pi_{1}(p)=\begin{array}{c}
\text { single particle } \\
\text { phase space }
\end{array} \\
\langle\mathbf{p} \mid \mathbf{q}\rangle=\delta(\mathbf{p}-\mathbf{q}) \quad \Leftrightarrow \quad \mathbf{1}=\int \mathrm{đ} p|\mathbf{p}\rangle\langle\mathbf{p}|
\end{gathered}
$$

Arbitrary state $|\psi\rangle \in \mathcal{H}_{1}$
$|\psi\rangle=\int \mathrm{đ} p|\mathbf{p}\rangle\langle\mathbf{p} \mid \psi\rangle=\int \mathrm{đ} p \psi(\mathbf{p})|\mathbf{p}\rangle=$ "wave packet"

$$
\langle\psi \mid \psi\rangle=\int \mathrm{đ} p|\psi(\mathbf{p})|^{2}
$$

$$
\Rightarrow \quad \mathcal{H}_{1}=L^{2}\left(\Pi_{1}\right)
$$

Scalar Fock space

$$
\begin{aligned}
& \mathcal{H}=\bigoplus_{n} S^{n}\left(\mathcal{H}_{1}\right) \equiv \bigoplus_{n} \Pi_{n}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right) \\
& \begin{aligned}
\int d \Pi_{n}\left(\mathbf{p}_{i}\right) & =\int d \mathbf{p}_{1} \cdots \mathrm{~d} \mathbf{p}_{n} \\
& =\int d^{d} P \delta^{d}\left(P-\sum_{i} p_{i}\right) đ \mathbf{p}_{1} \cdots đ \mathbf{p}_{n} \\
& \equiv \int d^{d} P d \Pi_{n}^{P}\left(\mathbf{p}_{i}\right)
\end{aligned}
\end{aligned}
$$

$\Pi_{n}^{P} \equiv{ }^{n}$-particle phase space with total momentum P^{μ}

COMPACT

Scalar Fock space

Free "Hilbert space"

$$
\left|n\left(\mathbf{p}_{i}\right)\right\rangle \equiv\left|\mathbf{p}_{1} \cdots \mathbf{p}_{n}\right\rangle=a_{\mathbf{p}_{1}}^{\dagger} \cdots a_{\mathbf{p}_{2}}^{\dagger}|0\rangle
$$

$=$ Fock space

$$
\mathbf{1}=\sum_{n, p}\left|n\left(\mathbf{p}_{i}\right)\right\rangle\left\langle n\left(\mathbf{p}_{i}\right)\right|
$$

completeness
$|\psi\rangle=\sum_{n, p} \psi^{(n)}\left(\mathbf{p}_{i}\right)|n\rangle \quad\left|\psi^{(n)}(P)\right\rangle=\int d \Pi_{n}\left(\mathbf{p}_{i}\right) \delta^{d}\left(P-p_{1}-\cdots-p_{n}\right) \psi^{(n)}\left(\mathbf{p}_{i}\right)|n\rangle$
$\left\langle\psi^{\prime\left(n^{\prime}\right)}\left(P^{\prime}\right) \mid \psi^{(n)}(P)\right\rangle=\delta^{d}\left(P-P^{\prime}\right) \delta_{n n^{\prime}} \underbrace{\int d \Pi_{n}\left(\mathbf{p}_{i}\right) \psi^{\prime *}\left(\mathbf{p}_{i}\right) \psi\left(\mathbf{p}_{i}\right) \delta^{d}\left(P-\sum_{i} p_{i}\right)}$
Hilbert space $=$ square-integrable functions on phase space: $L^{2}\left(\Pi_{n}^{P}\right)$

Massless phase space

$\left.\begin{array}{l}\Rightarrow \text { momentum conservation } \\ \Rightarrow \text { on-shell } \\ \Rightarrow \text { Lorentz invariance }\end{array}\right\} \quad \begin{gathered}\text { constraints define a manifold in phase space }\end{gathered}$

Massless phase space

$$
\left.\begin{array}{l}
\Rightarrow \text { momentum conservation } \\
\Rightarrow \text { on-shell } \\
\Rightarrow \text { Lorentz invariance }
\end{array}\right\} \qquad \begin{gathered}
\text { constraints define a manifold in phase space } \\
\begin{array}{c}
\delta\left(p_{1}^{2}\right) \cdots \delta\left(p_{n}^{2}\right) \times \delta^{4}\left(P^{\mu}-\left(p_{1}^{\mu}+\cdots+p_{n}^{\mu}\right)\right) \\
\text { use spinors }
\end{array} \delta^{4}\left(P_{\alpha \dot{\alpha}}-\left(\lambda^{1} \widetilde{\lambda}^{1}+\cdots+\lambda^{n} \widetilde{\lambda}^{n}\right)_{\alpha \dot{\alpha}}\right) \\
\begin{array}{c}
\text { Want a set of class } \\
\text { functions on the manifold }
\end{array} \\
\longrightarrow \text { generalized spherical harmonics }
\end{gathered}
$$

Massless phase space

$\left.\begin{array}{l}\Rightarrow \text { momentum conservation } \\ \Rightarrow \text { on-shell } \\ \Rightarrow \text { Lorentz invariance }\end{array}\right\} \quad \underbrace{\begin{array}{c}\text { constraints define a manifold in phase space }\end{array}} \begin{gathered}\delta\left(p_{1}^{2}\right) \cdots \delta\left(p_{n}^{2}\right) \times \delta^{4}\left(P^{\mu}-\left(p_{1}^{\mu}+\cdots+p_{n}^{\mu}\right)\right) \\ \text { use spinors }\end{gathered} \delta^{4}\left(P_{\alpha \dot{\alpha}}-\left(\lambda^{1} \widetilde{\lambda}^{1}+\cdots+\lambda^{n} \widetilde{\lambda}^{n}\right)_{\alpha \dot{\alpha}}\right)$

$$
\lambda=\left\{\lambda_{\alpha}{ }^{i}\right\}=\left(\begin{array}{lll}
\lambda_{1}{ }^{1} & \cdots & \lambda_{1}{ }^{N} \\
\lambda_{2}{ }^{1} & \cdots & \lambda_{2}{ }^{N}
\end{array}\right)
$$

Want a set of class
functions on the manifold
\longrightarrow generalized spherical harmonics

$$
\begin{aligned}
& \lambda \rightarrow g \lambda U^{T}\left(\lambda_{\alpha}^{i} \rightarrow g_{\alpha}^{\beta} U_{j}^{i} \lambda_{\beta}^{j}\right) \Rightarrow P=\lambda \lambda^{\dagger} \\
& \quad g \in S L(2, \mathbb{C}), U \in U(N) \supset U(1)^{N}
\end{aligned}
$$

$\mathrm{U}(\mathrm{N})$
invariant!

$$
\int d \Pi_{n}^{P} \Rightarrow \int d \lambda d \lambda^{\dagger} \delta\left(P-\lambda \lambda^{\dagger}\right)
$$

geometry of phase space

$$
\begin{aligned}
\vec{v}^{2} & =r^{2} \\
\vec{u}^{2} & =r^{2} \\
\vec{v} \cdot \vec{u} & =0
\end{aligned}
$$

geometry basically complex version of two orthogonal spheres

geometry of phase space

$$
\begin{aligned}
& \delta^{4}\left(P-\lambda \lambda^{\dagger}\right) \text { C.O.m. } \\
& \longrightarrow
\end{aligned} P_{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right)=\left(\begin{array}{cc}
\left|\vec{\lambda}_{1}\right|^{2} & \vec{\lambda}_{1} \cdot \vec{\lambda}_{2}^{*} \\
\vec{\lambda}_{2} \cdot \vec{\lambda}_{1}^{*} & \left|\vec{\lambda}_{2}\right|^{2}
\end{array}\right)
$$

$$
G / H=U(N) / U(N-2) \quad \text { "Stiefel manifold" } V_{2}\left(\mathbb{C}^{N}\right)
$$

$$
\text { Grassmannian } \subset \text { Stiefel } \quad G_{2}\left(\mathbb{C}^{N}\right)=U(N) / U(N-2) \times U(2)
$$

states \Leftrightarrow harmonics on phase space
"conformal - helicity duality"
$4 d: S U(2,2) \times U(N)$
$3 d: S p(4, \mathbb{R}) \times O(N)$
(math world: reductive dual pairs/Howe duality/oscillator representation)

$$
2 d: S L(2, \mathbb{R}) \times O(N)
$$

upshot on Stiefel harmonics

harmonics labeled by Young diagrams
(with at most two rows)

these dictate specific polynomials in the spinors
comments:

1) each shape corresponds to operators
2) multiple operators belong to same shape
a) these involve particles with different spin
3) these operators are conformal primaries

Construct states algebraically
e.g.

$$
\left|l, \mu=\left(\mu_{1}, \ldots, \mu_{3}\right)\right\rangle \simeq F^{3}
$$

now apply $\mathrm{U}(\mathrm{N})$ lowering op:
$L_{-}|l, \mu\rangle \sim\left|l, \mu^{\prime}\right\rangle \simeq \widetilde{\psi} F \psi$

Phase space harmonics

The families of operators belong to the same Grassmann harmonic！

Method used to construct dim－8 ops in SMEFT

\＃	田	日	－
		㫜	$\bar{\theta}$
			画
			西

$\begin{aligned} & \tilde{\psi}^{2} \phi \\ & \tilde{\psi}^{4} \\ & F^{3} \end{aligned}$	$\begin{gathered} F^{2} \phi^{2} \\ F \psi^{2} \phi \\ \psi^{4} \end{gathered}$	$4^{2} \phi^{3}$	ϕ^{6}
		$\begin{aligned} & \phi^{4} \partial^{2} \\ & 4 \bar{\psi} \phi^{2} \partial \\ & \psi^{2} \bar{\psi}^{2} \end{aligned}$	$4^{2} \phi^{3}$
			$\begin{aligned} & \bar{F}^{2} \phi^{2} \\ & \overline{\bar{F} \overline{4}^{2} \phi} \\ & \overline{4}^{4} \end{aligned}$
			$\begin{aligned} & \bar{\Psi}^{2} \phi \\ & \frac{T^{4}}{\bar{F}} \bar{\psi} \\ & \bar{F}^{3} \end{aligned}$

Explains structure of EFT non－renormalization／helicity selection rules
Cheung \＆Shen 1505.01844
Azatov，Contino，Machado，Riva 1607.05236
Further extensions in recent years．．．

Li，Shu，Xiao，Yu 2005．00008， 2012.11615 Dong，Ma，Shu，Zheng 2202．08350

2- and 3-pt functions

Treating λ as a Fock operator, with deformed commutation relations $\left[\lambda_{a}, \lambda_{b}^{\dagger}\right]=z_{a b}$, gives a very efficient computation of 2-pt functions

2- and 3-pt functions

Treating λ as a Fock operator, with deformed commutation relations

 $\left[\lambda_{a}, \lambda_{b}^{\dagger}\right]=z_{a b}$, gives a very efficient computation of 2-pt functions
4 Correlation functions

4.1 Higher spin currents two-point fxns: $\left\langle J_{l} J_{l^{\prime}}\right\rangle$

Focus on the currents for a single scalar field, so $l \in 2 \mathbb{Z}$:

$$
\begin{equation*}
J_{2 l}^{\phi}=N_{2 l} \frac{1}{2}\left[(\hat{\lambda}+i \hat{\eta})^{2 l}+(\hat{\lambda}-i \hat{\eta})^{2 l}\right] \tag{31}
\end{equation*}
$$

with $N_{2 l}$ a normalization factor. Binomial expanding the terms we arrive at

$$
\begin{equation*}
J_{2 l}=N_{2 l} \sum_{k=0}^{l}\binom{2 l}{2 k}(-1)^{k} \hat{\lambda}^{2(l-k)} \hat{\eta}^{2 k} \tag{32}
\end{equation*}
$$

The two point function is
$\left\langle J_{2 l}(x) J_{2 l^{\prime}}(y)\right\rangle=2!N_{l} N_{l^{\prime}} \int d^{2} \widetilde{\lambda} d^{2} \tilde{\eta} e^{-\frac{i}{2}\left(\lambda^{2}+\eta^{2}\right) z} \sum_{k=0}^{l} \sum_{k^{\prime}=0}^{l^{\prime}}(-1)^{k+k^{\prime}}\binom{2 l}{2 k}\binom{2 l^{\prime}}{2 k^{\prime}} \hat{\lambda}^{2(l-k)} \hat{\eta}^{2 k} \hat{\lambda}^{2\left(l^{\prime}-k^{\prime}\right)} \hat{\eta}^{2 k^{\prime}}$
Let's evaluate this using the Fock space method, instead of evaluating all the gaussian integrals. Here, the basic ingredient is $\left[\lambda_{a}, \lambda_{b}^{\dagger}\right]=\bar{z}_{a b}$ (deforming the canonical commutation relations from $\left[\lambda_{a}, \lambda_{b}^{\dagger}\right]=\delta_{a b}$).

$$
\begin{align*}
\left\langle\lambda^{m} \mid \lambda^{n}\right\rangle & =\langle 0| \lambda_{a_{1}} \cdots \lambda_{a_{m}} \lambda_{b_{1}}^{\dagger} \cdots \lambda_{b_{n}}^{\dagger}|0\rangle \\
& =\delta_{m n}\langle 0| \lambda_{a_{1}} \cdots \lambda_{a_{n}} \lambda_{b_{1}}^{\dagger} \cdots \lambda_{b_{n}}^{\dagger}|0\rangle \tag{35}\\
& =\delta_{m n}\langle 0| \lambda_{a_{2}} \cdots \lambda_{a_{n}}\left[\left(\left[a_{1}, b_{1}\right] \lambda_{b_{2}}^{\dagger} \cdots \lambda_{b_{n}}^{\dagger}\right)+\left(\lambda_{b_{1}}^{\dagger}\left[a_{1}, b_{2}\right] \lambda_{b_{3}}^{\dagger} \cdots \lambda_{b_{n}}^{\dagger}\right)+\cdots\right]|0\rangle \\
& \vdots \tag{37}\\
& =\delta_{m n} \sum_{\text {Wick }}\left[\lambda_{a_{1}}, \lambda_{b_{1}}^{\dagger}\right] \cdots\left[\lambda_{a_{n}}, \lambda_{b_{n}}^{\dagger}\right]\langle 0 \mid 0\rangle \\
& =\delta_{m n} n!\bar{z}_{a_{1}}^{\left(b_{1}\right.} \cdots \bar{z}_{a_{n}}^{\left.b_{n}\right)}\langle 0 \mid 0\rangle
\end{align*}
$$

Now

$$
\left\langle\hat{\lambda}^{2(l-k)} \hat{\eta}^{2 k} \mid \hat{\lambda}^{2\left(l^{\prime}-k^{\prime}\right)} \hat{\eta}^{2 k^{\prime}}\right\rangle=\delta_{l-k, l^{\prime}-k^{\prime}} \delta_{k k^{\prime}}(2 k)!(2(l-k))!
$$

$$
\times\left[\bar{z}_{a_{1}}^{\left(b_{1}\right.} \cdots \bar{z}_{a_{2 k}}^{\left.b_{2 k}\right)} \cdot \bar{z}_{a_{2 k+1}}^{\left(b_{2 k+1}\right.} \cdots \bar{z}_{a_{2 l}}^{\left.b_{2 l}\right)}\right]_{\operatorname{sym} a_{i}}^{\operatorname{sym} b_{j}}\langle 0 \mid 0\rangle_{\lambda}\langle 0 \mid 0\rangle_{\eta}
$$

$$
=\delta_{l l^{\prime}} \delta_{k k^{\prime}} \frac{(2 k)!(2(l-k))!}{(2 l)!}(2 l)!\bar{z}_{a_{1}}^{\left(b_{1}\right.} \cdots \bar{z}_{a_{2 l}}^{\left.b_{2 l}\right)}\langle 0 \mid 0\rangle^{2}
$$

whence

$$
\left\langle\operatorname{Re}\left[(\hat{\lambda}+i \hat{\eta})^{2 l}\right] \mid \operatorname{Re}\left[(\hat{\lambda}+i \hat{\eta})^{2 l^{\prime}}\right]\right\rangle=\sum_{k=0}^{l} \sum_{k^{\prime}=0}^{l^{\prime}}(-1)^{k+k^{\prime}}\binom{2 l}{2 k}\binom{2 l^{\prime}}{2 k^{\prime}} \cdot \frac{\delta_{l l^{\prime}} \delta_{k k^{\prime}}}{\binom{2 l}{2 k}}(2 l)!\bar{z}_{a_{1}}^{\left(b_{1}\right.} \cdots \bar{z}_{a_{2 l}}^{\left.b_{2 l}\right)}\langle 0 \mid 0\rangle^{2}
$$

$$
\begin{equation*}
=\delta_{l l^{\prime}}\left[\sum_{k=0}^{l}\binom{2 l}{2 k}\right](2 l)!\bar{z}_{a_{1}}^{\left(b_{1}\right.} \cdots \bar{z}_{a_{2 l}}^{\left.b_{2 l}\right)}\langle 0 \mid 0\rangle^{2} \tag{41}
\end{equation*}
$$

so that we arrive at

$$
\left\langle\operatorname{Re}\left[(\hat{\lambda}+i \hat{\eta})^{2 l}\right] \mid \operatorname{Re}\left[(\hat{\lambda}+i \hat{\eta})^{2 l^{\prime}}\right]\right\rangle=\delta_{l l^{\prime}} 2^{2 l-1}(2 l)!\bar{z}_{a_{1}}^{\left(b_{1}\right.} \cdots \bar{z}_{a_{2 l}}^{\left.b_{2 l}\right)}\langle 0 \mid 0\rangle_{\lambda}\langle 0 \mid 0\rangle_{\eta}
$$

$$
\text { Taking }\langle 0 \mid 0\rangle=1 /\left(4 \pi \sqrt{-z^{2}}\right) \text { we arrive at }
$$

$$
\left\langle J_{a_{1} \cdots a_{2 l}}(x) J_{b_{1} \cdots b_{2 l^{\prime}}}(y)\right\rangle=2!\delta_{l l^{\prime}} N_{2 l}^{2} 2^{2 l-1}(-i)^{2 l}\left(\frac{1}{4 \pi \sqrt{-z^{2}}}\right)^{2}(2 l)!\bar{z}_{a_{1}}^{\left(b_{1}\right.} \cdots \bar{z}_{a_{2 l}}^{\left.b_{2 l}\right)}
$$

2- and 3-pt functions

Treating λ as a Fock operator, with deformed commutation relations $\left[\lambda_{a}, \lambda_{b}^{\dagger}\right]=z_{a b}$, gives a very efficient computation of 2-pt functions

4 Correlation functions
4.1 Higher spin currents two-point fxns:

Can such a method be extended to
3-pt functions/matrix elements???

The two point function is

$$
\left\langle\mathcal{O}_{f}\left(x_{1}\right) \mathcal{O}_{H}\left(x_{2}\right) \mathcal{O}_{i}\left(x_{3}\right)\right\rangle \propto c_{\text {白 } i}
$$

$$
\left\langle l_{f} \mu_{f}^{\prime}\right| H\left|l_{i} \mu_{i}^{\prime}\right\rangle=\left\langle l_{f} \mu_{f}\right| L_{+} H L_{-}\left|l_{i} \mu_{i}\right\rangle \propto c_{\mu_{f}^{\prime} H \mu_{i}^{\prime}}
$$

A variety or realizations

Is there a "best" picture?

Other applications: EFT

operators/EFT amplitudes

phase space (Grassmannian)
harmonics and EFT positivity

generalize to massive particles (hard, but useful!)

Massive phase space manifold:
Is there a "nice" geometric formulation?

A bunch of other questions: identical particles (symmeterization); non-renormalization thms; efficient construction algorithms; amplitudes in $\mathrm{d}=2+1$; ...

Observation

we have significant representation and environment issues (to put it mildly, IMO)
physics, and theoretical physics in particular, do not have a good reputation
what does this mean for our future?

THANK YOU!

